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Male fertility is essential for reproduction and population growth in animals.

Many factors affect male fertility, such as courtship behavior, sperm quantity,

and sperm motility, among others. Seminal Fluid Proteins (SFPs) are vital

components of seminal fluid in the male ejaculate, which affect male

fertility, sperm activation, and female ovulation. However, the knowledge of

SFPs is insufficient; the function of many SFPs remains unknown, and most

described functions were mainly characterized in Drosophila or other

laboratory models. Here, we focus on the Serine protease 2 (Ser2) gene in

the lepidopteran pest Spodoptera litura. The Ser2 gene was specifically

expressed in male adults. Disruption of the Ser2 gene mediated by CRISPR/

Cas9 induced male sterility but females remained fertile. PCR-based detection

of the next-generation mutants showed that male sterility was stably inherited.

The qRT-PCR analysis of SlSer2 mutants showed that motor protein family

genes and structural protein family genes were down-regulated, while protein

modification family genes were up-regulated, suggesting that SlSer2 may be

involved in spermmovement and activity. These results demonstrate that Ser2 is

an important component of SFPs in seminal fluid and was identified for a useful

sterile gene for pest control that may lead to new control strategies for

lepidopteran insect pests such as S. litura.
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Introduction

The common cutworm, Spodoptera litura (Lepidoptera: Noctuidae) is one of the most

destructive phytophagous pests of crops such as tea, tobacco, and vegetables, which causes

serious losses of yield and quality of crops in China and other Southeast Asian countries

(Rao et al., 1993; Qin et al., 2004; Meagher et al., 2008; Muthusamy et al., 2014). Chemical

insecticides are the most commonly used control method for S. litura (Ayyanna et al.,

1982). Resistance to chemical insecticides has become a serious problem in insect pests

including S. litura (Ahmad et al., 2008; Ahmad et al., 2009; Shad et al., 2010). Moreover,
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incorrect use of certain pesticides has very serious implications

for food security and human health, raising awareness of their

eco-environmental and human impacts (Kaur et al., 2014; Rehan

et al., 2014). Therefore, alternative species-specific and co-

friendly pest management strategies are needed.

The CRISPR/Cas9 system is an effective genome editing tool

with potential application in pest management (Wang et al.,

2013; Alphey, 2014; Esvelt et al., 2014; Gantz et al., 2015; Alphey,

2016). CRISPR/Cas9 has been used to edit the genomes of

numerous eukaryotic organisms (Cong et al., 2013; Hwang

et al., 2013), model insect species in the orders Diptera

(Bassett et al., 2013; Hall et al., 2015) and Coleoptera (Gillies

et al., 2015). In Lepidoptera, CRISPR/Cas9 has been used to

analyze gene functions (Liu et al., 2017; Xu et al., 2017; Zeng et al.,

2017), to enhance antiviral responses (Chen et al., 2017), to use

the silkworm as a bioreactor for important protein products (Xu

et al., 2018), and to control female-specific embryonic lethality

(Zhang et al., 2018). In S. litura, the CRISPR/Cas9 system has

worked efficiently to investigate some gene functions (Bi et al.,

2016; Zhu et al., 2016; Bi et al., 2019; Du et al., 2019). But how best

to use this powerful biotechnology and select suitable and

efficient targeted genes to control S. litura is a significant

problem.

The male seminal fluid is a complex medium, that contains many

molecules and complex components, such as seminal fluid proteins

(SFPs), produced mainly by sex accessory glands (Poiani et al., 2006;

Sirot et al., 2014;McGraw et al., 2015). In themating behavior of insects,

SFPs are transferred from males to females through ejaculation, which

has possible benefits including sperm capacitation, sperm competition

and fertilization, and plays a crucial role in reproductive success

(Chapman et al., 2001; Avila et al., 2011; Denis et al., 2017;

Taniguchi et al., 2018; Karr et al., 2019). In Drosophila melanogaster,

RNAi-mediated knockdown of a type of SFP, Seminase, a predicted

serine protease, results in a decrease of eggs and an inability to store sex

peptides (LaFlamme et al., 2012). Seminase initiates the protease

cascaded signaling pathway by causing proteases to hydrolyze

accessory gland proteins (Acps), thus participating in the early

regulatory process of the post-mating processes (Laflamme and

Wolfner, 2013). Previous studies have shown that serine protease is

an important enzyme that promotes sperms to produce energy

resources for sperm motility, and its absence affects fertilization

success (Nagaoka et al., 2012). Using CRISPR/Cas9 technology to

knockout of one of the serine protease gene, Serine protease 2

(Ser2), led to male sterility but did not affect female sterility in

Bombyx mori and Plutella xylostella (Xu et al., 2020).

Here, we investigate the function of the Ser2 gene in S. litura.

Using the CRISPR/Cas9 genome editing system, we successfully

knocked out the Ser2 gene. Ser2 disruption induced male specific

sterility in adults with few normal hatched individuals in the next

generation. The novel phenotype of male specific sterility showed

Ser2 was an important gene in the sperm development process in

S. litura. The Sterile insect technology (SIT), which needs to

release the sterile insects into the wild and mate with wild type

insects that induces the insects sterility, is one of valuable and

environmentally friendly pest control approach in lepidopteran

and dipteran insects (Tan et al., 2013). Our data indicates that

SlSer2, which regulates the fertility of male adults and could

decrease the population quantity of pests, through releasing male

or female mutants, is a potential male specific sterility gene for

using in the control of S. litura and other lepidopteran pests.

Materials and methods

Insect strains and rearing

A laboratory strain of common cutworm, S. litura, was obtained

from the College of Plant Protection, Nanjing Agricultural University.

Larvae were provided with an artificial diet (Supplementary Table S1)

and were kept at 26°C with 80% relative humidity and a 12:12 light:

dark photoperiod. Adults were fed 10% honey and kept at 25°C with

80% relative humidity (Bi et al., 2019).

Cloning of SlSer2 and conservative
analysis

To identify the SlSer2 gene sequence, based on a homologous

gene sequence aligning approach, the B. mori Ser2 sequence

(NP_001153675.1, NCBI) was used to search for the S. litura

homolog Ser2 sequence using local Protein Basic Local

Alignment Search Tool (BLAST) of S. litura protein database.

According to the genome sequence of S. litura (Cheng et al.,

2017), the related sequence of SlSer2 was found and designed

primers to amplify, used the Polymerase Chain Reaction (PCR).

Total RNA was isolated from fifth instar larvae using Trizol

Reagent (Invitrogen, Carlsbad, CA, United States) and treated with

RNase-free DNase I (Ambion, Austin, TX, United States) according

to the manufacturer’s protocol. cDNAs were synthesized with the

Omniscript reverse transcriptase kit (Qiagen, Hilden, Germany) in a

20-μl reaction mixture containing 1 μg total RNA per the

manufacturer’s instruction. SlSer2 cDNA fragments were

amplified by PCR with the following pair of primers

(Supplementary Table S2). PCR was carried out using KOD plus

polymerase (TOYOBO, Osaka, Japan) under the following

conditions: 98°C for 2 min, followed by 30 cycles at 98°C for

30 s, 55°C for 30 s, and 68°C for 1 min, and an elongation phase

at 68°C for 10 min. Amplified products were sequenced after cloning

into a PJET1.2-T vector (Fermentas, Burlington, ON, Canada).

The multiple alignment and conservative analysis were used

DNAMAN 8.0 software, including the putative SER2 protein of

S. litura and the other eight lepidopteran SER2 or homologous

amino acids sequences (Supplementary Table S2). The GenBank

accession numbers of the protein sequence are as follows: B. mori

(NP_001153675.1), Agrius convolvuli (BAK52270.1), Samia

ricini (BAL04890.1), Pieris rapae (XP_022113521.1),
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Helicoverpa armigera (XP_021195380.1), Papilio machaon

(XP_014359308.1), and P. xylostella (XP_011553524.1),

Hyphantria cunea (Li L. et al., 2022).

Expression profile analysis of SlSer2

To investigate the spatio-temporal distribution of SlSer2, total

RNA was isolated from each developmental stage, including eggs,

the first day of each larval instar, pupae (P), adults (A), and tissues/

organs in the male on the third day of the fifth instar larval (L5D3)

stage, including head, the epidermis (EPI), fat body (FB), trachea,

foregut (FG), midgut (MG), hindgut (HG), and testis (TE), using

Trizol reagent (Invitrogen, Carlsbad, CA, United States) and treated

with RNase-free DNase I (Ambion, Austin, TX, United States)

according to the manufacturer’s protocols. cDNAs were

synthesized using the Omniscript reverse transcriptase kit

(Qiagen, Hilden, Germany) in a 20-μl reaction mixture

containing 1 μg total RNA from a mixture of equal amounts of

three RNA samples from each developmental stage. qRT-PCR

analysis for Ser2 was performed using a SYBR Green Realtime

PCRMaster Mix (Thermo Fisher, Waltham, MA, United States) on

an Eppendorf Real-time PCR System. The PCR conditions were as

follows: initial incubation at 95°C for 5 min, 35 cycles at 95°C for 15 s

and 60°C for 1 min qPCR reactions were carried out using gene-

specific primers to amplify a 208-bp fragment. Another pair of

primers, Actin-qF and Actin-qR (Supplementary Table S2), was

used to amplify a 159-bp fragment of SlActin as an internal control.

In vitro transcription of Cas9 mRNA and
sgRNA

Two 23-bp sgRNAs were selected to target SlSer2. Each

sgRNA was sub-cloned into the 500-bp linearized CloneJet

PJET1.2-T vector (Thermo Fisher, Waltham, MA,

United States) upstream of the protospacer adjacent motif

(PAM) sequence to allow sgRNA expression under the control

of the T7 promoter. The sgRNA was synthesized in vitro with a

MEGAScript T7 kit (Ambion, Austin, TX, United States)

according to the manufacturer’s instructions. Cas9 mRNA was

synthesized in vitro using an mMESSAGE T7 Kit (Ambion,

Austin, TX, United States) with a PTD1-T7-Cas9 vector as

the template (Wang et al., 2013) according to the

manufacturer’s instructions.

Microinjection of embryos

Female S. litura moths were allowed to lay eggs on

transparent plastic bags. A previously reported microinjection

method was employed (Bi et al., 2016). Within 1 h after

oviposition, eggs were injected on the lateral side with 10 nl of

a mixture containing 300 ng/μl of Cas9 mRNA and 150 ng/μl of

each sgRNA. After injection, eggs were incubated in a humidified

chamber at 25°C for 4 days until hatching.

Genomic DNA extraction and
identification of mutagenesis

The genomic DNAwas extracted fromnewly hatched larvae and

adult legs, incubated with proteinase K, and purified via a standard

phenol: chloroform extraction and isopropanol precipitation,

followed by RNaseA treatment. PCR was carried out to identify

SlSer2mutant alleles using primers F2 and R1 (Supplementary Table

S2) spanning the target site in SlSer2. The PCR conditions were as

follows: 98°C for 2 min, followed by 35 cycles of 94°C for 10 s, 55°C

for 30 s, and 72°C for 1 min, followed by a final extension period of

72°C for 10 min. The PCR products were cloned into pJET1.2-T

vectors (Fermentas, Burlington, ON, Canada) and sequenced. The

adults and eggs of SlSer2 mutants were photographed with a digital

stereoscope (Nikon AZ100, Tokyo, Japan).

Mating behavior analysis and hatchability
assay

In order to evaluate mating behavior and hatchability of

mutants, the mutants of SlSer2 male and female were crossed

with mutant moth and virgin wild type male or female moths.

Five pairs of moths were collected for one group. Mating

behavior analysis and hatchability assay of each group were

repeated three times. The behavioral assays were performed in

the transparent plastic bag for one pair. After female moths laid

eggs, the eggs of each pair were collected and incubated in a

humidified chamber at 25°C for 4 days until hatching. The

morphological investigations of mating behavior and egg

masses were used the microscope (Nikon AZ100, Tokyo, Japan).

Statistical analysis

A two-tailed Student’s t-test was used to analyze differences

between wild-type and mutant individuals. Three independent

replicates were used for each treatment and error bars showed the

means ± SEM.

Results

Identification and characterization of the
SlSer2 gene

The SlSer2 gene was cloned and sequenced by the Sanger

sequencing method (Supplementary Figure S1). The 594-bp
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SlSer2 gene consists of three exons and encodes a putative 197-

amino acid protein (Figure 2A). Sequence analysis and multiple

alignment showed SlSER2 protein has the trypsin-like serine

protease domain, which is high conserved with other

lepidopteran insects (Supplementary Figure S2). From qRT-PCR

results, SlSer2 gene was hardly expressed in larval stages, but its

expression increased from pupal to adult stages (Figure 1A).

Remarkably, SlSer2 was most highly expressed in the male adult

stage, which was similar to other lepidopteran insects, including B.

mori (Xu et al., 2020), P. xylostella (Xu et al., 2020), andH. cunea (Li

X. et al., 2022). Moreover, the Ser2 gene was most highly expressed

in the trachea, hindgut and testis (Figure 1B). The spatial and

temporally specific expression of SlSer2 provided a molecular basis

for further functional analysis.

CRISPR/Cas9 mediated the Ser2 gene
mutation in Spodoptera litura

To investigate the function of the SlSer2 gene, we employed the

CRISPR/Cas9 system to knockout this gene. Following the single

guide RNA (sgRNA) design rule (Wang et al., 2013), we transcribed

two sgRNAs in vitro targeting the second and third exons in the Ser2

genome locus (Figure 2A). Using the embryomicroinjection system,

we injected 150 ng/μl for each sgRNA and 300 ng/μl Cas9 mRNA

into eggs, laid less than 1 h before (Table 1). In order to detect the

efficient of SlSer2 sgRNAs timely, when these eggs hatched, the

genomic DNA of the larvae was extracted and used Sanger

sequencing to detect any mutated sequences. Sequencing

chromatograms of the PCR product from injected eggs showed

that sgRNAs of the SlSer2 gene were effective (Figures 2B,C).

Sequencing and mutagenesis analysis revealed that there were

diverse deletion mutations of SlSer2 genome sequences (Figure 2D).

Knockout of SlSer2 results in male adult
sterility

Considering the conserved function of Ser2 gene linked to the

male reproduction success in other lepidopteran insects (Xu et al.,

2020; Li L. et al., 2022), we conducted the mating behavior analysis

and hatchability assay. To identify the adult sterility ofmalemutants,

we separated the male and female pupae of wild type and mutants

respectively before the adult stage, which can prevent mating with

each other and hold the virgin stage. When the hatched larvae grew

into adults, a transparent plastic bag kept one pair group to mate

with each other and lay eggs inside the plastic bag. The different

mating groups included wild-type male mated with wild-type

female, wild-type male mated with mutant female, wild-type

female mated with mutant male and mutant male mated with

mutant female. In both cases, the mating behavior was non-

distinctive, and wild type and mutants of either sex could mate

with each other successfully and rapidly (Figure 3A). However, the

next generation of eggs produced by Ser2 mutants were nearly all

unhatched (Figure 3B). In the G0 generation, the wild type males

couldmate with wild type females and△Ser2 females normally, and

whetherwild females or△Ser2 females can lay normally hatched egg

masses (Figure 3C). But when the△Ser2malesmatedwith wild type

females and △Ser2 females, the hatching rate of egg masses

produced by both types of females was lower (Figure 3C).

To confirm adult genotypes, we used qRT-PCR to detect relative

expression of the Ser2 gene in presumptive male and female mutants.

FIGURE 1
The expression patterns of SlSer2 in different developmental stages and various tissues. (A) Relative mRNA expression of SlSer2 in different
developmental stages, including egg, the first day of each instar of larva (L1D1, L2D1, L3D1, L4D1, L5D1, and L6D1), pupa (P1, P5, and P9), female adult
(FA), andmale adult (MA). (B) RelativemRNA expression of SlSer2 in the eight reproductive tissues at the third day of the fifth instar larval (L5D3) stage,
including head, epidermis (EPI), fat body (FB), trachea, foregut (FG), midgut (MG), hindgut (HG), and testis (TE).
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These results showed that Ser2 expression was significantly down-

regulated in the presumptive mutants, compared with wild type

males and females (Figure 3D). Furthermore, using the extracted

genomicDNA from legs ofmutants, PCRprogram-based sequencing

results of the male and female individuals with the male-specific

sterile genotypes, showed different deletion types in the Ser2 loci

(Supplementary Figure S3). These data demonstrated that disruption

of the SlSer2 gene can cause male-specific sterility in S. litura.

Male sterility is stably heritable in the next
generation

In order to investigate the heritability of the phenotype of male

sterility, SlSer2 female mutants confirmed by PCR mated with wild

type males. We found the progeny of the SlSer2 female mutants

could normally hatch and grow. Subsequently, when the next

generation individuals developed to the adult stage, we extracted

the DNA from eachmale insect and confirmed themutant genotype

through directed PCR (Figure 4A). Representative sequencing

chromatograms of PCR products indicated that the mutants were

chimeric. For example, the bottom chromatograms shown in

Figure 4B have multiple peaks that indicate the occurrence of

more than one nucleotide at a single locus. Ten male mutants

matedwith thewild type female adults to examine their reproductive

status. The statistical result of hatchability showed that only about

10% eggs of female adults could hatch normally, which mated with

male mutants and laid eggs (Figure 4C). Thus, these results showed

that the male sterility induced by disrupting the SlSer2 gene was

stably heritable in the next generation.

FIGURE 2
The schematic of SlSer2 target sites and CRISPR/Cas9mediatedmutations. (A)Genomic structure of the Ser2 gene in Spodoptera litura (SlSer2).
The sgRNA targeting sequences (S1 and S2) are in black text and the protospacer adjacent motif (PAM) sequences are in red. The approximate
locations of amplification primers (F2 and R1). (B) Agarose gel electrophoresis of PCR products used for initial detection of themutations in the SlSer2
gene. The red box represents the deleted sequence fragment of SlSer2 mutants. (C) Sequencing chromatogram of SlSer2 mutants. The black
line represents the targeted region. The redwedge indicates position of cleavage by CRISPR/Cas9 genome editing system. (D)Mutations detected by
sequencing. The PAM sequence is in red. The black line represents the target sites.

TABLE 1 Mutagenesis of the SlSer2 gene induced by injecting Cas9 mRNA and sgRNA.

sgRNA for
injection

sgRNA concentration
(ng/μl)

Numbers of
injected embryos

Larvae Pupae Adults

(T1+T2)Ser2 sgRNAs 300 373 127 (34%) 89 (70%) 58 (65%)

EGFP sgRNA 300 236 90 (38%) 68 (76%) 48 (71%)
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Mutation of the SlSer2 gene affected the
relative expression of some other genes

To investigate the underlying reason for the SlSer2 male

sterility phenotypes, we used qRT-PCR to analyze the

expression of a series of SFP genes involved in protein

modification, motor proteins, and structural proteins,

which shown to be critical for sperm function (Mcgraw

et al., 2004). We selected some important function and

potential regulation genes, including defense and immunity

genes: attacin-like (XM_022981696.1), cecropin

(XM_022971764.1); enzyme genes: lysozyme-like

(XM_022959065.1), lysozyme (XM_022981495.1), uricase

(XM_022965214.1); motor protein genes: actin muscle

(XM_022981497.1), myosin light chain alkali

(XM_022970316.1); protease genes: trypsin alkaline C-like

(XM_022965904.1), flightin (XM_022976987.1) and calcium

binding gene: alpha-amylase 2-like (XM_022958360.1)

(Mcgraw et al., 2004). Compared with the wild type, the

Myosin light chain alkali (Mlc-A) gene and Actin muscle

(Act-M) gene, which are involved in the motor protein

family, were down-regulated (Figure 5). The structural

protein family gene Flightin was also significantly down-

regulated compared with wild-type. In contrast, genes in

the protease family, including the Lysozyme-like gene,

Uricase gene and Trypsin alkaline C-like gene, were up-

FIGURE 3
Loss of SlSer2 function results in male sterility. (A) The wild type and Ser2 mutants can mate with each other normally. Scale bar: 0.5 cm. (B)
CRISPR/Cas9-mediated disruption of Ser2 induced male sterility. WT, wild type egg masses. M1-M6, Ser2 mutant egg masses. Scale bar: 2 mm. (C)
The hatchability rate between wild type and mutants. (D) The relative mRNA expression of SlSer2 in wild type and Ser2 mutants. mRNA expression
was normalized to SlActin. FA, female adult; MA, male adult. The data shown are means ± S.E.M. Asterisks indicate significant differences with a
two-tailed t-test: *p < 0.05; **p < 0.01; ***p < 0.001; n. s. p > 0.05.
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regulated in Ser2 mutants. According to these qRT-PCR

results, the SlSer2 may regulate the sperm movement and

activity to affect the male fertility in S. litura.

Discussion

In this study, we investigated the function of the Ser2 gene in the

non-model insect S. litura. The Ser2 gene belongs to the SFPs family.

The SFPs family is vital to male fertility (Avila et al., 2011;

Rodriguezmartinez et al., 2011; Laflamme et al., 2013) and plays

a significant role in sperm activation and storage (Neubaum et al.,

1999; Sirot et al., 2011; Nagaoka et al., 2012; Zhao et al., 2012);

ovulation (Marshall et al., 2009; Xu et al., 2011); female immune

function (Guerin et al., 2011), and post-mating behaviors in female

insects (Sirot et al., 2009; Laflamme et al., 2012).

The SlSer2 gene is 594-nucleotides long and consists of three

exons (Figure 2). It encodes a putative 197-amino acid protein

(Supplementary Figure S1). Multiple alignment showed that

SlSER2 protein has the conservative Trypsin-like serine protease

domain with 85% homology with other SER2 protein sequences

(Supplementary Figure S2). We found that SlSer2 was specifically

expressed in the testis and adult male stage (Figure 1). As an

important and high-efficiency genome editing technique, we

FIGURE 4
Male sterility is heritable stably in the next generation. (A) The PCR detection of mutations in G1 adult males. Arrows indicate band sizes. The
upper major band is WT. Different size bands appear in each sample due to induction of different deletions and chimerism. (B) Representative
sequencing chromatograms of PCR products of chimeric mutants. The bottom chromatogram shows peaks with multiple nucleotides at some
positions (S1), indicating the occurrence of mutant and wild type sequences at the same loci. (C) The offspring hatchability rate of G1male adult
mutants. The data shown are means ± S.E.M. Asterisks indicate significant differences with a two-tailed t-test: ***p < 0.001.

FIGURE 5
Mutation of the SlSer2 gene affects relative expression of
genes involved in adult stage. Levels of indicated mRNAs in SlSer2
mutants relative to wild-type levels. Three individual biological
replicates of real-time PCR were performed. The asterisks (**
or ***) indicate the significant differences (p < 0.01 or p < 0.001,
respectively) compared with the wild type adult with a two-tailed
t-test.
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successfully used the CRISPR/Cas9 system to knock out the Ser2

gene in S. litura (Figure 2). Loss of function of the SlSer2 gene

induced the male sterility (Figure 3). In the progeny of SlSer2 female

mutants, we identified that male sterility was inherited stably

(Figure 4). Using qRT-PCR, we detected changes in expression

of some genes including members of a protease family, motor

protein family and structural protein family (Figure 5). These

results demonstrate the SlSer2 is one of the most important SFPs

involved in energy metabolism and proteolysis in S. litura. CRISPR/

Cas9 disruption Ser2 induced the male sterility without affecting

female fertility. These phenotypes show Ser2 is a potential target

gene for pest control in S. litura and other lepidopteran insects.

The seminal fluid comprises the non-sperm component of

the male ejaculate, which contains hundreds of proteins and

non-protein components, and affects male fertility (Poiani

et al., 2006; Avila et al., 2011; Rodriguezmartinez et al., 2011;

Laflamme et al., 2013). Recent studies have shown that the

SFPs are ubiquitous and have been identified in many species

such as Aedes aegypti (Sirot et al., 2011), Lutzomyia longipalpis

(Azevedo et al., 2012), Ceratitis capitata (Davies et al., 2006),

Apis mellifera (Baer et al., 2009), Heliconius erato and

Heliconius melpomene (Walters et al., 2008; Walters et al.,

2010), B. mori (Nagaoka et al., 2012; Xu et al., 2020),

Tribolium castaneum (South et al., 2011), Gryllus firmus

and Gryllus pennsylvanicus (Andres et al., 2006) and

Amblyomma hebraeum (Weiss et al., 2002). These reports

show that SFPs are important components of insect male

fertility. In SFPs, the serine proteases were the most common

class of the protease (Laflamme et al., 2013), with a conserved

catalytic triad consisting of a His, Ser, and Asp that coordinate

a water molecule (Polgar et al., 1989). The prevalence of serine

proteases in the seminal fluid was expected (Page et al., 2008).

Moreover, in D. melanogaster, SFPs contribute to many

biological processes including immune defense, protein

modification, and metabolism (Swanson et al., 2002; Gillott

et al., 2003; Mcgraw et al., 2004). The qRT-PCR results of

SlSer2 mutations showed the motor protein family gene and

structure protein family gene were down-regulated, and the

protein modification family gene was up-regulated, suggesting

that SlSer2 involved in sperm movement and activity

(Figure 5). In B. mori and P. xylostella, Xu et al (2020)

used a transgenic CRISPR/Cas9 system to disrupt the Ser2

gene and induce male sterility. In H. cunea, Li X. et al., 2022

used transgenic RNAi and CRISPR/Cas9 technologies to loss

of function of HcSer2 gene and demonstrated that Ser2 is an

essential and potential target gene for SIT. These results

demonstrated that Serine proteases especially the Ser2 gene,

including SlSer2, have some conservative domains

(Supplementary Figures S1, S2), expression manner

(Figure 1) and played a vital function for male

reproduction and sterility (Figures 3, 4).

The common cutworm, S. litura (Lepidoptera:

Noctuidae) is one of the most destructive phytophagous

pests (Tian et al., 2021; Tang et al., 2022). Pest

management of lepidopteran insects is becoming

increasingly difficult (Richardson et al., 2020; Li L. et al.,

2022). SIT is an important approach for pest populations

control. But choosing effective target genes is key to pest

control by SIT (Harris et al., 2012). Our results suggest that

the Ser2 gene regulates the male reproductive capacity and

has the potential as a better target gene for pest control,

especially in S. litura. In the silkworm, B. mori, the seminal

fluid protein genes have been identified as the useful target

genes for SIT (Xu et al., 2020; Xu et al., 2022). Sustainability is

an important factor in pest control. Disruption of the Ser2

gene induced male sterility in the next generation and did not

affect female reproduction. Thus, this study identified a

useful sterile gene for pest control that may lead to control

strategies in lepidopteran insect pests such as S. litura.
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