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Abstract

Introduction

There is evidence that SARS-CoV2 has a particular affinity for kidney tissue and is often

associated with kidney failure.

Methods

We assessed whether proteinuria can be predictive of kidney failure, the development of

chronic kidney disease, and mortality in 37 critically ill COVID-19 patients. We used machine

learning (ML) methods as decision trees and cut-off points created by the OneR package to

add new aspects, even in smaller cohorts.

Results

Among a total of 37 patients, 24 suffered higher-grade renal failure, 20 of whom required kid-

ney replacement therapy. More than 40% of patients remained on hemodialysis after intensive

care unit discharge or died (27%). Due to frequent anuria proteinuria measured in two-thirds of

the patients, it was not predictive for the investigated endpoints; albuminuria was higher in

patients with AKI 3, but the difference was not significant. ML found cut-off points of >31.4 kg/

m2 for BMI and >69 years for age, constructed decision trees with great accuracy, and identi-

fied highly predictive variables for outcome and remaining chronic kidney disease.

Conclusions

Different ML methods and their clinical application, especially decision trees, can provide

valuable support for clinical decisions. Presence of proteinuria was not predictive of CKD or

AKI and should be confirmed in a larger cohort.
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Introduction

In late 2019, a new type of lung disease caused by a previously unknown coronavirus, SARS--

CoV2, appeared for the first time in Wuhan, China. This has now become a global pandemic,

infecting more than 50 million people worldwide and causing more than 1.2 million deaths by

November 2020. In Germany, a highly industrialized European nation with 82 million inhabi-

tants, more than 700,000 infections and almost 12,000 deaths have been reported until the end

of October [1].

Eighty percent of those infected suffer from mild symptoms, such as dyspnea (21.9%),

coughing (68.6%), fever (88.5%), myalgia (35.8%), and anosmia (47%) [2–4]. Clinical worsen-

ing may occur in 20%, often from 7–10 days after the onset of the disease. Approximately 5%

of affected patients require intensive care, with mortality varying between 3% and 50%

depending on local factors [5–8].

Older age, underlying hypertension, high cytokine levels (interleukin [IL]-2R, IL-6, IL-10,

and tumor necrosis factor [TNF]-α), and high ferritin levels are significantly associated with

severe coronavirus disease 2019 (COVID-19). The estimated mortality is 1.1% in non-severe

patients and 32.5% in severe cases during an average 32 days of follow-up [9]. Underlying car-

diac or cerebrovascular disease and elevated cardiac troponin also seem to be as predictive

[10,11] as hypertension [5], male sex, cardiac injury, and hyperglycemia for severe COVID-19

[9].

The incidence of acute kidney injury (AKI) is high in critically ill patients, affecting almost

60% [12], and seems to be common among severe COVID-19 cases, affecting approximately

20–40% of patients admitted to intensive care [13].

We assessed 37 critically ill patients treated in University Hospital Wuerzburg to evaluate

whether proteinuria or albuminuria can be predictive for developing AKI, CKD, or higher

mortality. In addition to classical statistical analysis, we used machine learning (ML) methods.

To the best of our knowledge, this adds a new dimension to the body of COVID-19 research.

ML is the study of computer algorithms that allow computer programs to automatically

improve through experience [14]. The subarea supervised learning is of concern to us here.

Supervised learning is the ML task of learning a function that maps an input to an output

based on example input-output pairs [15]. The tasks at hand are more specifically classification

problems, with the aim to learn the boundary separating the instances of one class from the

instances of other classes [16].

We also used the One Rule classification algorithm [17] implemented in the OneR package

[18] and Classification and Regression Trees (CARTs) [19] implemented in the rpart package

[20].

Patients and methods

Thirty-seven critically ill patients were treated between March and May 2020 in the intensive

care unit (ICU) of the Department of Anesthesia and Critical Care and the Department of

Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany. The medium

patient age was 63 years (range 36 to 84 years) and 76% were male. Time of invasive ventilation

was 19 days on average (range 4 to 63 days), and two patients had no invasive ventilation.

Patient demographics are given in Table 1. The institutional ethics board of the University of

Würzburg approved the study. The need for informed consent from individual patients was

waived.

We assessed the sex, age, body mass index (BMI), selective (albuminuria) and non-selective

proteinuria (2/3 of patients), troponin T and invasive treatment, such as continuous veno-

venous hemodialysis (CVVHD) or kidney replacement therapy (KRT), extracorporeal
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membrane oxygenation (ECMO), invasive ventilation, state of AKI defined by the Kidney Dis-

ease: Improving Global Outcomes (KDIGO) Guidelines, remaining CKD, and NTproBNP.

We assessed the clinical condition after intensive care treatment, either death, recovery, or

remaining critical illness. Critical illness was defined as requiring transfer to a weaning unit,

smaller hospital, or other care facilities, as no patients were initially admitted from nursery

homes. CKD at the time of discharge from the ICU was classified as either none or restoration

to baseline kidney function (class 1), remaining or worsened CKD without renal replacement

therapy (KRT) (class 2), or prolonged need for KRT after ICU release (class 3). Proteinuria,

either selective as albuminuria or non-selective, was defined as none (<30 mg/gCrea), moder-

ately increased (30–300 mg/gCrea), or severely increased (>300 mg/gCrea) according to the

KDIGO definition [21] Laboratory findings included troponin T und NTproBNP, which were

Table 1. Patients demographics.

sex m 28 75.7%

f 9 24.3%

age y 63 ± 12 36–84

BMI kg/qm 29 ± 5.4

invasive ventilation d 19 ± 16.8 4–63

weaning n 6 16.2%

death n 10 27.0%

AKI 1 n 4 10.8%

AKI 2 n 4 10.8%

AKI 3 n 20 54.1%

none n 9 24.3%

CVVHDF n 22 59.5%

d 17 ± 15.5

ECMO n 12 32.4%

d 12 ± 6.5

death (1) n 9 24.3%

crit. Ill. (2) 17 45.9%

recovered (3) 10 27.0%

CKD outcome

restitution (1) n 15 40.5%

CKD 2–5 (2) 6 16.2%

CKD 5d (3) 16 43.2%

Prot. Sel mg/gCrea

<30 (1) n 7 18.9%

30–300 (2) 10 27.0%

>300 (3) 8 21.6%

n.d. 13 35.1%

Prot. Non.s. mg/gCrea

<30 (1) n 4 10.8%

30–300 (2) 6 16.2%

>300 (3) 14 37.8%

n.d. 13 35.1%

AKI, acute kidney injury; BMI, body mass index; CKD, chronic kidney disease; crit. Ill, critical ill; CVVHDF,

continuous veno-venous hemodiafiltration; ECMO, extracorporeal membrane oxygenation; n. d., not determined;

Prot. Non.s., non-selective proteinuria i.e. albuminuria; Prot. Sel, selective proteinuria.

https://doi.org/10.1371/journal.pone.0251932.t001
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collected daily during the first 7 days, on days 10 and 14, and by the time of demission. The

highest value was noted.

Statistical analysis

Statistical analyses were performed using R 4.0.2 [22]. The frequencies of metric variables were

expressed as arithmetic mean and standard deviation. If two means of normally distributed

data were compared, a two-sided unpaired student’s t-test was used. Means from more than

two groups were evaluated using analysis of variance (ANOVA) with post-hoc testing (Tukey’s

test) if significant differences occurred.

In addition to classical statistical analysis, we also used ML methods, namely One Rule

(OneR) and decision trees. OneR is a simple classification algorithm that generates one rule

for each predictor in the data, and then selects the rule with the smallest total error as its one

rule. According to Holte, very simple rules can be expected to perform well for most datasets.

An additional advantage is the good interpretability of the resulting rules, which is particularly

important in a clinical setting. The OneR package contains improvements over the original

OneR algorithm in the form of sophisticated handling of numeric data, which allows for the

detection of cut-off values [18]. The OneR algorithm has been previously used successfully in

medical research [18,23].

To evaluate the quality of classification algorithms, we used confusion matrices. A confu-

sion matrix is a specific table of statistical classification that maps the performance of an ML

algorithm and determines the accuracy of a classification by summing correctly predicted

patients over the whole population. In addition, the number of false positives and false nega-

tives can be determined.

Results

During the COVID-19 pandemic in 2020, we analyzed 37 patients who were treated at our

ICUs between March and May. A total of 28 patients suffered acute kidney failure, 20 of them

AKI 3 (54.1%); 9 patients died (24.3%), all with AKI 3. The average invasive ventilation time

was 19 days (range 4–63 days), and 12 patients (32.4%) were dependent on ECMO for an aver-

age of 12 days. Twenty-two patients had to receive KRT (59.5%) for an average of 17 days. Six-

teen patients remained on hemodialysis beyond the inpatient stay (43.2%); we did not perform

a structured follow-up for more than 60 days. Seventeen patients were transferred to rehabili-

tation or weaning centers while still critically ill (45.9%; Table 1).

We used the standard t-test to examine the dependence of mortality on COVID-19 and age

and found a significantly higher age among deceased patients, as suggested by prior data.

Here, the mean value was almost 70 years (range 52 to 84 years), whereas the 27 surviving

patients had a mean age of 60 years (range 36 to 80 years; p = 0.05; Fig 1).

A higher BMI also appeared to be associated with increased mortality, but this effect was

not significant in our population (p = 0.12). The mean BMI in the survivor group was 28.6 kg/

m2 (range 21.5 to 34.7 kg/m2), whereas the mean BMI among deceased patients was 33.4 kg/

m2 (range 25.4 to 54.1 kg/m2; Fig 1b).

The optbin function of the OneR package discretizes all numerical data into categorical

bins where the cut points are optimally aligned with the target categories. When building a

OneR model, this could result in fewer rules with enhanced accuracy. The cutpoints are calcu-

lated by pairwise logistic regressions (method “logreg”) or as the means of the expected values

of the respective classes (“naive”). The function is likely to give unsatisfactory results when the

distributions of the respective classes are not (linearly) separable [18].
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To obtain an exact cut-off point, we used the OneR algorithm with the optbin function on

the same variables. The found rules showed that when the BMI was in the range from 21.6 to

31.4 the patient survived, whereas when the BMI was bigger than 31.4 up to 54.1 the patient

died. Those rules have an accuracy of 81.08%.

The resulting diagnostic plot can be seen in Fig 2; the found cut-off point of 31.4 is in line

with previous reports [24].

We also conducted urinary analyses for proteinuria. The selective proteinuria (albumin-

uria) was higher in patients with AKI 3 than in patients with a lower AKI class, but the differ-

ence was not significant. However, only nine patients did not suffer acute kidney failure, and

three of these patients had no albuminuria test. Overall, albuminuria was slightly lower in this

group than in the AKI 1–3 group, but the range of variation was high (Fig 3). In AKI 1, we

Fig 1. a, b: Association between age and BMI and COVID-19 mortality. Data are presented as arithmetic mean and

media. The mean in survivors was 60 years, and the mean in deceased was almost 70 years. b, Association between

BMI and COVID-19 mortality (p = 0.13). The mean in survivors was 28.5 kg/m2, and the mean in deceased was 33.4

kg/qm, which was not significant.

https://doi.org/10.1371/journal.pone.0251932.g001
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found an albuminuria range from 0 to 106 mg/gCrea, in AKI 2 the range was 29 to 112 mg/

gCrea, in AKI 3 17 to 500 mg/gCrea, and in the group without AKI the range was 0 to 1660

mg/gCrea.

In the ANOVA regarding proteinuria and albuminuria and the relationship to developing

AKI, remaining CKD, or death, we found no significant relationship. The development of AKI

was also not significantly related to death or further remaining CKD (Table 2).

The distribution of patients must be taken into account. In some constellations, the case

numbers in the individual groups were very small, and proteinuria was not determined for 12

of 37 patients, mostly due to early anuria. As mentioned above, we also constructed various

decision trees using COVID-19, AKI, CKD, outcome, NTproBNP, troponin T, BMI, age, and

other variables. Fig 4 shows the first binary decision tree with two decision levels; the target

variable was the outcome. Based on the presented data, the tree shows that death is very likely

Fig 2. OneR model diagnostic plot. Cut-off point for likely death at BMI = 31.4.

https://doi.org/10.1371/journal.pone.0251932.g002

Fig 3. Selective proteinuria in COVID-19 patients with AKI. AKI acute kidney injury, 1: 0 to 106 mg/gCrea, AKI 2:

29 to 112 mg/gCrea, AKI 3: 17 to 500 mg/gCrea, None: 0 to 1660 mg/gCrea.

https://doi.org/10.1371/journal.pone.0251932.g003
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to occur in cases of severe AKI in combination with cardiac damage, expressed by a strongly

elevated or dynamic troponin T level. In this case the cut-off was 88 mg/dl. In less severe AKI

or no AKI, initial albuminuria seems to determine whether the patient fully recovers or if criti-

cal illness remains. In this tree, it looks as if even higher proteinuria would lead to a complete

recovery.

Using new CKD as a dependent variable, the occurrence of AKI and cardiac involvement

also determines the extent to which recovery of renal function or long-term dependence on

KRT can be expected. In our cohort, the risk of remaining dependent on KRT was increased,

in the case of dialysis-requiring AKI 3 according to our algorithm, from 726 ng/ml NTproBNP

(i.e., cardiac impairment due to COVID-19). In the last level of the tree, troponin

T> 782 μg/l, the algorithm detected good chances for a complete recovery of renal function

despite increased NTproBNP. In our cohort, two patients had at least recovered and did not

retain CKD despite cardiac affection of renal failure, which is reflected in the lowest level of

the right arm in Fig 5. The algorithm recognizes the most meaningful variable and maps it to

the individual levels. Multiple considerations are possible. By defining the depth of the tree in

advance, non-relevant variables are disregarded. In this case, the proteinuria (neither selective

nor non-selective) seems to not be meaningful enough to be used in the CART.

When we correlated proteinuria and remaining CKD with outcome, the algorithm found a

higher mortality in patients with extended dependence on KRT. If renal function fully recovers

or remains only slightly impaired, the algorithm also predicts that remaining disease with

Table 2. Patients in the individual classification groups of albuminuria and non-selective proteinuria regarding

AKI, outcome and CKD.

Albuminuria (class) 1 (n) 2 (n) 3 (n) n.d. P value

AKI 1 2 2 0 0

AKI 2 2 2 0 0

AKI 3 1 5 5 9

none 2 1 3 3 0.13

death (n = 9) 1 1 2 5

crit. Ill (n = 15) 2 6 2 5

recovered (n = 11) 4 2 3 2 0.59

CKD outcome

restitution (n = 16) 4 5 3 4

CKD 2–4 (n = 6) 2 2 0 2

CKD 5d (n = 15) 1 3 5 6 0.51

selective Proteinuria (class) 1 2 3 none

AKI 1 2 1 1 0

AKI 2 0 1 2 1

AKI 3 0 3 9 8

none 2 1 2 4 0.60

death (n = 9) 0 1 3 5

crit. Ill (n = 15) 1 3 6 5

recovered (n = 11) 3 2 3 3 0.87

CKD outcome

restitution (n = 16) 3 2 6 5

CKD 2–4 (n = 6) 1 1 2 2

CKD 5d (n = 15) 0 3 6 6 0.87

AKI, acute kidney injury; CKD, chronic kidney disease; crit. Ill, critical ill; n.d., not determined.

https://doi.org/10.1371/journal.pone.0251932.t002
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moderate proteinuria is more common, whereas patients without proteinuria have a better

chance of complete recovery. The confusion matrix determined the accuracy with 24 of 37 cor-

rectly classified values (64%; Fig 6a and 6b). Prior studies have also found a higher mortality in

COVID-19 patients with renal involvement [25,26], but whether proteinuria can be used as a

reliable predictive marker is not yet clear [27]. In patients critically ill due to other causes, the

presence of proteinuria is certainly a risk factor for the development of AKI and a predictor of

higher mortality [28]; for COVID-19 patients, this has yet to be proven in a larger cohort.

Fig 4. CART regarding outcome. Trop_max: Maximum value of troponin T in μg/l, sel.Prot.cI: Selective proteinuria

in mg/g creatinine (1:<30 mg/gCrea, 2: 30–300 mg/gCrea, 3:>300 mg/gCrea). Outcome 1: Death, 2: Remaining

illness, 3: Recovering.

https://doi.org/10.1371/journal.pone.0251932.g004

Fig 5. CKD outcome determined by AKI. AKI acute kidney injury, maximum NTproBNP value, and maximum

troponin T value. 1: Recovery, 2: Remaining or worsened CKD, 3: KRT.

https://doi.org/10.1371/journal.pone.0251932.g005
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If we let the algorithm examine the connection between selective or non-selective protein-

uria and the expected outcome, the significance of the results seems rather low. The most

meaningful variable of the data is shown at the top of the plot, i.e., forms the basis for the divi-

sion into the first two groups. In the standard ANOVA, the association between proteinuria

and mortality in our patient cohort was not significant, but the number of patients and num-

ber of proteinuria values were probably too small.

An important consideration is the depth of the tree. With OneR, decision trees can be built

with any depth. In our cohort, it was significantly more likely to require KRT for a longer

period of time if dialysis-dependent AKI developed (p<0.05). In this case, the tree consists of

only one node, which is easy to interpret but reduces the accuracy of the classification, which

is only 70%. The few patients who retained CKD were assigned to one of the other two classes

in this two-armed tree (Fig 7).

Fig 6. a, b: Outcome and its correlation with proteinuria. CKD 1: Restitution to initial function, CKD 2: Remaining

new onset or worsening of existing chronic kidney disease, CKD 3: Remaining KRT. Sel. Prot.cl 1: None, 2: 30 mg/

gCrea– 300 mg/gCrea, 3:>300 mg/gCrea, Outcome 1: Death, 2: Remaining illness, 3: Recovery. b, Confusion matrix

with distribution of the predicted values in absolute numbers. Relative (not shown) describes the percentage deviation.

https://doi.org/10.1371/journal.pone.0251932.g006

Fig 7. Remaining CKD, KRT, or recovery depending on the severity of AKI. CKD 1: Restitution to initial function,

CKD 2: New onset or worsening of existing chronic kidney disease, CKD 3: Remaining KRT.

https://doi.org/10.1371/journal.pone.0251932.g007
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Discussion

Our observation is that ML methods are adopted reluctantly in medical research, which itself

is firmly grounded in classical statistics. Several authors have described the divide between the

“two cultures”. The main difference in the two approaches can be described by noting that

classical statistics assumes that the data are generated by a given stochastic data model, whereas

ML uses algorithmic models and treats the data mechanism as unknown [29].

Though classical statistics can be seen as the foundation of all scientific medicine, ML is

only used in selected areas, such as intensive care medicine. Some projects facilitate diagnosis,

whereas others try to create early warning systems based on a variety of data, increasing the

effectiveness of treatment. An ML approach to predicting ICU readmission has been shown to

be significantly more accurate than previously published algorithms in internal validation

[30]. Many ML systems being used in medical settings are artificial neural networks, mainly in

image recognition (i.e., radiology, histology), and are being used to, for example, differentiate

between malignant and benign tumors [31,32]. The larger the number of cases, the more accu-

rately ML algorithms can be used, which of course makes the final result more reliable. A limi-

tation of our study is the small number of cases and the fact that urine samples could not be

obtained from all patients, especially if anuria has already occurred. Nevertheless, we tried to

present a comprehensive overview of different methods and their potential application in clini-

cal routine.

The problem with neural networks is that they constitute so-called black boxes, which

means that their decisions cannot be readily explained [33], which constitutes a significant

challenge in a medical setting.

Here, we tried to show that both approaches can coexist and complement one another.

Interestingly enough, the ML tree-based methods were developed largely by statisticians in the

1970s [34]. We see them as very well equipped to bridge the gap between the “two cultures”

because of their firm grounding in classical statistics and convenient availability as mature

packages in the R package ecosystem. As we have shown in this paper, tree-based methods are

readily comprehensible and can provide new insights, even for data sets that have already been

analyzed with more traditional methods.

The general idea of the OneR algorithm is to go through each attribute and evaluate how

well it is able to function as a predictor of the dependent variable. The algorithm creates fre-

quency tables for each attribute, providing the number of occurrences at all different levels of

the respective attribute and the dependent variable. For each frequency table (i.e., each attri-

bute), a total error is calculated by summing the minima of each level of the attributes. The

attribute with the smallest total error is the attribute that is chosen as the best predictor. The

rules that are being generated take every level of this predictor and match it with the most fre-

quent class of the dependent variable [17].

Numeric attributes have to be discretized before they can be used by the OneR algorithm.

Different discretization methods exist for implementation of the OneR algorithm (package

“OneR”) used in this paper. Significant further enhancement of the original OneR algorithm is

achieved by the discretization methods to optimally align cut points in relation to the depen-

dent variable (function “optbin”). The method “infogain” used here is an entropy-based

method taken from information theory, which calculates cut points based on “information

gain”. The idea is that uncertainty is minimized by making the resulting categories as pure as

possible. This method is also the standard method of many decision tree algorithms [18].

Natural generalization of the OneR algorithm is conveyed by decision trees. Though OneR

only uses one attribute for its predictions, decision trees are not bounded by this restriction,

often resulting in better accuracy but worse interpretability (a trade-off well known in the ML
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area) [33]. Further generalization is achieved with random forests, which will not be covered

in this paper [35].

There are several different decision tree generation algorithms (e.g., ID3, C4.5, and C5.0),

we used CART in the rpart implementation [20]. Unlike linear models, such as Pearson corre-

lation or linear regression, decision trees map non-linear relationships well [36]. Interestingly,

the opening example of Breiman’s seminal work was a medical example in the area of cardiol-

ogy [19]. In our population, we used decision trees to create a model predicting mortality or

remaining CKD or KRT.

For CART, trees are constructed by repeated splits of subsets of the population into two

descendant subsets [19]. With OneR, an attribute can be split into several subsets, but the splits

in CART are only binary. For numeric data, cutoff values are determined. The splitting is con-

ducted in a recursive manner, and the same attribute can be used several times on different lev-

els of the resulting tree. Unlike other tree methods and OneR above, the splitting criterion is

based not on entropy, but on Gini impurity. In practice, both methods often lead to similar

results [23].

An important consideration is the depth of the tree. The deeper a tree, the better it repre-

sents the data, but the less interpretable it becomes. An additional problem is overfitting,

another well-known problem in the ML literature [37]; a fully grown tree could mean that

only one example per leave remains, a result that would render the decision next to useless in

practice and would fail to generalize the data (i.e., model the noise in the data). CART prune to

an optimal level according to some cost function [38].

We have also performed ANOVA and a standard t-test with the collected parameters. Pro-

teinuria has been commonly observed during SARS-CoV2 infection and is reported in 7 to

63% of cases [25,39]. Proteinuria is mostly reported as unselective due to tubular injury, but in

some cases there is a selective proteinuria as an indication of glomerular damage [40]. A direct

link between proteinuria and mortality in COVID-19 patients has not been shown, though

previous data from critically ill patients due other causes strongly suggest that link [28]. Gross

et al. already hypothesized in May that the occurrence of proteinuria could be an early marker

of AKI onset or a severe course [41]. Our single center observations included too few patients

to transfer this hypothesis to COVID-19, as already mentioned, this is a limitation of our

study. This is also a problem for some of the following results, although we were still able to

reproduce some findings from previous studies:We found a relationship between higher age

and mortality as shown previously in various retrospective studies [5,42,43]. In our study pop-

ulation, the average age of surviving critically ill patients was 60 years, but 69 years among

deceased patients. This is also similar to prior results, in which age>65 years was shown to be

a risk factor for higher mortality [2,10].

In the ANOVA, we found no significant relationship between selective or non-selective

proteinuria and the development of AKI, permanent CKD, or increased mortality or pro-

tracted disease progression. Prior data suggest that >40% of the cases are affected with abnor-

mal proteinuria at hospital admission, and 20–40% of the critically ill patients develop AKI

[13,39]. In our center, only 9 patients did not experience acute kidney failure (24.3%), and 20

of the affected developed AKI 3 (54.1%). This may be due, among other reasons, to the fact

that serum creatinine does not match the baseline creatinine when taken in an already criti-

cally ill state. Pei et al. found that 75.4% of 333 patients had abnormal urine dipstick tests or

AKI, 50% of them developed AKI 3. Among 35 patients who developed AKI in Guangchang

Pei´s work, 45.7% experienced complete recovery of kidney function [26]. We were able to

reproduce these results in our patient cohort.

Nine patients died (24.3%), all of them experienced AKI 3 with a need for KRT. In this

group, six patients had no or only low grade CKD, and three were admitted with CKD 3b or 4.
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Other data reported similar mortality rates among ICU patients [44], especially for patients

requiring mechanical ventilation [45]. One meta-analysis showed that the presence of AKI is

associated with 13-fold increased risk of mortality, whereas the incidence of AKI is up to 20%

in critically ill patients. Higher age, diabetes, hypertension, and baseline serum creatinine levels

were associated with increased AKI incidence [46].

Several studies have reported higher BMI as a significant risk factor [47,48]. A meta-analysis

by Hussain et al. demonstrated significantly higher mortality in patients with BMI >25 kg/m2,

and obesity (BMI>30 kg/m2) as a significant factor for critical illness during COVID-19 [49].

The BMI among deceased patients was 33 kg/m2 in our study population, but it was 28 kg/m2

among surviving patients; nevertheless, this was not significant in our cohort.

From a meta-analysis of a multinational database [50], the incidence of AKI in mechani-

cally ventilated patients was reported to be 22%, slightly higher than among general inpatients

[51]. We found an incidence of AKI 1–3 of 75.7%; in 24 of the 37 cases it was >AKI 2 (64.9%).

A Chinese meta-analysis reported the incidence of AKI in hospitalized Chinese adults was up

to 50% for those in the ICU, and the presence of AKI was associated with a higher severity of

infection [52]. Of course, with the small number of cases it is difficult to derive definitive state-

ments. The high incidence of AKI at our center may also be due to patient selection as a center

for ECMO therapy [53,54].

Prior data reported that SARS-CoV-2 uses Angiotensin converting enzyme 2 (ACE-2) to

enter target cells, which is expressed in lung, liver, oesophagus, gastrointestinal tract, kidney

and the cardiovascular system [55–57]. Uncontrolled release of cytokines and other proinflam-

matory substances are also responsible for either AKI or acute cardiac disorders [58]. In case

proteinuria emerges as an early biomarker for AKI in COVID-19 in larger studies, another

very interesting approach for future investigation would be to see if potential cardiac deteriora-

tion due to COVID-19 can also be detected early this way.

Conclusion

ML methods are traditionally reserved for large data sets, at least for widespread application.

The medical field in particular, where research is mostly based on traditional statistical meth-

ods, can provide these large data sets. In the current situation, structured cooperation by all

countries is needed, which is reoriented daily to the current and permanently growing knowl-

edge about COVID-19. The methods shown in this paper can be enhanced further by generali-

zation of tree-based methods, especially random forests, which are ensembles of decision trees

known for their better accuracy, but unfortunately losing some of the comprehensibility of

simpler tree-based methods [35]. Further research is warranted to address this issue.
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