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Traumatic spinal cord injury (SCI) is a complex pathological process. The initial mechanical 
damage is followed by a progressive secondary injury cascade. The injury ruptures the 
local microvasculature and disturbs blood-spinal cord barriers, exacerbating inflammation 
and tissue damage. Although endogenous angiogenesis is triggered, the new vessels are 
insufficient and often fail to function normally. Numerous blood vessel interventions, such 
as proangiogenic factor administration, gene modulation, cell transplantation, biomaterial 
implantation, and physical stimulation, have been applied as SCI treatments. Here, 
we briefly describe alterations and effects of the vascular system on local microenvironments 
after SCI. Therapies targeted at revascularization for SCI are also summarized.
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INTRODUCTION

Traumatic injury to the spinal cord activates several complex pathological events, resulting 
in physical disability, psychological devastation, and social burdens (Hutson and Di Giovanni, 
2019). Nerve tissues are damaged after spinal cord injury (SCI) with motor and sensory 
neuron dysfunction. Although the injured nerve tissues can undergo repair, the regeneration 
is limited and usually hypofunctional. Thus, there is an urgent need for interventions that 
effectively promote axon regeneration and functional recovery after SCI (Oudega, 2012). The 
acute SCI includes two phases, the primary mechanical destruction (immediate effect of 
trauma) and a later secondary injury (occurring over a time course from minutes to weeks; 
Silva et  al., 2014). A cascade of progressive damages occurs in the lesion, such as vascular 
disruption, inflammation, demyelination, and apoptosis, leading to glial scar and cavity formation 
(Fleming et  al., 2006; Garcia et  al., 2016).

As mentioned, blood vessels that play a crucial role in nerve regeneration and functional 
recovery are ruptured. The mechanical forces destroy not only neural cells (neurons, astrocytes, 
and oligodendrocytes) but also blood vessels around the injury epicenter. In addition, the 
blood-spinal cord barrier (BSCB) in the surrounding tissues has increased permeability. This 
destruction induces ischemia and inflammation, which further exacerbates the overall tissue 
damage (Haggerty et al., 2018). Although new blood vessels form in the lesion, this angiogenesis 
is insufficient. Hence, understanding the vascular responses in the lesion microenvironment 
after SCI is of great importance. Interventions modulating vascular responses to promote 
sufficient functional vessel formation are needed for SCI therapy (Ng et  al., 2011). To date, 
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multiple treatments for blood vessel interventions in SCI have 
been developed, including proangiogenic factor administration, 
gene modulation, cell transplantation, biomaterial implantation, 
and physical stimulation. This review will provide an extensive 
overview of the vascular alterations after SCI and summarize 
current attempts to repair SCI using blood vessel interventions.

VASCULAR RESPONSES AFTER SPINAL 
CORD INJURY

The vascular system consists of interconnected endothelial cell 
tubules and is a highly branched and hierarchically ordered 
network, similar to the nervous system (Serini and Bussolino, 
2004). In normal conditions, the blood vessels transport 
ingredients (oxygen, nutrients, and hormones), remove metabolic 
waste and facilitate cell circulation, which provides a supportive 
microenvironment for the nervous system (Adams and Eichmann, 
2010; Himmels et  al., 2017). Anatomically, there is a higher 
density of capillary beds in the gray matter than in the white 
matter, and this may be  to meet the greater demand for 
metabolic activity in neuronal cells within the gray matter 
(Haggerty et  al., 2018).

Several phases of repair occur in the microenvironment of 
the lesion after SCI. These responses include regeneration-
associated gene expression, axonal sprouting, oligodendrocyte 
remyelination, and endogenous angiogenesis. However, the 
effectiveness of this repair is limited (Hagg and Oudega, 2006). 
Glial scars, inflammation, growth-inhibitory molecules, and 
blood vessel disruption contribute to the hostile 
microenvironment at the injury sites, hindering axon regeneration 
and functional recovery (Silva et  al., 2014; Tran et  al., 2018). 
The initial mechanical force causes immediate local vascular 
damage and BSCB breakdown that increases vascular 
permeability. The ensuing ischemia and immune cell infiltration 
accelerate secondary anatomical damage and neurological deficits. 
As a response to decreased vessel density, endogenous 
angiogenesis and vascular remodeling take place around 
the lesion.

Blood Vessel Rupture and Hemorrhage
Under healthy conditions, vessels and astrocytic processes 
associate closely to form the perivascular basement membrane 
(BM). With injury, mechanical trauma ruptures local 
microvasculature structure and disconnects blood vessels with 
astrocytes. The blood vessel wall then separates from the 
BM into an inner endothelial and an outer parenchymal 
part (Takigawa et  al., 2010). There is a dramatic endothelial 
cell (EC) loss due to necrosis that occurs within the first 
24 h after the insult. Then, in the following days, ECs undergo 
apoptosis induced chiefly by ischemia. Detachment from the 
extracellular matrix (ECM) surrounding the blood vessels 
also contributes to EC loss (Casella et  al., 2002; Oudega, 
2012). Blood vessel density around the lesion continues to 
decrease. Structurally altered BMs further exacerbate the 
expansion of inflammation during the subacute phase of 

SCI. Cellular debris from the disrupted vascular architecture 
is harmful to nearby neural cells, aggravating cell death. In 
the meantime, hemorrhaging occurs at lesion sites. The 
bleeding accelerates thrombin formation and increases 
extracellular glutamine levels, red blood cell lysis, and iron 
toxicity, which together exacerbate axonal damage (Losey 
et  al., 2014). Hemorrhaging occurs chiefly within the gray 
matter and later extends radially into adjacent white matter 
(Tator and Koyanagi, 1997; Losey et  al., 2014). Injection of 
bacterial collagenase, which minimizes mechanical injury, 
has shown that the induced hemorrhaging is associated with 
BSCB disruption, leukocyte recruitment, and axonal damage, 
leading to secondary injury and poor neurological outcomes 
after SCI (Losey et  al., 2014).

BSCB Disruption
The blood-spinal cord barrier (BSCB), a tight barrier between 
the blood and spinal cord tissues, assists in maintaining spinal 
cord homeostasis (Sharma, 2005; Yu et  al., 2016a). The tight 
junction proteins, vascular basal lamina, astrocyte end-feet 
processes, and pericytes comprise the basal molecular structure 
of BSCB, similar to that of the blood-brain barrier (Huber 
et  al., 2001). The initial mechanical injury force, combined 
with compression or vascular dilation-induced shear stress, 
disrupt the neurovascular unit and membrane structure (Oudega, 
2012; Jin et al., 2021). Injury-induced pro-inflammatory cytokines 
(such as TNFα and IL-1β), vasoactive substances (such as 
reactive oxygen species, nitric oxide, and histamines), and 
matrix metalloproteinases (MMPs) elevate vascular permeability 
(Donnelly and Popovich, 2008). The BSCB disruption rapidly 
occurs in the first several hours. This abnormal permeability 
of BSCB is apparent during angiogenesis, which proceeds during 
a period of 3–7  days post-injury (Whetstone et  al., 2003). The 
hyper-permeability of BSCB further damages local blood vessels. 
Immune cells, such as lymphocytes, neutrophils, and monocytes, 
infiltrate into the lesion site, leading to inflammatory responses. 
Calcium, excitatory amino acids, free radicals, and inflammatory 
mediators also pass into the injury site, contributing to secondary 
injury after SCI (Ng et  al., 2011).

Blood Supply/Ischemia
Traumatic injuries also affect spinal cord blood supply, which 
is closely correlated with the severity of damage (Martirosyan 
et al., 2011). The degenerated ECs sever local vascular networks, 
aggravating ischemia. The lack of adequate blood supply 
induces apoptosis and death of neural cells in the lesion 
epicenter (Figley et  al., 2014; Losey et  al., 2014). Hence, this 
reduction in blood flow leads to further tissue loss. Reduced 
blood pressure also decreases microvascular blood flow, 
accelerating organ dysfunction (Guha et  al., 1989). Restoring 
blood supply around lesion sites is pivotal for SCI repair. 
Vascular smooth muscle cells (vSMCs) and pericytes around 
vessels coordinate to control blood flow into the central 
nervous system. It has been conclusively demonstrated by Li 
et al. that pericytes on capillaries caudal to the lesion abundantly 
express a vasoconstriction-relevant enzyme. Treatments that 
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dilate vessels and improve blood flow facilitate functional 
recovery after SCI (Li et  al., 2017).

Endogenous Angiogenesis
Briefly, there are three main blood vessel formation mechanisms: 
vasculogenesis, splitting angiogenesis, and sprouting angiogenesis 
(Adams and Eichmann, 2010). Vasculogenesis is a process of 
generating vessels from endothelial precursor cells or angioblasts. 
This process mainly occurs in the early embryo at the vasculature 
development stage (Risau and Flamme, 1995; Flamme et  al., 
1997). In disease or injury repair situations, new vessels usually 
form from the existing vasculature, termed angiogenesis (Adams 
and Eichmann, 2010). Sprouting and splitting are two types 
of angiogenesis. In sprouting angiogenesis, the ECM of existing 
vessels is reorganized and paves ways for ECs. ECs then migrate, 
proliferate, generate tubules, and finally form new sprouts 
(Eilken and Adams, 2010). Splitting angiogenesis (or 
intussusception) is achieved by splitting from pre-existing vessels 
oppositely. New vessels then grow under the influence of growth 
factors, pericytes, and myofibroblasts (Gianni-Barrera et al., 2018).

Several molecules and signaling pathways participate in 
angiogenesis and endothelial regeneration (Tsuji-Tamura and 
Ogawa, 2018; Evans et  al., 2021). Transcription factors, such 
as FoxM1 (Huang and Zhao, 2012), HIF-1α (Huang et  al., 
2019), Sox17 (Liu et  al., 2019a) Atf3 (McDonald et  al., 2018), 
and Foxo1 (Wilhelm et al., 2016) are involved in EC proliferation. 
Mef2 factors regulate sprouting angiogenesis (Sacilotto et  al., 
2016). Foxo1 and Foxo3 inhibit the migration and tube 
formation of HUVEC (Potente et al., 2005). These transcription 
factors integrate with multiple signaling pathways to modulate 
angiogenesis. VEGF signaling participates in angiogenic 
processes in both physiological and pathological conditions 
(Apte et  al., 2019). PI3K-Akt signaling activation enhances 
HIF-1α production, increases VEGF expression, and promotes 
angiogenesis (Jiang et  al., 2000, 2001). Inhibition of the 
PI3K-Akt and mTOR signaling pathways can activate Foxo1 
and induce EC elongation (Tsuji-Tamura and Ogawa, 2016). 
Additionally, Notch signaling is also important during 
angiogenesis. Dll4, which is expressed at tip cells, can bind 
to and activate Notch signaling in neighboring stalk cells to 
modulate sprouting and branching (Hellstrom et  al., 2007; 
Eilken and Adams, 2010).

Angiogenesis is the primary form of vascular formation in 
the lesion microenvironment after SCI. Triggered by hypoxia 
and proangiogenic growth factors, ECs undergo sprouting, 
proliferation, and finally remodeling (Carmeliet, 2000, 2003). 
It is possible that angiogenesis serves as an early scaffold for 
axonal regeneration across the injury site, facilitating tissue 
remodeling and survival (Casella et  al., 2002). Blood vessel 
density transiently increases within 2 weeks due to endogenous 
angiogenesis. However, endogenous angiogenesis is insufficient 
to support local metabolism, accelerating hypoxic ischemia and 
cell death at lesion sites. Additionally, newly formed blood 
vessels are usually leaky with impaired BSCB (Fassbender et al., 2011).  
New vessels fail to associate with other cells (neurons, astrocytes, 
or pericytes) and do not organize into a functional vasculature 
(Loy et  al., 2002; Ng et  al., 2011). Due to their geometry and 

plasticity, the new vessels do not guide neighboring sprout 
outgrowth (Losey et  al., 2014). The malfunctioning vasculature 
impedes self-repair at the injury site and prevents functional 
recovery after SCI.

NEUROPROTECTIVE EFFECT OF BLOOD 
VESSELS

There is a close relationship between revascularization and 
improved functional outcomes after SCI. First, a well-
vascularized lesion provides a permissive microenvironment 
for local tissue survival and nerve regeneration. It has been 
demonstrated that improved capillary blood flow (Li et  al., 
2017), angiogenesis (Hu et  al., 2015), and BSCB integrity 
(Lu et al., 2019) can facilitate functional recovery after spinal 
cord injury. Blood vessels potentially serve as a scaffold to 
guide axonal sprouting after injury. Emerging evidence has 
shown that there are similarly attractive and repulsive cues 
in vascular and axonal guidance, such as Ephrins, Semaphorins, 
Slits, Nogo, and VEGF (Serini and Bussolino, 2004). Blood 
vessels and nerves interact physically and can affect each 
other. VEGF-A, released from neurons and glial cells, promotes 
vessel growth (Ferrara, 2005). Neurotrophins, such as NGF 
and NT-3, control the sympathetic innervation of blood 
vessels. Moreover, vascular cell types, such as vSMCs, secret 
endothelins, providing guidance cues for axons (Ieda et  al., 
2004). Other research has shown that ECs express a repulsive 
axon guidance cue termed Semaphorin 3A, which inhibits 
axonal growth to blood vessels (Damon, 2006). Besides 
neurons and axons, blood vessels also interact with other 
cells, including astrocytes, microglia, and oligodendrocytes. 
After SCI, EphA4, for example, is upregulated in astrocytes 
that are tightly associated with blood vessels. Silencing EphA4 
decreases the tight association between astrocytes and blood 
vessels, impairing BSCB (Goldshmit et al., 2006). The vascular 
endothelium also provides a physical substrate for 
oligodendrocyte precursor migration (Tsai et al., 2016). Recent 
research indicates that microglia play a critical role in 
maintaining vascular integrity via fibrinogen-Mac-1 interaction 
(Halder and Milner, 2019).

In general, revascularization is essential for nerve repair. 
Therapeutic interventions for SCI can focus on the lesion 
vasculature. Approaches to promote angiogenesis, restore blood 
supply, and regain a non-leaky state vascular system as early 
as possible will attenuate secondary damage, limit nerve tissue 
loss, promote axon regeneration, and improve functional recovery 
after SCI.

THERAPEUTIC INTERVENTIONS

To date, researchers have conducted several therapeutic 
interventions based on revascularization for SCI. These treatments 
include proangiogenic factor administration, gene therapy, cell 
transplantation, biomaterial implantation, and physical 
stimulation, illustrated in Figure  1 and Table  1.
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Proangiogenic Factor Administration
A widely accepted vascular intervention for SCI is that of 
regulating angiogenic factors (Klagsbrun and Moses, 1999; 
Graumann et  al., 2011). Vascular endothelial growth factor 
(VEGF), is one of the best characterized angiogenic factors, 
which modulate blood vessel formation, promote the proliferation 
and migration of ECs (Ferrara et  al., 2003). VEGF treatment 
alone (Widenfalk et  al., 2003) or in combination (Yu et  al., 
2016b) increases angiogenesis and axon regrowth. Delivery of 
angiogenic factor fibroblast growth factor-2 (FGF2) into the 
lesion site elevates blood vessel density, increases blood flow 
rates, and decreases the permeability of BSCB. However, the 
improvement in axonal and functional recovery is not apparent 
(Kang et  al., 2010, 2013).
Some hormones (melatonin, estrogen; Wu et  al., 2014; 
Samantaray et  al., 2016; Jing et  al., 2017; Ni et  al., 2018), 
enzymes, and chemical drugs also have a proangiogenic effect 
and are applied in SCI therapy. Chondroitinase ABC (ChABC) 
is widely used in SCI treatments to degrade extracellular 
chondroitin sulfate proteoglycans (CSPG), a primary obstacle 
for axon regeneration. Researchers have shown that ChABC 
also stimulates axonal remodeling by promoting 
revascularization (Milbreta et  al., 2014). Cleavage of CSPG 
by ChABC affected the detachment and separation of blood 
vessel BM, enhancing neoangiogenesis and blood vessel 
maturation (Milbreta et  al., 2014). MMPs create a hostile 

environment for SCI recovery. Treatments using flufenamic 
acid (FFA) or the specific MMP-8 inhibitor (MMP-8I) 
significantly attenuate MMP-mediated BSCB disruption (Kumar 
et  al., 2018; Yao et  al., 2018b). Colony-stimulating factor 
G-CSF (Kawabe et  al., 2011) promotes local angiogenesis by 
increasing angiogenic cytokine expression.

Gene Therapy
Proangiogenic factors overexpressed by viral vectors have been 
shown to improve angiogenesis and enhance BSCB integrity 
after SCI (Kitamura et  al., 2007; Herrera et  al., 2010). 
Additionally, genes dysregulated after SCI may also be potential 
targets for blood vessel innervations. For example, transient 
receptor potential channel protein TRPV4 increases during 
the acute phase of SCI. TRPV4 KO mice show reduced EC 
damage, increased tight junction proteins, and attenuated 
inflammation, leading to improved neuroprotection and 
functional recovery (Kumar et al., 2020). Knockdown of UTX, 
a histone H3K27 demethylase that is upregulated in ECs 
after SCI, promotes EC migration and tube formation. 
Functional recovery is also enhanced as evaluated by BMS 
score, electrophysiology, tactile and temperature sensation (Ni 
et  al., 2019). Mechanism analysis shows that UTX decreases 
promoter methylation of miR-24, which targets genes involved 
in angiogenesis (Ni et  al., 2019).

FIGURE 1 | A graphic summary of current blood vessel interventions for spinal cord injury.
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MicroRNAs (miRNAs), such as miR-210 and miR-126, also 
participate in angiogenesis (Fish et  al., 2008; Kir et  al., 
2018). Administration of miR-210 increases blood vessels 
at day 3 after SCI, probably by inhibiting the expression 
of PTP1B and EFNA3, two antiangiogenic factors in proper 
vascular growth (Ujigo et  al., 2014). Agomir-126 treatment 
after SCI results in enhanced vascularity, reduced 
inflammation, and improved locomotor function. Mechanism 
analysis suggests that this angiogenic effect of miR-126 is 
mediated by repressing SPRED1 and PIK3R2 (Fish et  al., 
2008; Hu et  al., 2015).

Cell Transplantation
Mesenchymal stem cells (MSCs) are capable of self-renewal 
and differentiation. It is an attractive cell source for cell-based 
therapeutic strategies (Assinck et  al., 2017). Transplantation 
of MSCs derived from bone marrow (BMSCs; Matsushita 
et al., 2015; Watanabe et al., 2015; Ropper et al., 2017), adipose 
tissue (ADSCs; Zhou et  al., 2013), umbilical cord (Badner 
et  al., 2016), or amnion (AMSCs; Zhou et  al., 2016) have 
shown pleiotropic positive effects on the lesion 
microenvironment after SCI, including increased angiogenesis 
and restored BSCB integrity. This probably is due to the 
angiogenic factor secretion by MSCs (Baraniak and McDevitt, 
2010). However, there are some limitations on MSC treatments, 

such as insufficient reach to the lesion core and potential 
tumor formation (Lu et  al., 2019). Extracellular vesicles or 
exosomes derived from MSC contain paracrine-secreted 
angiogenic factors. They can exert the role of MSCs in 
neovascularization, improving SCI recovery (Kim et  al., 2018; 
Lu et  al., 2019; Huang et  al., 2020).

Neural stem cells (NSCs) or neural stem/progenitor cells 
(NS/PCs) can differentiate into three major neuroglial lineages 
(neurons, astrocytes, and oligodendrocytes). Their 
implantation has an angiogenic effect induced by elevated 
VEGF expression in the injured spinal cord tissue (Kim 
et  al., 2009; Kumagai et  al., 2009; Nori et  al., 2011). The 
astrocytic components of NSC grafts can also migrate and 
join endogenous astrocytes, integrating into the host BSCB 
(Lien et  al., 2019). Co-implantation of NPCs and ECs after 
SCI increases functional vessel density and promotes BSCB 
re-establishment (Rauch et  al., 2009).
Other cells, such as CD133+ peripheral blood cells (Sasaki 
et  al., 2009; Fujioka et  al., 2012), pericytes (Badner et  al., 
2016), and HUVECs (Zhong et al., 2020), also have proangiogenic 
effects on SCI repair. However, given the pleiotropic effects 
of cell transplantation on the spinal cord, improved vascular 
function may not be  a significant cause of the observed 
functional recovery.

Biomaterial Implantation
Natural or synthetic biomaterials support revascularization by 
promoting and guiding blood vessel formation (Haggerty et al., 
2018; Liu et  al., 2019b). Fibrin, hyaluronic acid (HA), and 
collagen are natural biomaterials with intrinsic angiogenic 
properties. They can combine angiogenic factors to enhance 
vascularization after SCI (Wei et  al., 2010; Wang et  al., 2018; 
Yao et  al., 2018a; Loureiro et  al., 2019). Synthetic biomaterials, 
such as poly (L-lactic acid; PLL; Patist et  al., 2004) and poly 
(lactic-co-glycolic) acid (PLGA; Yu et  al., 2016b; Ropper et  al., 
2017), additionally, can provide for sustained release of 
pro-angiogenic factors or delivery of implanted cells to the 
lesion site after SCI. These applications of biomaterials in 
angiogenesis for SCI have recently been comprehensively reviewed 
(Haggerty et  al., 2018).

Physical Stimulation
Treatments that induce hypoxia, a pro-angiogenic condition, 
also trigger the vascular remodeling response and promote 
vessel density after injury (Halder et  al., 2018). Chronic mild 
hypoxia (CMH; 8% O2 for up to 7  days) promotes EC 
proliferation, vascularization, and BSCB integrity through α5β1 
integrin. Locomotor training combined with epidural 
stimulation, moreover, increases capillary distribution across 
the muscle after SCI (Kissane et al., 2019). Recently, researchers 
have found that water treadmill training (TT) reduces BSCB 
permeability after SCI by inhibiting MMP-2/9 expression (Ying 
et al., 2020). TT also triggers the BDNF/TrkB-CREB signaling 
pathway to ameliorate BSCB disruption following SCI (Ying 
et  al., 2021). Besides, trans-spinal direct current stimulation 

TABLE 1 | Lists of current blood vessel interventions for spinal cord injury.

Proangiogenic factors administration

Growth factor VEGF(Widenfalk et al., 2003), VEGF+Ang1+bFGF (Yu et al., 
2016b), FGF2 (Kang et al., 2010, 2013)

Hormone Melatonin (Wu et al., 2014; Jing et al., 2017), 
Estrogen(Samantaray et al., 2016; Ni et al., 2018)

Enzyme ChABC (Milbreta et al., 2014)
Others FFA (Yao et al., 2018b), MMP-8I (Kumar et al., 2018), 

G-CSF (Kawabe et al., 2011)
Gene modulation

Gene VEGF+Ang-1(Herrera et al., 2010), HGF(Kitamura et al., 
2007), TRPV4 (Kumar et al., 2020), UTX/KDM6A (Ni et al., 
2019)

miRNA miR-210 (Ujigo et al., 2014), miR-126 (Hu et al., 2015)
Cell transplantation

MSC BMSC (Matsushita et al., 2015; Watanabe et al., 2015; 
Ropper et al., 2017), ADSC (Zhou et al., 2013), umbilical 
cord (Badner et al., 2016), AMSC (Zhou et al., 2016)

NSC, NS/PC NSC(Kim et al., 2009; Lien et al., 2019), NS/PC(Kumagai 
et al., 2009; Nori et al., 2011), NPC+EC (Rauch et al., 
2009)

Other cells CD133+ peripheral blood cells (Fujioka et al., 2012; Sasaki 
et al., 2009), Pericyte (Badner et al., 2016), HUVEC (Zhong 
et al., 2020)

Biomaterial implantation

Natural materials Fibrin (Yao et al., 2018a; Loureiro et al., 2019), HA (Wei 
et al., 2010), Collagen (Wang et al., 2018)

Synthetic materials PLL (Patist et al., 2004), PLGA (Yu et al., 2016b; Ropper 
et al., 2017)

Physical stimulation

CMH (Halder et al., 2018), Training (Kissane et al., 2019; 
Ying et al., 2020, 2021), tsDCS (Samaddar et al., 2017)
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(tsDCS) promotes blood flow to modulate neural cell migration 
and proliferation after SCI (Samaddar et  al., 2017).

CONCLUSION AND PERSPECTIVE

Blood vessel vascularization and remodeling after SCI are critical 
for SCI repair and functional recovery. Researchers have applied 
numerous blood vessel interventions for SCI. However, the 
therapeutic effect is limited and the regulatory mechanisms 
are unclear. Several issues need to be  addressed in further 
studies. First, there is the discovery of more potential genes 
or molecules. The vascular system and the central nervous 
system share many guidance molecules, such as Ephrins, 
Semaphorins, Slits, and Netrins. Manipulations of these genes 
will potentially promote vessel and axonal regeneration in SCI 
repair processes (Adams and Eichmann, 2010). Blood vessel 
interventions used in other diseases, such as stroke (Wang 
et al., 2004), Alzheimer’s Disease (Zlokovic, 2005), or peripheral 
nerve injury (Sekiguchi et  al., 2012), provide another choice 
for SCI therapy. Second, there is the determination of interactions 
between nervous, immune, and vascular systems. As detected 
by two-photon microscopy, blood vessels transiently increase 
and interact with neurons within 2  weeks after SCI. However, 
the guidance of new vessels on adjoining sprouts is inadequate 
(Dray et  al., 2009). Inflammation responses also regulate 

angiogenesis during tissue regeneration (Donnelly and Popovich, 
2008). Macrophages can secrete factors to promote tip-endothelial 
cell fusion, remodel the basal membrane, and attract pericytes 
or vSMCs for revascularization (Haggerty et  al., 2018). Finally, 
there is the identification of combined strategies for 
revascularization. As summarized, we can conduct blood vessel 
interventions for SCI by proangiogenic factor administration, 
gene modulation, cell transplantation, biomaterial implantation, 
and physical stimulation. Multiple strategy integration might 
strengthen the proangiogenic effects, restore BSCB, and overcome 
delivery limitations.
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