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Original Article

Diseases such as age-related macular degeneration, dia-
betic retinopathy, and branch retinal vein occlusion are se-

rious conditions that can decrease visual acuity and poten-
tially lead to blindness [1,2]. An important factor in these 
diseases is neovascularization, which can be induced by 
hypoxia, ischemia, and inflammatory reactions. Vascular 
endothelial growth factor (VEGF), in particular, is thought 
to be a critical promoter of ophthalmic neovascularization 
[3-5]. VEGF is essential for neovascularization in the reti-
na and choroid. During hypoxia, the expression of VEGF 
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is increased to improve vascularization and vascular per-
meability [6,7]. Intravitreal injection of anti-VEGF has 
emerged as a promising treatment for neovasculariza-
tion-associated ophthalmic disorders, with the drugs beva-
cizumab (Avastin) and ranibizumab (Lucentis) widely used 
in clinical settings.

In the retina, VEGF is expressed in the Müller cells, pig-
ment epithelium, endothelium, astrocytes, and ganglion 
cells [8-12]. Müller cells are distributed throughout the ret-
inal layer, perform a variety of functions, and serve as im-
portant mediators of neovascularization [13,14].

To adapt to hypoxic conditions, human cells and organs 
express a number of genes that affect neovascularization, 
metabolic processes, cell proliferation, and cell survival. 
The primary mediator that controls the expression of these 
genes is hypoxia-inducible factor-1 alpha (HIF-1α), which 
regulates the production of VEGF [15,16]. HIF-1α is com-
posed of a β and an α subunit, the latter of which reacts to 
oxygen. In the presence of normal oxygen concentrations, 
HIF-1α is degraded; however, in a hypoxic state, HIF-1α is 
not degraded and functions to alter the expression of more 
than 100 genes. HIF-1α is also involved in the regulation of 
vascular tone, cell proliferation, apoptosis, and other meta-
bolic pathways [17]. Therapeutic agents that target HIF-1α 
directly could provide widespread control of VEGF-in-
duced neovascularization, an important factor in retinal 
hypoxic diseases, and potentially serve as alternative ther-
apeutics to drugs targeting only individual processes in 
hypoxia-associated disease.

Therapeutics that target HIF-1α have been studied thor-
oughly in the field of cancer treatment and many agents 
that target HIF-1α directly have been developed [18-23]. 
Among these agents are histone deacetylase inhibitors 
(HDACIs), which inhibit the histone deacetylase enzyme. 
This allows the induction of gene transcription by hyper-
acetylation and reduces the activity of HIF-1α [24]. One of 
the HDAC inhibitors is valproic acid (VPA), which has 
been widely used for the treatment of epilepsy [25]. Sever-
al studies have shown that VPA also inhibits tumor angio-
genesis through suppression of angiogenic factors such as 
VEGF [26,27]. While HDACIs have been widely used in 
cancer treatment, these agents have yet to be applied to the 
treatment of ophthalmic disease [28-30].

In this study, the effects of the HDACI, VPA, on the ex-
pression of HIF-1α and VEGF in human retinal Müller 
cells during hypoxia was evaluated.

Materials and Methods

Growth of cell lines

Human retinal Müller cells (MIO-M1) were grown in a 
humidified incubator at 37°C, 5% CO2, with DMEM + 
GlutaMAX-I (Gibco BRL, Grand Island, NY, USA) growth 
media containing 10% FBS (Gibco BRL), 100 U/mL peni-
cillin, and 100 µg/mL streptomycin. Cells were provided 
with fresh media every 2 to 3 days.

Induction of hypoxia

Human retinal Müller cells were seeded at 5 × 103 cells 
per well in 96-well cell culture plates. For enzyme-linked 
immunosorbent assay, the cells were seeded at 1.0 × 105 
cells per dish in 100 mm culture dishes. After 24 hours, the 
growth media was replaced with serum-free media and the 
cells were starved for 16 hours. Chemical hypoxia was in-
duced by incubating cells for 24 hours in serum-free media 
containing various concentrations of cobalt(Ⅱ)  chloride 
(CoCl2).

Cell viability assay

To investigate the optimal concentration of CoCl2 for in-
ducing chemical hypoxia, human retinal Müller cells were 
exposed to 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 
or 1,000 µM CoCl2. The cells were then washed twice with 
phosphate buffered saline and the cell counting kit-8 
(CCK-8; Dojindo Molecular Technologies, Rockville, MD, 
USA) was used to measure cell viability. CCK-8 measures 
the amount of live cells by measuring formazan that is 
produced by dehydrogenase in cells. Ten microliters of 
CCK-8 and 90 µL of serum-free media were mixed in each 
well. After 1 hour, optical density was measured by a mi-
croplate reader at 450 nm wavelength.

VPA treatment

VPA 1 g/mL (Sigma-Aldrich, Silver Spring, MO, USA) 
was diluted serially in an aqueous solution of 0.1 N sodium 
hydroxide (NaOH) to 10 mg/mL and added to wells con-
taining hypoxic Müller cells that were treated with 400 
µM CoCl2. The wells were exposed to serum-free media 
for 22 hours with adequate concentrations of VPA (10, 25, 
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50, 75, 100 µg/mL). The control group (0 µg/mL) was treat-
ed with the same amount of 0.1 N NaOH as the experi-
mental groups.

Detection of VEGF and HIF-1α

VEGF and HIF-1α proteins were detected using the 
Quantikine enzyme-linked immunosorbent assay and Sur-
veyor IC kits (R&D Systems, Minneapolis, MN, USA), re-
spectively, according to the manufacturer’s instructions.

Statistical analyses

The mean ± standard deviation values were reported for 
the results of three independent experiments and all statis-
tics were calculated using the IBM SPSS Statistics ver. 19.0 
(IBM Co., Armonk, NY, USA). The Wilcoxon signed-rank 
test was used to compare differences between the experi-
mental and control groups, with a p-value <0.05 consid-
ered as statistically significant.

Results

Induction of chemical hypoxia and expression of HIF-
1α in human retinal Müller cells

Chemical hypoxia was induced by treating human reti-
nal Müller cells with 0, 100, 200, 300, 400, and 500 µM of 
CoCl2. A dose-dependent increase in the expression of 
HIF-1α was observed with increasing concentrations of 

CoCl2, with maximal HIF-1α expression at 400 μM CoCl2 
(Fig. 1). 

Viability of human retinal Müller cells during chemical 
hypoxia

Müller cells were treated with 0, 100, 200, 300, 400, 500, 
600, 700, 800, 900, and 1,000 µM CoCl2 and cell viability 
was assessed using the CCK-8 assay in order to determine 
the optimal concentration of CoCl2 to induce chemical hy-
poxia without reducing cell viability. Cell viability de-
creased gradually with increasing concentrations of CoCl2 

(Fig. 2). Cell viability decreased even more at 500 µM, but 
the highest HIF-1α expression was observed with 400 µM 
of CoCl2. Therefore, the optimal concentration of CoCl2 to 
induce chemical hypoxia was selected to be 400 µM, based 
on the results for induction of HIF-1α expression as de-
scribed above.

Effect of VPA treatment on the expression of HIF-1α 
and VEGF by human retinal Müller cells during hypoxia

After exposing human retinal Müller cells to 400 μM 
CoCl2 to induce hypoxia, the cells were treated with 0, 10, 
25, 50, 75, and 100 µg/mL of VPA. Expression of HIF-1α 
decreased significantly with increasing concentrations of 
VPA (p < 0.05), in a dose-dependent manner (Fig. 3). Sim-
ilar results were found for the expression of VEGF (Fig. 4).
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Fig. 1. Effects of cobalt(Ⅱ) chloride (CoCl2) on the expression 
of hypoxia-inducible factor-1 alpha (HIF-1α) in human retinal 
Müller cells. *p-value < 0.05. 
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Fig. 2. Effects of cobalt(Ⅱ) chloride (CoCl2)  on the survival of 
human retinal Müller cells. CCK-8 = cell counting kit-8.
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Discussion

Neovascularization in the retina leads to vision loss and 
blindness in age-related macular degeneration, diabetic 
retinopathy, branch retinal vein occlusion, and other oph-
thalmic disorders. The primary cause of this neovascular-
ization is the physiological response to hypoxia. HIF-1α 
controls many of the reactions to hypoxia, as well as the 
expression of other genes, including placental growth 
factor, stromal-derived factor 1, angiopoietin 2, platelet-
derived growth factor B, erythropoietin, and VEGF [31-33].

In ophthalmic diseases associated with neovasculariza-
tion, improvements in vision have been demonstrated us-
ing therapeutics that target VEGF. However, these im-
provements appeared in only half of the patients and the 
effects were not long-lasting, requiring repeated, expensive 
treatments [34,35].

As a result, a number of studies have attempted to de-
sign therapeutics targeting mediators other than VEGF. 
HIF-1α, in particular, has been one of the more promising 
targets. As noted, many potential mechanisms are avail-

able to suppress HIF-1α. Studies of the pro-apoptotic, an-
ti-angiogenic effects of HDACIs as anti-cancer therapeu-
tics have demonstrated that HDACI-mediated suppression 
of HIF-1α has a significant anti-angiogenic effect [36-38]. 
The HDACI VPA has been used widely in the treatment of 
epilepsy and bipolar disorder and this compound has been 
found to have neuroprotective or neuroregenerative effects 
on retinal ganglion cells in these patients [39-41].

This study determined that VPA suppresses HIF-1α ex-
pression by human retinal Müller cells during hypoxia 
(Fig. 3), suggesting that VPA could possibly be used to tar-
get HIF-1α in humans. However, further studies are need-
ed to determine the precise mechanism by which HDACIs 
suppress HIF-1α [42-44].

This study found that VPA suppresses VEGF expression 
in human retinal Müller cells during hypoxia (Fig. 4), like-
ly due to suppression of HIF-1α, which normally activates 
transcription of the VEGF gene [45].

The HIFs are heterodimeric nuclear proteins consisting 
of α and β subunits. There are three types of oxygen-reac-
tive α subunits: HIF-1α, HIF-2α, and HIF-3α. HIF-3α had 
not been studied extensively and it is currently unknown 
whether HIF-1α or HIF-2α has a greater affect in the retina 
[46,47]. This study analyzed HIF-1α, but further studies 
are needed to determine whether HIF-1α or HIF-2α is more 
important in human retinal Müller cells.

One of the limitations of this study is that targeting HIF-
1α is more non-specific than treatments targeting VEGF, 
because it controls the upper regulatory pathway. Treat-
ments for specific targets would be better pharmacological-
ly, but current widely used treatments that directly target 
VEGF have limitations, as mentioned above. Thus, con-
trolling various hypoxia-induced pathways could be advan-
tageous. This study identified some of the regulatory inter-
actions between HIF-1α and VEGF, but further studies on 
other factors that are controlled by hypoxia are needed. 
This was an in vitro study, so further in vivo studies should 
also be performed before making conclusions about the ac-
tual effects of VPA on human retinal Müller cells.

In this study, CoCl2 was used to simulate the hypoxic 
state. One drawback of the cobalt model is that it rep-
resents only the chronic activation state of HIF-1, although 
it is widely established and thought to be an appropriate 
model for hypoxic states. With this concern in mind, ex-
periments using CoCl2 may not actually reflect a hypoxic 
state with respect to the upper regulatory level of HIF-1.
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Fig. 4. Effects of increasing concentrations of valproic acid (VPA)  
on vascular endothelial growth factor (VEGF) expression by hu-
man retinal Müller cells during hypoxia. *p-value < 0.05. 
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Fig. 3. Effects of increasing concentrations of valproic acid (VPA) 
on hypoxia-inducible factor-1 alpha (HIF-1α) expression by human 
retinal Müller cells during hypoxia. *p-value < 0.05. 



84

Korean J Ophthalmol Vol.31, No.1, 2017

In summary, VPA was found to decrease the expression 
of HIF-1α and VEGF in human retinal Müller cells during 
hypoxia. Using VPA or other HDACIs to target HIF-1α in 
retinal Müller cells could be a potential therapeutic strate-
gy for the treatment of retinal vascular diseases.
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