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Abstract: The interaction between plant mitochondria and the nucleus markedly influences stress
responses and morphological features, including growth and development. An important example of
this interaction is cytoplasmic male sterility (CMS), which results in plants producing non-functional
pollen. In current research work, we compared the phenotypic differences in floral buds of different
Brassica napus CMS (Polima, Ogura, Nsa) lines with their corresponding maintainer lines. By comparing
anther developmental stages between CMS and maintainer lines, we identified that in the Nsa
CMS line abnormality occurred at the tetrad stage of pollen development. Phytohormone assays
demonstrated that IAA content decreased in sterile lines as compared to maintainer lines, while the
total hormone content was increased two-fold in the S2 stage compared with the S1 stage. ABA content
was higher in the S1 stage and exhibited a two-fold decreasing trend in S2 stage. Sterile lines however,
had increased ABA content at both stages compared with the corresponding maintainer lines.
Through transcriptome sequencing, we compared differentially expressed unigenes in sterile and
maintainer lines at both (S1 and S2) developmental stages. We also explored the co-expressed genes
of the three sterile lines in the two stages and classified these genes by gene function. By analyzing
transcriptome data and validating by RT-PCR, it was shown that some transcription factors (TFs)
and hormone-related genes were weakly or not expressed in the sterile lines. This research work
provides preliminary identification of the pollen abortion stage in Nsa CMS line. Our focus on genes
specifically expressed in sterile lines may be useful to understand the regulation of CMS.

Keywords: cytoplasmic male sterility (CMS); phytohormones; differentially expressed genes; pollen
development; Brassica napus

1. Introduction

Oilseed rape is one of most important oil crops worldwide, producing food, biofuel, and industrial
compounds, including lubricants and surfactants. Hybrid breeding is a key technique to enhance
crop production [1–3], in which cytoplasmic male sterility (CMS) plays an important role in seed
production [4]. CMS is a maternally inherited trait and is beneficial for the production of F1 hybrid seeds
by generating infertile pollen without changing vegetative growth and female fertility [5]. CMS systems
are not only a useful component for studying pollen development, but also an important way to utilize
hybrid vigor [6]. The existence of CMS systems in plants eliminates the laborious and painstaking
work of sterilization and manual emasculation in a broad range of crops. CMS can arise spontaneously
in breeding lines after wide crosses, interspecific exchange of nuclear or cytoplasmic genomes, and
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mutagenesis [7]. Initially, it was thought that sterility was caused by mutation within the mitochondrial
genome [8], however, further research has revealed that a major cause of CMS is mitochondrial DNA
rearrangement, which results in plants unable to generate functional pollen [9]. Mitochondria are
important cellular components for energy (ATP, NADH, FADH2)-dependent metabolic pathways,
including oxidative phosphorylation, respiratory electron transfer, biosynthesis of amino acids,
vitamin cofactors, the Krebs cycle, and programmed cell death [10–12]. Therefore, CMS proteins
were hypothesized to cause mitochondrial energy deficiency and failure to meet energy requirements
during male reproductive development [13].

Currently, 10 types of CMS systems have been reported in Brassica napus, including the natural
mutation pol CMS [14] and shan2A CMS [15], and intergeneric hybridization CMS nap CMS [16] and
Nsa CMS [17]. Nsa CMS [17], Ogu CMS [18] and tour CMS [19] were generated by protoplast fusion
of different species, resulting in a source of genetic variation within the cytoplasmic organelles [20].
Both Pol CMS and Ogu CMS are commonly used as CMS systems for B. napus hybrid breeding.
CMS is sensitive to harsh environmental factors, including air temperature and exposure time to
sunlight [21–23]. However, the Nsa CMS system has demonstrated stable male sterility under different
environmental conditions, ensuring seed purity during hybrid seed production.

Preliminary work has demonstrated significant differences in plant endogenous hormones
between CMS lines and their maintainer lines in different species [24,25]. In sugar beet, it was found
the level of endogenous IAA (indole-3-acetic acid), GA3 (gibberellic acid), and ZR (zeatin-riboside),
in relation to ABA (abscisic acid), differed at three developmental stages (vegetative, early flowering,
and bud development) [26]. It was also demonstrated that pepper CMS line ‘Bei-A’ and maintainer line
‘Bei-B’ showed significant hormonal differences [27], with a higher IAA and ABA content and lower
ZR5 and GA3 content observed within the CMS line [27]. The relationship between phytohormones and
CMS has been widely investigated in many species, including B. napus [28,29], flax [30], and rice [31].
It has been shown that phytohormones ABA and IAA may be major contributors for CMS. The
concentration of ABA and IAA changes at different stages of bud development between male sterile
lines and their maintainer lines [29,30]. These studies collectively provide evidence for the importance
of determining the endogenous level of ABA and IAA in CMS and maintainer lines when studying
cytoplasmic male sterility.

Most recently, attention has focused on the provision of next-generation sequencing (NGS)
technology [32–34] and the use of NGS to make studies on expressed genes and genomes in higher
plants more feasible [35–37]. Currently, RNA-Seq has been used in higher plants with CMS systems
in many species, including tomato [37], rice [38], and B. napus [36,39]. A large and growing body
of literature has investigated floral buds of CMS and maintainer lines using RNA sequencing and
comparative gene expression. In Pol CMS, unigenes related to pollen development were analyzed
through transcriptome sequencing [36]. These high-throughput results will be useful for understanding
the sterility mechanism of pol CMS in detail. Another transcriptome study of SaNa-1A CMS was also
conducted in B. napus [40]. By comparing the sterile line and the maintainer line, many differentially
expressed genes (DEGs) involved in metabolic, protein synthesis, and other pathways were identified.
These results provide a basis for future research on the CMS mechanism in SaNa-1A. The existence of
various CMS lines with different mitochondrial patterns offer new opportunities to explore the genetic
regulation of CMS and its associated developmental effects [41].

In the current study, Pol CMS, Ogu CMS, Nsa CMS, and their corresponding maintainer lines
(with the same nuclear genome but fertile cytoplasm) were used to carry out transcriptomic and
DEG analysis. Simultaneously, we compared the morphological differences in sterile and fertile
lines, and analyzed the IAA and ABA contents. We investigated the pollen abortion stage of the Nsa
CMS line by semi-thin sectioning. This study confirms the stage of pollen abortion in Nsa CMS, and
illustrates the mode of regulation of the different CMS systems during pollen development at the
transcriptomic level.
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2. Results

2.1. Phenotypic Characterization of CMS Lines and Maintainer Lines

The flower structure of rapeseed includes four sepals, four petals, six stamens (four long and two
short), and one pistil from outwards to inwards. When a flower blooms, mature pollen sticks to the
pistil. The pistil is almost the same height as the long stamens, allowing pollination to occur easily.
In this study, we obtained three CMS systems (Nsa CMS, Pol CMS, and Ogu CMS) with corresponding
maintainer lines. All sterile lines and their maintainer line harbor the same nuclear genome but
different cytoplasm. We found that all sterile floral petals were visually wrinkled and smaller than
fertile flowers in three CMS systems (Figure 1). Degeneration of stamens and shorter stamen length
was observed in sterile lines as compared with the normal fertile flowers. Among the three CMS
systems, the stamens of the pol CMS sterile line were more seriously degenerated (Figure 1F). However,
the pistils of all the sterile floral buds were the same as fertile lines (Figure 1).

Figure 1. Flower morphology of maintainer and sterile lines of the Pol, Nsa, and Ogu cytoplasmic male
sterility (CMS) systems. (A–B) Maintainer line; (C–D) Nsa CMS line; (E–F) Pol CMS line; (G–H) Ogu
CMS line; Bar = 0.5 cm.

The stage at which pollen abortion occurs within the Nsa CMS system has not been determined
clearly. For detailed characterization of the developing pollen, ultrathin specimens were observed
under a microscope. By observing a semi-thin section of anthers, we conclude that the abortion period
of Nsa CMS occurred during the tetrad period (Figure 2F). After the tetrad stage, Nsa CMS could
not produce normal spores at the uni-nuclear stage (Figure 2G). Normal anthers form mature pollen,
as shown in Figure 2D. The sterile line did not produce mature pollen but formed a large number of
abnormal spores (Figure 2H).
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Figure 2. Comparison of maintainer line “ZS4” (A–D) and sterile line (E–H) anthers of Nsa CMS with
toluidine blue staining. Bar = 10 µm, Ep, epidermis; En, endothecium; ML, middle layer; T, tapetum;
Ms, microspore; MP, mature pollen; PMC, primary mother cells.

2.2. IAA and ABA Concentration in CMS and Maintainer Lines

Plant hormones were assessed in CMS and maintainer lines to clarify how plant hormones are
altered in the three CMS systems (Figure 3). The ABA and IAA contents in flower buds were detected
at S1 (<2.5 mm size of floral buds) and S2 stages (>2.5 mm size of floral buds) in CMS and maintainer
lines, respectively. We found that ABA levels were significantly higher in all three CMS lines as
compared to maintainer lines at both stages. Conversely, IAA content was significantly lower in
the Nsa CMS line than its maintainer line at the S1 stage, while Ogu and pol CMS lines showed no
significant difference with their maintainer lines. However, IAA content was significantly lower in all
CMS lines as compared to the maintainer lines at the S2 stage. These results indicate that a significantly
higher content of endogenous ABA and lower content of IAA may enhance pollen abortion in sterile
lines. ABA content showed increasing and IAA decreasing trends at the S1 stage compared to the S2

stage. The ABA content was significantly higher at both stages in CMS lines than in their corresponding
maintainer line.

Figure 3. ABA and IAA contents of developing buds in maintainer and male sterile lines of the Pol,
Nsa, and Ogu systems. NA, Nsa sterile line; NB, Nsa maintainer line; OA, Ogu sterile line; OB, Ogu
maintainer line; PA, Pol sterile line; PB, Pol maintainer line. Asterisks indicate a significant difference
was detected between CMS line and maintainer line in S1 and S2 stage by t-test at *p<0.05, **p<0.01.

2.3. Differentially Expressed Genes in CMS and Maintainer Lines

Using high-throughput sequencing, differentially expressed genes were detected in the sterile
and corresponding maintainer lines. The flower buds used to determine phytohormone levels were
also subjected to transcriptome sequence analysis. Three biological replicates were performed with
the reproducibility between replicates being ≥90%. In total, 222.15 Gb of clean data were generated
(with all samples Q30 ≥ 90%). Differentially expressed genes (DEGs) were identified in Biocloud
(Biomarker Technologies). For each CMS system, DEGs were found between the male sterile line
and the corresponding maintainer line. DEGs exhibiting a two-fold change or greater were selected
according to the q-values [39]. At the S1 stage, we identified 1306, 1262, and 4127 DEGs in the Nsa, Pol,
and Ogu systems, respectively. More DEGs (2369, 1690, and 3035) were discovered at the S2 stage in
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the three CMS systems. Among the three CMS systems, the largest number of DEGs were observed in
the Ogu CMS system at the S1 stage. Among the total 4127 DEGs, 2158 genes were upregulated and
1969 genes were downregulated. The smallest number of DEGs was observed in the Pol CMS system,
in which 806 genes were upregulated and 456 genes were downregulated at the S1 stage (Figure 4).
Many more upregulated DEGs with high-fold change (>5-fold) were found at the S2 stage compared
to the S1 stage in all three systems (Figure 4). Furthermore, only the Ogu CMS system exhibited more
DEGs, including upregulated and downregulated genes, in the S1 stage than the S2 stage. More DEGs
were observed in the Pol CMS, and especially in the Nsa CMS system at the S2 stage than the S1 stage.

Figure 4. Differentially expressed unigenes and corresponding genes in the sterile and maintainer
lines. The genes were selected with “p ≤ 0.01” and “fold change ≥2”. The X-axis is the log of
2-fold change in expression between the sterile and maintainer lines at two stages. Y-axis shows the
statistical significance of the differences with the value of log10 (FDR). The spots in different colors are
representing expression of different genes. Black spots represent genes without significant expression.
Red spots mean 2-fold upregulated genes from maintainer lines to sterile lines. Green spots represent
significantly 2-fold down-expressed genes from maintainer lines to sterile lines.

2.4. Gene Ontology and Classification of Three CMS Lines

At the S1 stage, we observed that only 156 unigenes were co-differentially expressed in the
three CMS lines, compared to 581 unigenes at the S2 stage (Figure 5A,B). KEGG classification and
functional enrichment was performed for DEGs at both stages (Figure 5C,D). At the S1 stage, five
categories were identified, including environmental information processing, genetic information
processing, organismal systems, cellular processes, and metabolism (Figure 5C). At the S2 stage, genes
were divided into four categories, including metabolism, genetic information processing, cellular
processes, and environmental information processing (Figure 5D). At the S1 stage, in the environmental
information processing category, 3% of DEGs were associated with plant hormone signal transduction.
Only 1% of the DEGs were relative to plant–pathogen interaction. Within the cellular processes category,
the highest number of DEGs was related to the peroxisome. Significantly enriched DEGs were identified
as being involved in pentose–glucuronate interconversions and starch–sucrose metabolism among the
metabolic components category. At the S2 stage, metabolic components were significantly enriched,
including starch–sucrose, arginine–proline, glycerophospholipid, alanine–aspartate–glutamate, and
amino–nucleotide sugar metabolism. From these analyses, we can determine starch and sucrose play
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an important role in metabolism at this stage. Transcriptomic data also revealed that many DEGs were
enriched in plant hormonal signal transduction pathways.

Figure 5. Co-differentially expressed unigenes (A, B) and GO annotations (C, D) of differentially
expressed genes (DEGs). Venn diagrams of differentially expressed genes at (A) the S1 stage and (B) the
S2 stage in Nsa (N), Ogu (O), and Pol (P) male sterile lines. N1, S1 stage of Nsa CMS system; O1, S1 stage
of Ogu CMS system; P1, S1 stage of Pol CMS system; N2, S2 stage of Nsa CMS system; O2, S2 stage of
Ogu CMS system; P2, S2 stage of Pol CMS system; (C) and (D), the X-axis indicates the percentage of
genes in each categories, and y-axis showed classification of unigenes.

2.5. Verification of DEGs by RT-PCR

We conducted RT-PCR to validate the results generated by RNA-Seq. To determine whether
transcription factors and hormone-related genes were differentially expressed, we quantified
expression of these genes in the three CMS lines by semi-quantitative polymerase chain reaction
(RT-PCR). Expression of genes encoding transcription factors or involved in ABA or IAA signaling
were enriched in maintainer lines compared to male sterile lines (Figure 6). From the RT-PCR results,
we found that almost all selected genes were highly expressed in maintainer lines compared to sterile
lines. Most of the genes showed higher expression levels at the S2 stage compared to the S1 stage in all
CMS systems (Pol, Ogu, and Nsa). This result was consistent with the RNA-Seq results.
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Figure 6. Gene expression difference in three cytoplasmic male sterile materials of S1 and S2 stages.
NA, Nsa sterile line; NB, Nsa maintainer line; OA, Ogu sterile line; OB, Ogu maintainer line; PA, Pol
sterile line; PB, Pol maintainer line. The BnActin gene was used as the control.

3. Discussion

The widespread existence of CMS in plant species may be related to the potential to promote
outcrossing and prevent inbreeding depression. Independent CMS lines differ not only in
their sequences and origins [42], but also in their phenotype, including changes in microspore
development [43] and breakdown pattern of tapetum structure [44]. Pollen development comprises
a series of defined physiological events. A large volume of published studies describe the role of
energy (ATP, NADH, FADH2) in the pollen abortion process [45]. Our results also show that many
energy production or conversion related genes are differentially expressed between male sterile and
maintainer lines. In the semi-thin sections of the Nsa CMS and maintainer lines (Figure 2), we identified
differences in the epidermis, endothecium, tapetum, microspore, and mature pollen. Our results
revealed that pollen abortion occurred at the tetrad stage in the Nsa CMS line. Following the tetrad
stage, Nsa CMS plants could not produce normal spores at the uni-nuclear stage (Figure 2H). Pollen
abortion occurred due to the breakdown of tapetum and premature or delayed degeneracy [46,47].
In pol CMS, abortion was started at stage 4 (pollen development period). Anthers of the sterile line
could not differentiate sporogenous cells, with the middle layer, endothecium, and tapetum being
indistinguishable. The results in sterile anthers filled with numerous, highly vacuolated cells [36].
Due to abnormal development in the early stage, pol CMS lines cannot produce normal tetrads. In Ogu
CMS, abortion was also identified to start at the tetrad stage by comparing the cell morphology of three
central stages (the tetrad, mid-microspore, vacuolated microspore) of pollen development [44]. It was
found that the tapetal cells developed a large vacuole at tetrad stage in the Ogu CMS line. The anther
development of sterile line SaNa-1A, a line with CMS derived from somatic hybrids between B. napus
and Sinapis alba, is also abnormal from the tetrad stage [40]. The abortion phenotype of Nsa CMS is
the same as the SaNa-1 sterile line in all four stages of pollen development. Similar to SaNa-1 CMS,
Nsa CMS was derived from somatic hybrids between B. napus and Sinapis arvensis. Together with Ogu
CMS, which is derived from intergeneric hybridization between B. napus and Raphanus sativa, all the
alloplasmic CMS systems have the same pollen development abortion stage.

Phytohormones (IAA and ABA) are generally known for their specific role in the induction
and promotion of DNA synthesis, and play a role in metabolic pathways [48,49]. It was observed
that high and exogenous application of ABA induced pollen abortion by specifically suppressing
apoplastic sugar transport in pollen [22,50,51]. The ABA content in younger floral buds was higher
than that of elder ones in all three CMS systems, whereas the IAA content showed a converse trend.
However, similar to previous studies in other species, sterile lines of the three CMS systems showed
some differences in IAA and ABA content in both male sterile and their corresponding maintainer
lines [52,53].
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Transcriptomic analysis detected a total of 5619 DEGs at the S1 stage, with 156 co-differentially
expressed in all three CMS lines, and 5208 DEGs at the S2 stage, with 581 co-differentially expressed
in all three CMS lines. KEGG analysis divided these co-differentially expressed genes into 42 and
50 categories at the S1 and S2 stages, respectively. At both the S1 and S2 stages, half of the genes were
involved in metabolism. Many genes for mitochondrial energy metabolism and pollen development
were also differentially expressed in multiple CMS systems [36,54,55]. It has been shown that the
presence of infertility genes affects the transcription of genes involved in the energy metabolism of
the mitochondria, resulting in impairment of the normal physiological functions of the mitochondria,
which leads to infertility [13].

Previous studies identified a link between plant hormones and cytoplasmic male infertility [22,24].
In addition, transcription factors have also been implicated in pollen infertility [56,57]. Therefore,
the expression of some transcription factors and hormone-related genes were selected to verify the
results generated by RNA-Seq. RT-PCR results indicated that the expression level of selected genes
in maintainer lines was significantly higher than that of the male sterile lines. This provides further
support that levels of phytohormone precursor genes and some transcription factors may be correlated
with cytoplasmic male sterility. Increased IAA content was detected in maintainer lines compared to
male sterile lines in all CMS systems. Coincident with this result, we observed IAA signaling-related
genes, including two IAA19 genes, were significantly enriched in maintainer lines (Figure 6).

4. Materials and Methods

4.1. Plant Materials

Pol CMS, Ogu CMS, Nsa CMS and their corresponding maintainer lines were used in this study.
Materials were cultivated in the field of Oil Crops Research Institute, Chinese Academy of Agricultural
Sciences (OCRI-CAAS), Wuhan, China. Anthers at different stages were collected for morphological
study, and the abortion stage was studied by semi-thin sectioning of floral buds. Samples of floral
buds (<2.5 mm and >2.5 mm) were collected and stored at −70 ◦C for further RNA-sequencing and
hormonal quantification.

4.2. Morphology and Semi-Thin Sections

The floral buds of sterile and fertile lines were examined under the microscope (Olympus:
CX31RTSF). At different stages, samples collected from the sterile and fertile line were fixed in FAA
solution [38% formaldehyde, 70% ethanol, and 100% acetic acid (1:1:18)]. A vacuum chamber was
used to evacuate the air and volatiles from the sample bottles. Fixed floral buds were dehydrated
by a graded series of ethanol (70, 85, 95, and 100%) for one hour. Pre-infiltration and penetration by
Technovit 7100 resin steps were undertaken to produce semi-thin sections ~3 µm thick. Samples were
stained by 1% toluidine blue (Sigma Aldrich, St. Louis, MO, USA) for 3 min, and 5 specimens of each
stage were observed to take images under an optical microscope (Olympus: CX31RTSF, Tokyo, Japen).

4.3. Phytohormone (ABA and IAA) Quantification

About 60 floral buds (smaller than 2.5 mm and larger than 2.5 mm) of Pol CMS, Ogu CMS, Nsa
CMS, and their corresponding maintainer lines were quantified for ABA and IAA phytohormones.
Samples were collected and extracted using methanol compounds [58]. The extraction was carried
out by adding 1 mL of MeOH (methyl alcohol) with water (8:2) into each tube containing fresh plant
material. Samples were shaken for 30 min before centrifugation at 12000 rpm at 4 ◦C for 10 min.
The supernatant was transferred to a new microcentrifuge tube and dried in a speed vacuum. After
drying, 100 µL of MeOH was added to each sample. Each sample was homogenized using a vortex
mixer and centrifuged at 12000 RPM at 4 ◦C for 10 min. Phytohormones within the supernatant were
separated by HPLC (Agilent 1200) and analyzed by a hybrid triple quadrupole/linear ion trap mass
spectrometry (ABI 4000 Q-Trap, Applied Biosystems, Foster City, CA, USA).
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4.4. Illumina Sequencing and Analysis of DEGs

About 60 floral buds were harvested from the plants of each line (Ogu CMS, Nsa CMS, and their
corresponding maintainer lines) at the same time. Samples collected from each line were pooled,
frozen in liquid nitrogen, and stored at −70 ◦C for RNA preparation. Total RNA from two stages
of floral buds (<2.5 mm and >2.5 mm) of pol CMS, Ogu CMS, Nsa CMS, and their corresponding
maintainer lines were extracted by using RNA kits (Tiangen, Beijing, China) in accordance with the
manufacturer’s protocol. The integrity of the total RNA was checked by 1% agarose gel electrophoresis.
The concentration was detected by Nano-Drop (Thermo Scientific, Madison, WI, USA) and purity of
RNA was determined by Agilent 2100 Bio-analyzer (Agilent, Waldbronn, Germany). RNA (10 µL)
was sequenced using the Illumina HiSeq 2000 (Illumina, San Diego, CA, USA) and 150 bp of data
collected per run. After removing adapters and low-quality data, the resulting clean data was aligned
to the B. napus reference genome [59]. Potential duplicate molecules were removed from the aligned
BAM/SAM format records. FPKM (fragments per kilobase of exon per million fragments mapped)
values were used to analyze gene expression by the software Cufflinks [60]. Three biological replicates
were performed for each sample.

4.5. Semi-Quantitative (RT-PCR) Analysis of DEGs

The DEG results were confirmed by RT-PCR using the same RNA samples which were used for
RNA library construction. Complementary DNA was generated from the RNA template by using
the reverse transcription kit (Vazyme, Nanjing, China). Specific primers for differentially expressed
genes were designed to amplify 600–750 bp sequences (Table S1). RT-PCR was carried out by using
a program of 95 ◦C for 5 min (initial hot start), 30 cycles of 95 ◦C for 30 s, 56 ◦C for 35 s, and 72 ◦C for
5 min. Three biological replicates were analyzed for each sample.

5. Conclusions

Considerable effort has been taken to identify the pollen abortion stage in Pol and Ogu CMS lines.
Conversely, the pollen abortion stage in the Nsa CMS line had not been determined clearly. From this
study, we identified the tetrad stage of Nsa CMS for pollen abortion by using the semi-thin sectioning
of floral buds. This information will help support the application of Nsa CMS in plant breeding. Higher
content of ABA and lower content of IAA was observed in sterile lines when compared to maintainer
lines in all male sterile systems. This result may reveal that ABA and IAA play different roles in fertile
pollen development. During the two stages, genes involved in energy production were enriched in
maintainer lines in comparison to sterile lines for all CMS systems investigated.
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Author Contributions: Data curation, M.H.; Formal analysis, B.D.; Funding acquisition, H.C. and Q.H.;
Investigation, S.S.; Project administration, D.M. and Q.H.; Resources, H.W. and L.F.; Software, W.W.;
Writing—original draft, B.D., Q.U.Z. and H.C.; Writing—review & editing, Q.H. All authors read and approved
the final manuscript.

Funding: This research was funded by the National Key Research and Development program of China (No.
2016YFD0101300), National Natural Science Foundation of China (No. 31600226), Fundamental Research Funds
for Central Non-profit Scientific Institution (1610172017005), Hubei Provincial Natural Science Foundation of
China (2018CFB248), Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences
(Group No. 118).

Acknowledgments: We thank Rachel Wells in John Innes Center for proof-reading and English correction.

Conflicts of Interest: The authors declare no conflict of interests.

References

1. Wang, H.Z. Review and future development of rapeseed industry in China. Chin. J. Oil Crop Sci. 2010,
2, 300–302.

2. Fu, T.D. Breeding and utilization of rapeseed hybrid. Hubei Sci. Technol. 2000, 167–169.

http://www.mdpi.com/1422-0067/19/12/4022/s1


Int. J. Mol. Sci. 2018, 19, 4022 10 of 12

3. Allender, C.J.; King, G.J. Origins of the amphiploid species Brassica napus L. Investigated by chloroplast and
nuclear molecular markers. BMC Plant Biol. 2010, 10, 54. [CrossRef] [PubMed]

4. Yamagishi, H.; Bhat, S.R. Cytoplasmic male sterility in brassicaceae crops. Breed Sci. 2014, 64, 38–47.
[CrossRef] [PubMed]

5. Shinada, T.; Kikuchi, Y.; Fujimoto, R.; Kishitani, S. An alloplasmic male-sterile line of Brassica oleracea
harboring the mitochondria from Diplotaxis muralis expresses a novel chimeric open reading frame, orf72.
Plant Cell Physiol. 2006, 47, 549–553. [CrossRef] [PubMed]

6. Shiga, T.; Baba, S. Cytoplasmic male sterility in oil seed rape. Brassica napus L., and its utilization to breeding.
Japan J. Breed. 1973, 23, 187–197.

7. Hanson, M.R.; Bentolila, S. Interactions of mitochondrial and nuclear genes that affect male gametophyte
development. Plant Cell 2004, 16, 154–169. [CrossRef]

8. Schnable, P.S.; Wise, R.P. The molecular basis of cytoplasmic male sterility and fertility restoration.
Trends Plant Sci. 1998, 3, 175–180. [CrossRef]

9. Horn, R.; Guptac, K.J.; Colombo, N. Mitochondrion role in molecular basis of cytoplasmic male sterility.
Mitochondrion 2014, 19, 198–205. [CrossRef]

10. Siedow, J.N.; Umbach, A.L. Plant mitochondrial electron transfer and molecular biology. Plant Cell 1995,
7, 821–831. [CrossRef]

11. Logan, D.C. The mitochondrial compartment. J. Exp. Bot. 2006, 57, 1225–1243. [CrossRef] [PubMed]
12. Youle, R.J.; Karbowski, M. Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol. 2005, 6, 657. [CrossRef]

[PubMed]
13. Chen, L.; Liu, Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606.

[CrossRef] [PubMed]
14. Fu, T.D. Production and research of rapeseed in the People’s Republic of China. Eucarpia. Crucif. News 1981,

6, 6–7.
15. Shen, J.X.; Wang, H.Z.; Fu, T.D.; Tian, B.M. Cytoplasmic male sterility with self-incompatibility, a novel

approach to utilizing heterosis in rapeseed (Brassica napus L.). Euphytica 2008, 162, 109–115. [CrossRef]
16. Thompson, K.F. Cytoplasmic male-sterility in oil-seed rape. Heredity 1972, 29, 253–257. [CrossRef]
17. Hu, Q.; Andersen, S.; Dixelius, C.; Hansen, L. Production of fertile intergeneric somatic hybrids between

brassica napus and sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep. 2002,
21, 147–152.

18. Ogura, H. Studies on the new male-sterility in japanese radish, with special reference to the utilization of this
sterility towerds the practical raising of hybrid seeds. Mém. Fac. Agric. Kagoshima Univ. 1967, 6, 1446–1459.

19. Rawat, D.S.; Anand, I.J. Male sterility in indian mustard. Indian J. Genet. Plant Breed. 1979, 39, 412–414.
20. Kemble, R.J.; Barsby, T.L. Use of protoplast fusion systems to study organelle genetics in a commercially

important crop. Biochem. Cell Biol. 1988, 66, 665–676. [CrossRef]
21. Burns, D.R.; Scarth, R.; McVetty, P.B.E. Temperature and genotypic effects on the expression of pol cytoplasmic

male sterility in summer rape. Can. J. Plant Sci. 1991, 71, 655–661. [CrossRef]
22. Zhang, J.K.; Zong, X.F.; Yu, G.D.; Li, J.N.; Zhang, W. Relationship between phytohormones and male sterility

in thermo-photo-sensitive genic male sterile (TGMS) wheat. Euphytica 2006, 150, 241–248. [CrossRef]
23. Zhou, Y.M.; Fu, T.D. Genetic improvement of rapeseed in China. In Proceedings of the 12th International

Rapeseed Congress, Wuhan, China, 26–30 March 2007.
24. Sawhney, V.K.; Shukla, A. Male sterility in flowering plants: Are plant growth substances involved?

Am. J. Bot. 1994, 81, 1640–1647. [CrossRef]
25. Tian, C.G.; Zhang, M.Y.; Duan, J. Preliminary study on the changes of phytohormones at different

development stage in cytoplasmic male sterility line and its maintainer of rape. Sci. Agric. Sin. 1998,
31, 20–25.

26. Wang, H.Z.; Wu, Z.D.; Han, Y. Relationships between endogenous hormone contents and cytoplasmic male
sterility in sugarbeet. Sci. Agric. Sin. 2008, 41, 1134–1141.

27. Wu, Z.M.; Hu, K.L.; Fu, J.Q.; Qiao, A.M. Relationships between cytoplasmic male sterility and endogenous
hormone content of pepper bud. J. South China Agric. Univ. 2010, 31, 1–4.

28. Dubas, E.; Janowiak, F.; Krzewska, M.; Hura, T.; Żur, I. Endogenous aba concentration and cytoplasmic
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