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ABSTRACT

Differential regulation of telomerase reverse tran-
scriptase (TERT) contributes to the distinct aging
and tumorigenic processes in humans and mice.
Here, we report that the hTERT gene was strongly
repressed during differentiation of human cells,
whereas modest mTERT expression was detected
in terminally differentiated and post-mitotic cells.
The stringent hTERT repression depended on the
native chromatin environment because transiently
transfected hTERT promoters were not repressed
in differentiated cells. Conversely, the transiently
transfected mTERT core promoter was repressed
during cell differentiation, suggesting that the
repression of mTERT promoter did not require its
endogenous chromatin structures. To understand
the mechanisms of this differential regulation, we
examined chromatin structures of the endogenous
TERT loci during cell differentiation. In both human
and mouse cells, repression was accompanied by
the loss of multiple DNase I hypersensitive sites at
the TERT promoters and their upstream regions,
revealing positions of potential regulatory elements.
Interestingly, the hTERT locus was located within a
nuclease-resistant chromatin domain in human
cells, whereas a corresponding chromatin domain
was not detected for the mTERT locus. Taken
together, our study indicated that, unlike the repres-
sion of mTERT gene, the condensed native chroma-
tin environment of hTERT locus was central to its
silencing during cell differentiation.

INTRODUCTION

Telomeres serve as essential protective caps of linear chro-
mosomal ends in all eukaryotic cells (1). In the absence of
telomere maintenance, progressive telomere shortening
accompanied by cell division leads to chromosomal insta-
bility and proliferative senescence (2). In stem cells and

immortal cell lines, telomeric TTAGGG repeats are
replenished by telomerase, a ribonucleoprotein reverse
transcriptase complex containing a template RNA subunit
(TER) and a catalytic protein subunit (TERT). In most
cells, the transcription of TERT gene is limiting and cor-
relates with telomerase activity (3,4).

Telomerase is highly regulated during development and
cell differentiation (5–7). Telomerase expression is a defin-
ing feature of pluripotent stem cells and most somatic
stem cells, as it is required for the self-renewal capability
of stem cells. Telomerase activity is also detected during
embryonic development. In most human adult somatic
tissues, however, both telomerase activity and the
hTERT protein are either undetectable or expressed at
an extremely low level (8–10). Incidentally, differentiated
human somatic cells, such as fibroblasts, never undergo
spontaneous immortalization under in vitro culture condi-
tions. Given that ectopic expression of hTERT leads to
immortalization of many human cells (3,11), it is not sur-
prising that the transcription of hTERT gene is tightly
repressed in these cells. In fact, we have previously demon-
strated that the hTERT gene was embedded in a con-
densed chromatin domain in several human cell lines
and normal human fibroblasts, providing a mechanism
for its tight regulation in human somatic cells (12).

In mice, most somatic tissues express a detectable
amount of mTERT mRNA, albeit at lower levels
than in embryonic tissues and cancer cells (6,9).
Consequently, mouse cells have much longer telomeres
and do not undergo telomere-dependent proliferative
senescence. This interspecies difference likely contributes
to some of the distinct characteristics of aging and cancers
in humans and mice, and therefore has important implica-
tions in using mice as models of human diseases (13–15).
The molecular basis of differential TERT expression in
humans and mice is only beginning to be addressed (16).

Terminal differentiation of animal cells has been studied
extensively in cell lines of myeloid lineages, such as human
HL60, U937 and murine M1 cells (17–19). Repression of
hTERT and telomerase expression during differentiation
was demonstrated in HL60 and U937 cell lines (19–21).
Recently, we have demonstrated that a transgenic hTERT
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reporter locus was silenced during in vitro differentiation
of mouse embryonic stem cells (ESCs), in a similar way as
the native hTERT gene in human cells (22). In contrast,
less is known about the mTERT regulation, besides
the reports showing that mTERT is downregulated
during differentiation of mouse ESCs and C2C12 myo-
blasts (7,23).

Here, the repression of hTERT and mTERT genes in
differentiating cells was studied and directly compared in
the context of their respective native chromatin environ-
ments. The experiments indicated that, unlike repression
of the mTERT gene, the native chromatin environment
played a key role in the silencing of hTERT gene.

MATERIALS AND METHODS

Cell culture and differentiation

Human HL60 and U937 cells were obtained from
American Type Culture Collection and cultured in
RPMI1640 containing 10% fetal bovine serum.
Differentiation of HL60 and U937 cells was induced by
treatment with 2.5% dimethyl sulfoxide (DMSO) for
4 days and 10 ng/ml 12-0-tetradecanoyl-1-phorbol-13-
acetate (TPA) for 24 h, respectively. Mouse myeloid cell
line M1 and normal human foreskin fibroblasts (NHFs)
were grown in DMEM with 10% FBS. Differentiation of
M1 cells was induced by incubation with 100 ng/ml recom-
binant human IL-6 (Chemicon) for 5 days. Growth con-
ditions of mouse ESCs and its differentiated derivatives
were described previously (22).

Plasmids and transient transfections

Firefly luciferase reporters pYF3, pYF10 and pBTdel408
contained genomic sequences –208 bp to +1bp, –1396 bp
to +1bp and –461 bp to –50 bp, respectively, relative to
the hTERT translational initiation codon (4,12).
pSKmTERT-Fluc contained a 432-bp promoter sequence
upstream of the mTERT initiation codon, whereas
pTOPO-CRR9-Fluc contained a 265-bp promoter
sequence upstream of the mCRR9 initiation codon.
pBT-255, containing a 295-bp hTERT promoter, and its
mutant derivatives pBT-255-hM12, -hM13 and -hM14,
were kindly provided by Dr Horikawa (9). The Firefly
luciferase reporters were cotransfected into HL60 cells
with pRL-SV40 using LipofectamineTM LTX and
PLUSTM reagent (Invitrogen). Cells were split into two
equal portions 6 h after transfection, one half being trea-
ted with 2.5% DMSO to induce differentiation and the
other half maintained in the proliferative condition.
Transfections were performed in triplicates and cells
were harvested 2 days after transfection. Dual luciferase
assays (Promega) were performed and Firefly luciferase
activities were normalized to Renilla luciferase activities.

Quantative RT-PCR analyses

cDNAs were synthesized from 1 mg total RNA with an
oligo(dT) primer using the SuperScript First Strand
Synthesis system (Invitrogen) (4). PCR reactions were car-
ried out in triplicates for each cDNA sample in the ABI

PRISM 7300 System (Applied Biosystems). Primer and
probe sequences are listed in Supplementary Table 1.

DNase I sensitivity assays

Nuclei were isolated from proliferating or differentiated
cells (4) and treated with 0, 2, 4, 8 and 16U/ml of
DNase I (Promega) at 378C for 20min. Genomic DNA
was extracted from treated nuclei and 10 mg DNA was
digested with restriction enzymes followed by Southern
analyses. Full-length and DNase I hypersensitive bands
were detected by indirect end labeling using probes labeled
with P32-dCTP and quantified by phosphoimaging analy-
sis. General DNase I sensitivities were calculated by the
equation S= log(Xd/Xi)/log(Cd/Ci)xT, where X and C
were test and control band intensities for the initial
(i) or digested (d) samples, respectively, and T represented
the size ratio of control fragment to test fragment (24).
Probes for human and mouse sequences are listed in
Supplementary Tables 2 and 3, respectively.

RESULTS

Repression of TERT genes during cell differentiation

In order to understand the molecular mechanisms of dif-
ferential TERT expression in human and mouse cells, we
analyzed and compared hTERT and mTERT mRNA
levels in a set of matched human and mouse cells. The
levels of TERT mRNAs were measured by quantitative
RT-PCR and normalized to 18S rRNA. The hTERT
mRNA level in human newborn foreskin fibroblasts
(NHFs) was barely detectable and it was at least three
orders of magnitude lower than in human embryonic
stem cell line (hESC) H9 and human leukemic HL60
cells (Table 1). The hTERT expression was higher in
human embryonic lung fibroblast IMR90 cells than in
NHFs, but its level was still about 100-fold lower than
that in H9 hESCs. In contrast, significant mTERT expres-
sion was detected in mouse embryonic fibroblasts (MEFs)
and its level was one-third of that in mouse embryonic
stem cell line (mESC) HM1 and 1/6 of that in mouse
leukemic M1 cells (Table 1). Because human and mouse
sequences might be amplified with different efficiencies, it
is difficult to directly compare TERT mRNA levels in
human and mouse cells. Embryonic stem cells are pluri-
potent cells capable of differentiating into all cell types in
adult organisms. They are immortal normal cells that
express high levels of telomerase and TERT mRNAs.
Therefore, assuming that TERT expression was similar
in undifferentiated human and mouse ESCs, the hTERT
mRNA levels in NHF and IM90 cells were about 1000-
and 30-fold lower than the mTERT mRNA level in
MEFs, respectively. The higher hTERT expression in
IMR90 cells, as compared to NHF cells, was likely due
to its embryonic origin (8) rather than in vitro passaging,
because NHF cells used in this study were of earlier pas-
sages (population doublings or PDLs 10–15) than IMR90
cells (PDLs 25–30). Thus, hTERT expression was signifi-
cantly lower in human fibroblasts than its counterpart
in mouse fibroblasts.
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We next examined TERT repression during in vitro dif-
ferentiation of several human and mouse cell lines.
Human acute promyelocytic leukemic HL60 cells were
differentiated into granulocyte-like cells by DMSO treat-
ment and monoblast U937 cells were induced to differen-
tiate into monocytic cells by treatment with TPA
(Supplementary Figure S1). As shown in Figure 1A, the
expression of hTERT gene, after normalized to that of 18S
rRNA, was downregulated by more than 1000-fold fol-
lowing induction of HL60 cell differentiation. In U937
cells, the hTERT mRNA level was reduced 37-fold upon
induction of monocytic differentiation. A direct compari-
son of hTERT mRNA in these two cell lines revealed that
proliferating U937 cells expressed about 100-fold less
hTERT mRNA than proliferating HL60 cells and the
hTERT mRNA expression was low in both differentiated
HL60 and U937 cells. Therefore, the hTERT transcription
was strongly repressed during differentiation of both
HL60 and U937 cells.
Like HL60 cells, mouse leukemic myeloblast M1 cells

undergo terminal differentiation into monocytes and gran-
ulocyte-like cells upon exposure to IL-6. The differentia-
tion of M1 cells is accompanied by induction of several
differentiation-specific genes and processes, such as MyD
expression, growth arrest, cell attachment and macro-
phage maturation (18). Proliferating M1 cells expressed
a high level of mTERT mRNA, similar to that in undif-
ferentiated mESC clones (F2-1 and F2-9, Figure 1A).
However, in contrast to hTERT expression, mTERT
expression in M1 cells decreased only 5-fold following a
5-day differentiation process induced by IL-6 (Figure 1A).
Because only terminally differentiated M1 cells attached to
tissue culture dishes (17), IL-6-treated cells were washed

prior to harvest to eliminate any possible partially
differentiated non-adherent cells. All differentiated
M1 cells exhibited mature monocyte-like morphology
as determined by May–Grünwald-Giemsa staining
(Supplementary Figure S1), indicating that the moderate
mTERT repression was not due to incomplete
differentiation.

Downregulation of mTERT expression also occurs
during differentiation of pluripotent mouse ESCs (7,22).
We examined the mTERT expression in mESC clones
F2-1 and F2-9 and their osteogenic cell-derived differen-
tiated F2-1d and F2-9d cells (22). As shown in Figure 1A,
F2-1d and F2-9d cells expressed 6- and 9-fold less mTERT
mRNA than the parental F2-1 and F2-9 ESCs, respec-
tively. F2-1 and F2-9 ESCs were two independent HM1
clones containing a stably integrated human bacterial arti-
ficial chromosome (BAC) reporter, in which a Firefly luci-
ferase ORF and a Renilla luciferase ORF were inserted
into the hTERT and hCRR9 translational initiation
codons, respectively (22). Because transcription from the
hCRR9 promoter did not change during differentiation of
mESCs into osteogenic cells (22), expression of Firefly
luciferase from the hTERT promoter was normalized to
Renilla luciferase expressed from the hCRR9 promoter.
Transcription from the hTERT promoter in differentiated
F2-1d and F2-9d cells was about 1/600 of that in the
parental F2-1 and F2-9 ESCs, as measured by luciferase
activities (Table 1) and quantitative RT-PCR (data not
shown). Therefore, mTERT expression was downregu-
lated upon in vitro differentiation of mouse cells, but
its repression was much less stringent than that of the
hTERT promoter.

To determine if proximal promoter sequences
accounted for the differential TERT repression during
cell differentiation, we performed transient transfection
experiments in HL60 cells using Firefly luciferase plasmid
reporters containing TERT promoters. Six hours after
transfection, HL60 cells were treated with or without
DMSO for 2 days to induce differentiation (Figure 1B).
Whereas the endogenous hTERT mRNA was completely
repressed within 24 h following DMSO treatment (data
not shown), plasmids pYF3 and pYF10, containing a
208- bp and a 1.4-kb human genomic sequence upstream
of the hTERT initiation codon, respectively, maintained
similar levels of Firefly luciferase expression 2 days after
induction of differentiation. pBTdel-408, containing a
sequence –462-bp to –51-bp relative to the hTERT initia-
tion codon but lacking the downstream E-box, expressed a
slightly higher level of Firefly luciferase activity in differ-
entiating HL60 cells than in proliferating cells. On the
other hand, pmTERT-Fluc, including a 432-bp mouse
genomic sequence upstream of the mTERT initiation
codon, was downregulated by about 2-fold. As controls,
both the CRR9 promoter and the SV40 promoter were
expressed at a similar level in proliferating and differen-
tiating HL60 cells (Figure 1B and data not shown).
These results indicated that transiently transfected
plasmid reporters containing up to 1.4-kb hTERT pro-
moter sequences were not repressed during HL60 cell
differentiation.

Table 1. Relative levels of TERT expression in human and mouse cells

Comparison Relative ratio
of hTERT
expressiona

Comparison Relative ratio
of mTERT
expressiona

NHF/H9-hESC 0.0004� 0.0001 MEF/HM-1mESC 0.34� 0.06
NHF/HL60 0.0001� 0.0001 MEF/M1 0.15� 0.03
IMR90/H9-hESC 0.012� 0.001
F2-1d/F2-1mESCb 0.0016� 0.0020 F2-1d/F2-1mESC 0.17� 0.01
F9-1d/F2-9mESCb 0.0016� 0.0021 F9-1d/F2-9mESC 0.11� 0.03

NHF, normal human newborn foreskin fibroblasts. IMR90, normal
human embryonic lung fibroblasts. HL60, a human promyelocytic leu-
kemic line. U937, a human monoblast line. M1, a mouse myeloblast
cell line. hESC, human embryonic stem cell line H9. mESC, mouse
embryonic stem cell line HM-1. F2-1 and F2-9, two independent
mESC lines containing a chromosomally integrated BAC reporter.
F2-1d and F2-9d, osteogenic cells differentiated from F2-1 and F2-9,
respectively.
aThe levels of TERT mRNA and 18S rRNA were determined by real-
time RT-PCR. Each TERT mRNA level was normalized to the 18S
rRNA level in the same cells.
bA BAC reporter was stably integrated into F2-1 and F2-9 mESCs (22).
Within the reporter, a Firefly luciferase and a Renilla luciferase open
reading frame were inserted into the hTERT and hCRR9 translational
initiation codon, respectively. Because transcription from the hCRR9
promoter did not change significantly during osteogenic differentiation
of mESCs, the activity of hTERT promoter was determined as the ratio
of Firely to Renilla luciferases.
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Horikawa and colleagues (9) recently identified several
consensus elements important for hTERT repression in
normal human fibroblasts within the hTERT core pro-
moter, including a nonconserved GC-box, an E2F consen-
sus site and the downstream E-box. We have obtained and
tested a subset of hTERT reporter plasmids used in their
studies. These reporters included pBT-255, which con-
tained a 295-bp hTERT core promoter, and its mutant
derivatives with mutations at the nonconserved GC-box
(pBT-255-hM12), the E2F consensus site (pBT-255-hM13)
and the conserved downstream E-box (pBT-255-hM14)
(9) Similar to pYF3 and pYF10, the hTERT promoter
in pBT-255 was similarly active in proliferating and

differentiating HL60 cells (Figure 1C). Also similar to
the results in NHF cells published by Horikawa and col-
leagues (9,25), mutations at the nonconserved GC-box
(pBT-255-hM12) and the conserved downstream E-box
(pBT-255-hM14) led to an �2-fold increase in the
hTERT promoter activity in HL60 cells. Surprisingly, a
mutation at the E2F consensus site (pBT-255-hM13)
resulted in an almost complete loss of the promoter activ-
ity, suggesting the involvement of E2F family transcrip-
tion factors in hTERT transcription in HL60 cells.
However, all of these hTERT plasmid reporters, pBT-
255 and its mutant derivatives, had similar activities in
both proliferating and differentiating cells, indicating
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Figure 1. Transcriptional regulation of the TERT genes during cell differentiation. (A) TERT mRNA levels in undifferentiated and differentiated
human and mouse cells. Total RNAs were harvested from undifferentiated and differentiated cells and cDNAs were synthesized by reverse tran-
scription. The level of each TERT mRNA was determined by real-time PCR analyses and normalized to 18S rRNA. The relative levels of TERT
mRNAs were presented as averages of triplicate reactions in a log2 scale, relative to the hTERT and mTERT levels in undifferentiated hESC H9 and
mESC F2-1 cells, respectively. The experiments were performed at least twice and one representative experiment is shown here. The numbers in
parentheses are fold decreases of TERT mRNA down-regulation during differentiation. (B, C) Activities of transiently transfected TERT promoters
in HL60 cells. HL60 cells were transfected with Firefly luciferase reporters containing the hTERT promoter, the mTERT promoter and the mCRR9
promoter, followed by treatment with and without 2.5% DMSO (differentiating and proliferating, respectively) for 2 days. Firefly luciferase activities
were normalized to Renilla luciferase activities from a cotranfected pRL-SV40 control plasmid. (D) Activities of transiently transfected hTERT
promoter in NHF cells. NHF cells were transfected with plasmids and luciferase activities were determined 2 days after transfection. The Firefly
luciferase activities were normalized to Renilla luciferase activities from a cotransfected pRL-SV40 (white bars) or pRL-CMV (gray bars) control
plasmid. All RT-PCR and reporter assays were set up in triplicates and average values were presented. Descriptions of cell lines are shown in Table 1
legend.
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that none of the aforementioned potential regulatory ele-
ments were sufficient to repress the hTERT promoter
during HL60 cell differentiation.
To determine whether a transiently transfected hTERT

promoter is repressed in fully differentiated cells, in which
the endogenous hTERT gene is silenced, the hTERT
reporter activities were directly compared with those of
constitutively active CRR9 promoter and SV40 promoter
in NHF cells. As shown in Figure 1D, Firefly luciferase
activity expressed from the wild-type hTERT core pro-
moter was about 20-fold higher than that of the control
vector, pGL3-Basic, and 30–50% of those from the CRR9
and SV40 promoters. This result was consistent with our
previously published data that the hTERT promoter
activity was 30–50% of that of the CMV promoter in
telomerase-negative cells (4). In addition, mutation of
the non-conserved GC-box resulted in about 2-fold
increase of the hTERT promoter activity, whereas muta-
tion of the E2F consensus site did not abolish the pro-
moter activity in NHF cells, supporting the previously
published results by Horikawa et al. (9).
In summary, transiently transfected hTERT promoter

was unable to undergo repression upon cell differentia-
tion, in contrast to chromosomally integrated BAC
DNAs containing the hTERT locus (9,22). These results
suggested that, whereas E2F family transcription factors
are important for hTERT promoter activity in HL60 cells,
the repression of hTERT promoter during cell differenti-
ation was chromatin dependent. Distal elements and/or
chromatin environment might be essential for hTERT

silencing. In contrast, moderate repression of the
mTERT promoter during cell differentiation did not
appear to require its native chromatin environment.

Mapping DNase I hypersensitive sites in human cells

Transcriptional regulation is associated with chromatin
structural alterations, such as the appearance of DNase
I hypersensitive sites (DHSs). Such sites are discontinuities
of nucleosomal arrays that often result from interactions
between regulatory proteins and cis-elements. To deter-
mine the chromatin structural changes that accompanied
hTERT repression, we examined the DNase I sensitivity
of the proximal promoter region between EcoRI (–3.9 kb)
and SphI (+1.7 kb) sites by Southern blotting and indirect
end-labeling. Using a probe specific for the upstream end
of this region (probe a), a prominent band (3.9 kb)
was detected in proliferating HL60 cells, in addition to
the full-length genomic fragment of 5.6 kb (Figure 2B,
left panel). This 3.9-kb band was present only in DNase
I-treated nuclei and disappeared at higher concentrations
of the nuclease, indicative of a DHS band corresponding
to the hHS1 that we reported previously in several other
telomerase-positive human cell lines (12) (Figure 2A).
In differentiated HL60 cells, however, the 3.9-kb band
shifted upward to 4.2 kb and had a reduced intensity
(Figure 2B, right panel). When the same blot was hybri-
dized with the downstream probe (probe b), two DHS
bands (1.4 kb and 1.7 kb) were seen near the promoter
region in proliferating HL60 cells (Figure 2D, left
panel). The 1.7-kb band, corresponding to the hHS1,
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disappeared upon cell differentiation and thereby corre-
lated with hTERT transcriptional repression. The 1.4-kb
size of the second band indicated the presence of a novel
DHS within intron 1 of the hTERT gene (hHS2). This
DHS, however, was present in both proliferating and dif-
ferentiated HL60 cells.

In proliferating U937 cells, the 3.9-kb DHS band was
also detected by probe a, and this band similarly shifted
upward upon differentiation, indicating the presence of
both hHS1 and hHS2 (Figure 2C). In addition, a 2.4-kb
weak DHS band was detected in both proliferating
and differentiated U937 cells with probe a, suggesting
the presence of a DHS (hHS3) positioned at about
1.5 kb upstream of the transcription start site. hHS3 was
also found in HeLa cells and several SV40-transformed
human fibroblast lines (12), but it was barely detected in
HL60 cells. Therefore, multiple DHSs were identified
within a 2-kb region covering the hTERT promoter in

HL60 and U937 cells. hHS1, which overlapped with the
hTERT core promoter and was present specifically in
hTERT-expressing proliferating cells, likely corresponded
to an assembly site for RNA polymerase II and general
transcription factors. hHS2 and hHS3, on the other hand,
were found in both proliferating and differentiated cells
and were candidates of regulatory elements involved in
hTERT regulation in these cells.
To identify distal regulatory elements, a genomic region

(�125 kb) that included the entire hTERT gene, its
upstream and downstream neighboring loci, hCRR9 and
hXtrp2, were examined for the presence of DHSs. Besides
DHSs proximal to the hTERT promoter, six other DHSs
were identified within this genomic region in HL60 cells
(Figure 3A). hHS4, a weak DHS, was mapped to 9.5 kb
upstream of the hTERT promoter and appeared only
in proliferating cells, whereas hHS5 and hHS6, which
were located 1.5 kb and 2.0 kb downstream of the 30 end
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somal fragments that were examined by Southern analyses and small horizontal bars within the arcs denote the positions of probes for indirect
labeling of the hypersensitive bands. In the Southern autoradiographs, proliferating cells (P) are shown on the left panels and differentiated cells (D)
are on the right panels for each examined genomic region. Full-length genomic fragments are marked by double arrows. Open triangles point to DHS
bands that appeared only in proliferating cells. The positions of these DHSs are also designated by open triangles in the genomic diagrams. Closed
triangles indicate the hypersensitive bands and their genomic positions for constitutive DHSs that were present in both proliferating and differ-
entiated cells. The double full-length genomic DNA bands in the hHS8 panel were caused by polymorphic mini-satellite sequences within the
restriction fragment in HL60 cells. The sizes of full-length fragments and DHS bands were labeled on the right side of each panel set.
Restriction digestions of genomic DNAs are as follows: hHS4, EcoRI; hHS5 and hHS6, EcoRI/SphI; hHS7, SacI; hHS8, SphI; and hHS9,
EcoRI/SphI.
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of hCRR9 gene, respectively, were present in both prolif-
erating and differentiated HL60 cells. hHS7, coincided
with the hCRR9 core promoter, was present in both pro-
liferating and differentiated cells, consistent with its con-
stitutive transcription in these cells. Two other constitutive
DHSs, hHS8 and hHS9, were located in the middle of
hXtrp2 gene and about 12 kb upstream of the hCRR9
promoter, respectively. In U937 cells, there were only
two additional constitutive DHSs (hHS7 and hHS9),
located at and upstream of the hCRR9 promoter, respec-
tively (Figure 3B). U937 cells generally had fewer and
weaker DHSs than HL60 cells, coincident with the lower
hTERT expression level in these cells.

Mapping DHSs in mouse cells

The mouse genomic region containing the mTERT gene is
arranged in the same order as the hTERT gene in human
cells. However, the intergenic region 50 to the mTERT

gene is only 6.3 kb in length, compared to 22.5 kb of the
corresponding human region. In contrast, the 30 intergenic
region is about 15 kb, larger than its human counterpart
(7.0 kb). We mapped DHSs within a 90-kb genomic region
that included mCRR9, mTERT and mXtrp2 loci in M1
cells. Four DHSs were identified; of which mHS1 and
mHS4 coincided with the transcription start sites of
mTERT and mCRR9 genes, respectively (Figure 4A).
mHS2 was positioned about 6 kb upstream of the
mTERT promoter and near the 30 end of the mCRR9
gene and mHS3 was mapped to exon 13 of the mTERT
gene. All these DHS sites were present in both proliferat-
ing and differentiated M1 cells, consistent with the results
that the mTERT gene was only moderately downregulated
and the mCRR9 gene was constitutively expressed during
M1 cell differentiation.

In mouse F2-9ESCs, all four DHSs identified in M1
cells were also present, mapping to the same positions
on the mouse genome (Figure 4B). The different sizes of
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Figure 4. DNase I hypersensitive sites in the genomic region containing the mTERT gene in myeloid leukemia M1 cells (A) and mouse embryonic
stem cells F2-9 (B). For M1 cells, differentiation was induced by treating cells with IL-6 for 5 days. F2-9 was a mouse embryonic stem cell line
derived from HM-1 cells. F2-9d cells were derived from osteogenic cells differentiated from F2-9ESCs. The performance of experiments and diagrams
are similar to those described in Figure 3. A fragment of mCRR9 cDNA was used for the indirect labeling of mHS2. This probe also hybridized to
extra bands indicated by asterisks (�) on the autoradiographs. Restriction digestions of genomic DNAs from M1 cells are: mHS1, DraI; mHS2 and
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these DHS bands on the Southern blots, as compared to
Figure 4A, resulted from the use of different restriction
enzymes. However, in F2-9d cells derived from differen-
tiated F2-9ESCs, the DHS site mHS1 at the promoter dis-
appeared, consistent with lower mTERT expression
level in these cells. Interestingly, mHS2, located at
mTERT 50 intergenic region, was also absent in F2-9d
cells (Figure 4B). In contrast, both mHS3 and mHS4
were detected in F2-9d cells. Therefore, formation of
mHS1 and mHS2 correlated with high level of mTERT
transcription in F2-9 cells.

General DNase I sensitivity of the hTERT andmTERT genes

Previously, we demonstrated that the hTERT locus was
embedded in a large condensed chromatin domain in
HeLa, HEK293, and human fibroblast cell lines (12).
Such a chromatin domain would provide a repressive
chromatin environment for the tight regulation of
hTERT gene in human somatic cells. Here, we examined
general DNase I sensitivity of the 110-kb genomic region
containing the hCRR9, hTERT and hXtrp2 loci in HL60
and U937 cells. For accurate assessment, genomic frag-
ments that were similar in sizes and devoid of DHSs
were examined for their sensitivities to the nuclease, mea-
sured by digestion rates of genomic fragments as functions
of DNase I concentration (Figures 5 and 6). The hTERT
and hXtrp2 genes were more resistant to nuclease digestion
than the hCRR9 locus in HL60 and U937 cells. The gen-
eral DNase I sensitivities of most chromosomal fragments,
with the exception of fragment D in HL60 cells, were sim-
ilar in proliferating and differentiated cells. Fragment D,

located about 2.5 kb upstream of the hTERT promoter,
became significantly more resistant to the nuclease
digestion as HL60 cells differentiated, correlating with
the strong hTERT repression during HL60 cell differentia-
tion. a- and b-globin loci were used as internal controls.
In both differentiated HL60 and U937 cells, the b-globin
locus was highly resistant to DNase I digestion as was
previously reported (26). Therefore, as in fibroblasts and
epithelial cell lines, the hTERT gene was embedded in a
repressive chromatin domain in HL60 and U937 cells and
this condensed domain persisted throughout terminal
differentiation.
In mouse cells, a 75-kb genomic region that contained

mCRR9, mTERT and mXtrp2 loci, was measured for gen-
eral nuclease sensitivity. The mTERT gene, its 50 and 30

intergenic regions (fragments C to H) showed similar
DNase I sensitivities compared to the mCRR9 locus (frag-
ments A and B) in both proliferating and differentiated
M1 cells (Figure 7). In F2-9 ESCs and F2-9d cells,
although fewer genomic fragments were quantified, the
mTERT and mXtrp2 loci in general were no more resistant
to nuclease digestion than the mCRR9 locus (Figure 8).
Thus, a condensed chromatin domain at the mTERT locus
did not exist in mouse cells. As we reported previously, the
transgenic hTERT locus in the chromosomally integrated
BAC reporter was more resistant to DNase I digestion
than the hCRR9 locus in both F2-9 and F2-9d cells, reca-
pitulating the native hTERT locus in human cells (22).
Hence, we concluded that the endogenous mTERT gene
was not located within a repressive chromatin domain,
unlike the hTERT gene in human cells.
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DISCUSSION

It was shown that hTERT expression was lower in
the majority of somatic tissues than mTERT (6,9). In
the current study, we provided evidence that compared
to mTERT, hTERT was strongly repressed in differen-
tiated human somatic cells and this stringent repres-
sion depended on its native chromatin conformation.
Differentiated human cells, including fibroblasts and dif-
ferentiated granulocytes and monocytic cells, expressed
very low levels of hTERT mRNA compared to undiffer-
entiated human cells, such as embryonic stem cells.
In newborn foreskin fibroblast cells, the hTERT mRNA
was barely detectable and its level was estimated to be at
least 1000-fold lower than in hESC H9 cells and leukemic
HL60 cells (Table 1). Embryonic fibroblast IMR90 cells
expressed slightly more hTERT mRNA, but still 100-fold
less than in H9 and HL60 cells. This low hTERT expres-
sion might still be required for maintaining telomere integ-
rity in normal human fibroblasts (10).

The hTERT expression appeared to be inversely corre-
lated to the status of cell differentiation. For example,
HL60 cells differentiate to either granulocyte-like cells
or monocyte/macrophage-like cells (17), whereas U937
cells are already committed to the monocytic lineage
(27). Accordingly, proliferating HL60 cells expressed
about 100-fold more hTERT mRNA than U937 cells
(Figure 1A). Following terminal differentiation, hTERT
transcription was repressed to very low levels in both
HL60 and U937 cells. Thus, silencing of the hTERT
gene in most human somatic cells likely resulted from
strong transcriptional repression of the hTERT gene
during cell differentiation.

Like HL60 cells, mouse M1 cells are myeloblasts that
undergo differentiation into granulocyte- and monocyte-
like cells upon IL-6 treatment (28). However, mTERT
expression in post-mitotic differentiated M1 cells was
still one-fifth of those in proliferating M1 cells.
Similarly, MEFs contained a significant level of mTERT
mRNA compared with undifferentiated mESCs and M1
cells. Recently, we have published the study of a chromo-
somally integrated hTERT reporter locus, in which the
hTERT promoter was repressed by several orders of mag-
nitudes when mouse ESCs were differentiated into osteo-
genic cells (22). In these same cells, mTERT expression
was downregulated by only 6–9-fold (Table 1). Taken
together, mTERT silencing was not tightly linked to ter-
minal differentiation as it was for hTERT in human cells.

Several aspects of the endogenous loci need to be
addressed in order to explain the differential repression
of hTERT and mTERT genes. Interactions between tran-
scription factors and the promoter elements might be dif-
ferent for hTERT and mTERT genes. c-Myc, Sp-1, and
E2F factors were thought to be the main transcription
activators to regulate the hTERT core promoter.
The downstream E-box and the E2F consensus site
have been shown to participate in both positive and neg-
ative regulation of telomerase (25,29,30). Switch of occu-
pancy by Myc/Max to Mad1/Max at the hTERT
core promoter was proposed to be responsible for the
downregulation of hTERT transcription during HL60

cell differentiation (20). In this report, we demonstrated
that, unlike the endogenous hTERT promoter, transiently
transfected hTERT promoter reporters were not silenced
in NHF cells and during HL60 cell differentiation.
Mutation of the downstream E-box resulted in a moderate
increase of the hTERT promoter activity, whereas muta-
tion of the E2F consensus site significantly decreased its
activity. These data suggested that, although both E-box
and E2F sites are important regulators of the hTERT
promoter activity, presence of these sites are insufficient
for the repression of hTERT promoter during differentia-
tion of HL60 cells. Furthermore, these two sites are con-
served at hTERT and mTERT promoters, raising the
possibility that additional mechanisms contribute to the
differential expression of hTERT and mTERT in human
and mouse cells.
It was previously reported that several binding elements

near or within the hTERT core promoter were involved in
hTERT repression in human cells. Particularly, a noncon-
served GC-box and upstream AP-1 consensus sites were
shown to mediate the suppression of the hTERT core pro-
moter in transiently transfected reporter assays in NHF
cells (9,16). Our data confirmed these results and showed
that mutation of the nonconserved GC-box resulted in a
2-fold increase in hTERT promoter activity in transient
transfection assays in both NHF and HL60 cells. These
data suggested that, whereas the GC-box and the down-
stream E-box negatively regulated the hTERT core pro-
moter, these elements were unable to silence the hTERT
promoter in differentiated cells without an appropriate
chromatin context.
Compared to earlier reports suggesting that the hTERT

promoter reporters were inactive in telomerase-negative
cells, we found that the transiently transfected hTERT
promoters were active in NHFs and differentiated HL60
cells, in which the endogenous hTERT promoter was
repressed. However, we do not believe that our experimen-
tal results were significantly different from those of
Horikawa et al. (9). We demonstrated that transiently
transfected hTERT promoters were less active than the
mTERT promoter, as shown by Horikawa et al. (9),
but they were not silenced in telomerase-negative fibro-
blasts (Figure 1D). Our results further indicated that
chromatin-dependent repression of the hTERT locus was
an important mechanism of differential expression of the
TERT genes in human and mouse cells.
The native chromatin environments of the hTERT and

mTERT genes likely contribute to their differential regu-
lation (4,31). In this study, we showed that, in HL60 and
U937 cells, the endogenous hTERT locus was embedded
in a nuclease-resistant chromatin domain and this con-
densed domain persisted throughout differentiation.
However, in mouse M1 cells, F2-9 ESCs, and their differ-
entiated derivatives, such a condensed chromatin domain
was not detected for the mTERT locus. In addition, the
transgenic hTERT locus in F2-9 mESCs and F2-9d cells
adopted a conformation similar to its native locus in
human cells (22) and was silenced upon differentiation
(Table 1). Furthermore, inhibition of histone deacetylases
in telomerase-negative fibroblasts led to an opening of the
chromatin and induction of hTERT transcription (12).
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Together, these results collectively provided evidence for a
causal role of the chromatin conformation in tight hTERT
repression. In proliferating cells, activation by strong tran-
scription activators such as c-Myc, Sp1, and E2Fs might
permit transcription from the hTERT promoter despite
repression by this chromatin domain. In fact, the endo-
genous hTERT promoter is under repression even in
telomerase-positive immortal cell lines because inhibition
of histone deacetylases resulted in a further increase of
hTERT transcription in these cells (data not shown).
Conversely, this condensed chromatin domain would
cooperate with repressors that were recruited to the pro-
moter during cell differentiation and effectively reduce
basal transcription. Therefore, the chromatin environment
is likely a crucial factor for the tight hTERT repression in
human somatic cells. In contrast, although mTERT
expression was moderately repressed during differentia-
tion, this regulation did not appear to require the native
chromatin structure.
The present study also identified several novel DHSs

within and near both hTERT and mTERT genomic loci.
DHSs are often the binding sites for proteins that regulate
chromatin structure and/or transcription in vivo. In earlier
studies, we showed that hHS1 coincided with the hTERT
core promoter and was present in all telomerase-expres-
sing cells but absent in telomerase-negative cells (4,12).
Here, we found that the novel hHS2 was mapped to the
first intron of hTERT gene, which contained two ETS
consensus sites (+288 nt and +390 nt). It was previously
reported that these ETS sites mediated the activation of
hTERT transcription by ER81, an ETS family transcrip-
tion factor involved in the oncogenic HER2/Neu-Ras sig-
naling pathway (32). hHS3, located about 1.5 kb upstream
of the hTERT transcription start site in U937 cells, over-
lapped with one of the AP-1 sites identified by Takakura
et al. (16). Because hHS2 and hHS3 were present in both
proliferating and differentiated cells, it remains to be
determined whether these sites play a role in hTERT
repression during differentiation. In contrast, hHS4,
mapped to about 9.5 kb upstream of the hTERT promo-
ter, appeared only in proliferating HL60 cells. This DHS
coincided with an Alu repeat. Interestingly, mHS2,
located about 6 kb upstream of the mTERT promoter in
F2-9 mESCs and M1 cells, was also mapped to a mouse
type II Alu-like SINE repetitive element B2. Alu elements
belong to the SINE family (short interspersed nuclear ele-
ments) of repetitive elements and may regulate, often
negatively, transcription of several genes (33,34). For
example, Alu repeats were proposed to be transcriptional
silencers of the human erythropoietin receptor gene, the
Wilms’ tumor gene WT1, and BRCA2 gene (35–37).
However, both hHS4 and mHS2 disappeared upon differ-
entiation, suggesting that formation of these DHSs asso-
ciated with activation of the TERT promoters. Also,
mHS2 appeared to be linked to mTERT transcription
but not differentiation per se, as it was detected in both
proliferating and terminally differentiated M1 cells
(Figure 4C).
In most human cells, including HL60 and U937 cells,

transition from the nuclease-sensitive hCRR9 locus to the
condensed chromatin domain of hTERT locus occurs at

the 30 end of hCRR9 gene [(12) and Figures 5 and 6],
suggesting the presence of a chromatin boundary element
within this region. It was previously shown that an E-box
binding protein USF1 bound to the 50HS4 insulator of
b-globin domain and acted as a barrier by recruiting his-
tone modifying activities (38). Interestingly, at least two
DHSs (hHS5 and hHS6) were identified near the 30 end of
hCRR9 gene in HL60 cells. This region contained a
number of potential USF consensus sites and correlated
with histone hyperacetylation (data not shown). Thus, it
will be interesting to determine if hHS5 and hHS6 func-
tion as a barrier to prevent encroachment of heterochro-
matin from the condensed chromatin domain into the
hCRR9 gene.

In summary, our study demonstrated that the hTERT
gene was silenced upon cellular differentiation whereas the
mTERT expression was only moderately downregulated.
The hTERT locus, but not the mTERT gene, was
embedded in a condensed chromatin domain. The strong
hTERT repression in somatic cells was dependent on its
repressive chromatin environment and was not recapitu-
lated by transient transfection of the hTERT promoter.
In contrast, the regulation of the mTERT promoter was
relatively independent of its native chromatin structure
because transiently transfected mTERT promoter was
repressed during cell differentiation. Therefore, chromatin
environments of the hTERT and mTERT genes played an
important role in differential telomerase regulation in
human and mouse cells.
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