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Histoecology: Applying Ecological
Principles and Approaches to Describe
and Predict Tumor Ecosystem Dynamics
Across Space and Time
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Abstract
Cancer cells exist within a complex spatially structured ecosystem composed of resources and different cell types. As the
selective pressures imposed by this environment determine the fate of cancer cells, an improved understanding of how this
ecosystem evolves will better elucidate how tumors grow and respond to therapy. State of the art imaging methods can now
provide highly resolved descriptions of the microenvironment, yielding the data required for a thorough study of its role in tumor
growth and treatment resistance. The field of landscape ecology has been studying such species-environment relationship for
decades, and offers many tools and perspectives that cancer researchers could greatly benefit from. Here, we discuss one such
tool, species distribution modeling (SDM), that has the potential to, among other things, identify critical environmental factors that
drive tumor evolution and predict response to therapy. SDMs only scratch the surface of how ecological theory and methods can
be applied to cancer, and we believe further integration will take cancer research in exciting new and productive directions.
Significance: Here we describe how species distribution modeling can be used to quantitatively describe the complex rela-
tionship between tumor cells and their microenvironment. Such a description facilitates a deeper understanding of cancers eco-
evolutionary dynamics, which in turn sheds light on the factors that drive tumor growth and response to treatment.
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Introduction

The fate of a cancer cell depends on its ability to survive and

replicate in its local microenvironment. If local conditions are

inhospitable, there is Darwinian selection for cells that can either

remodel the microenvironment, or adapt to hostile conditions.

Remodeling may come in many forms, such as promoting angio-

genesis or suppressing immune attack, while adaptation to hos-

tile environments may include evolving the ability to tolerate

high levels of acid, or “hiding” from predatory cytotoxic T-cells.

In both cases, the dialog between cancer cells and the microen-

vironment can generate spatial heterogeneity, wherein cancer

cells survive within distinct ecological niches.

The tumor microenvironment can be quantitatively

described in great detail using a variety of modalities, including
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immunohistochemistry (IHC), immunofluorescence (IF), Mag-

netic resonance imaging (MRI), positron emission tomography

(PET), and fluorescence in situ hybridization (FISH).1 How-

ever, despite the high quality and resolution of the data, tumors

are typically described in terms of individual cell type abun-

dances and, while the importance of space is often acknowl-

edged, analysis of spatial heterogeneity is rare. Furthermore,

little is understood about the dynamic aspects of these spatial

relationships as current quantitative technologies are often

destructive in nature. This is unfortunate, as a more dynamic

and spatial view of cell-cell and cell-environment relationships

has the potential to reveal how tumors adapt and survive, under

diverse changing environments, which in turn may provide

insights into how to control or eliminate tumors.

In ecological terms, the collection of various interacting cell

types and environmental factors (e.g. oxygen, glucose, acid,

growth factors, cytokines) that make up a functional tissue and

dysfunctional tumor would be described as an ecosystem. The

field of landscape ecology has been studying such multi-scale,

high-dimensional, and spatially heterogeneous systems for

decades.2,3 It is almost certain that cancer researchers will ben-

efit from the approaches that have been, and continue to be,

developed by landscape ecologists. In particular, ecologists

have developed a wide variety of approaches to describe eco-

systems. Adopting methods developed to describe scaling rela-

tionships, spatial landscape patterns, and species-environment

relationships will allow cancer researchers to describe and

compare tumors as entities, as opposed to examining cell types

and environmental factors in isolation. Such an approach will

provide a more complete and holistic view of the tumor

ecosystem.

Of particular interest to the cancer community may be the

approaches landscape ecology has developed to describe and

predict how environmental factors determine the distribution of

species. These approaches go under many names, including

species distribution modeling (SDM), habitat suitability mod-

eling, and niche modeling. A frequent application of these

approaches is to determine which sort of environments support

a species of interest, typically with an eye on management. As

we will discuss in more detail below, if applied to cancer,

SDMs have the potential to reveal new risk factors, and predict

response to treatments.

Use of Habitat Models in Ecology

Species distribution modeling is a highly active field in ecol-

ogy. In 2013, it was estimated that approximately 1000 papers

with species distribution models were published each year.4

Some researchers use these models for the purpose of creating

spatially-explicit maps of suitable habitat, which can be applied

to managing threatened species, managing non-native invasive

species, or implementing other kinds of spatial planning. SDMs

are also used for identifying the environmental predictor vari-

ables that are most important for predicting the presence or

abundance of target species. More recently, researchers have

been applying SDMs to study changes in habitat suitability

through time; these models are applied retrospectively5 and

also to forecasting future changes.6

The ecological niche, a hypervolume in multivariate envi-

ronmental space that depicts a species’ environmental limita-

tions, is a central theme in SDMs.7 Models may be correlative

or mechanistic in nature.8 In a correlative approach to species

distribution modeling, field observations are used to statisti-

cally link species occurrence data with environmental data.

These models begin with geo-referenced observations of a spe-

cies and the environmental conditions (e.g., climate, soil) at

those sites. The environmental conditions where the species

is observed are inferred to be within that species’ tolerance

range, and other sites with similar conditions are assumed to

be similarly suitable. In contrast, mechanistic species distribu-

tion models differ from correlative models in that they

consider how the environment constrains physiological perfor-

mance.9 For example, the distribution of ectothermic (i.e.,

“cold-blooded”) species is limited by the range of temperatures

under which they can survive.10 Suitable micro-climates for

these species can be modeled in a spatially-explicit fashion

using information such as solar radiation, topography, and

vegetation cover.11

In addition to environmental variables, interactions with

other species can also influence a species’ habitat selection.

The presence of a mutualist might expand the environmental

range of a species into otherwise unsuitable habitat, as in the

case of some plants and their mutualistic mycorrhizal fungi.12

Conversely, the presence of competitors might restrict the dis-

tribution of a species beyond the limitations imposed by other

environmental variables, as was seen for grazing mammals on

African savannas.13 These interactions are known to be impor-

tant but aren’t often included in habitat models; they might be

particularly important for predicting future distributions under

scenarios of climate change.14

Many different mathematical approaches have been applied

to modeling species distributions. One early approach to SDMs

was logistic regression, including stepwise approaches to iden-

tify the best predictor variables.15 Since then, methods have

expanded to include classification and regression trees, genetic

algorithms, maximum entropy methods, Bayesian approaches,

and even agent-based models.16,17 A computer platform (BIO-

MOD) has been developed to compare and combine predic-

tions from multiple modeling approaches, called “ensemble

modeling.”18 A variety of SDM approaches can also be con-

ducted using the popular R programming language.19

Species distribution models can use 3 kinds of species data:

presence–absence, presence-background (if absences cannot be

confirmed), and occupancy-detection (which incorporates the

probability of detecting a species if it is present). The suitability

of a particular modeling approach depends on the type of data

that are available,20 Species distribution models also rely heav-

ily on environmental data derived from geographic information

science (GIS) and remote sensing.4 Species abundance models

(SAMs) can be used for the same purposes, but use abundance,

as discussed in21 SAMs may be a good option to study tumor

habitats, given that cell segmentation and phenotyping is often
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performed using histology, therefore making this type of data

somewhat easier to acquire.

Cancer Habitats

While much of cancer research has focused on quantifying the

disease through the genomic lens, viewing the tumor as an

ecosystem has been advocated for quite some time.22-31 This

perspective argues that, while (epi-)genetic mutation is the

source of variation, the environment is what imposes selection

pressures, and therefore supervenes on the genotype. Further-

more, a single phenotype (e.g. drug resistance) can be encoded

by multiple genotypes,32,33 therefore developing therapies

which target the phenotype, not the genotype, may have a much

greater impact. Before this can begin, however, a more detailed

understanding of tumor-microenvironment relationships is

required, especially if we hope to predict tumor eco-

evolutionary dynamics. Application of SDMs to the tumor

ecosystem presents an important opportunity to elucidate these

relationships.

Since tumor biopsies and scans are routinely collected, the

data required for SDMs is potentially both abundant and readily

accessible.1 Multiplex immunohistochemistry, immunofluor-

escence imaging mass cytometry, and cyclic multiplex immu-

nofluorescence (IF) can “stain” up to 37 and 50 cell markers on

the same tissue, respectively,34-36 providing a highly detailed

and spatially resolved description of the microenvironment.

RNA in-situ imaging methods, reviewed in,37 can provide key

information on cell behavior and phenotype, which can be an

important component of SDMs, particularly ABMs.17 MRI and

PET imaging have been used to define unique habitats within

the tumor, such as necrosis or areas of high proliferation.38,39

Combined, these imaging modalities quantify numerous envi-

ronmental variables, such as vasculature, hypoxia, acid, necro-

sis, growth factors, cytokines, etc . . . , that can predict the

distribution of various cell types, such as tumor cells or

immune cells.

Several studies have used the above imaging modalities to

study and describe the tumor niche. In prostate, brain, and

breast tumors, radiologically defined habitats have been used

to detect hypoxic and/or necrotic niche, a prognostic marker for

survival and response to treatment.40,41 Schürch et al. used the

CO-Detection by indEXing (CODEX) platform to define 9

distinct cellular neighborhoods using 56 different cell markers,

with the goal of developing a prognostic spatial signature of

anti-tumor immune response.42 The immunoscore, used as a

prognostic marker in colorectal cancer, is based on the numera-

tion of 2 lymphocyte populations in tumor core versus the

invasive margin43 In Gatenbee et al., several ecological meth-

ods were used to describe and compare the immune ecologies

Figure 1. Quadrat count data used to predict CD56 high regions of the tumor. PCK (Pan Cytokeratin) is a marker for tumor cells, and while it is
not used in the SDM, it is shown to put the rest of the markers into context. CD56 is a marker for natural killer (NK), activated CD8 T cells,
dendritic cells (DC); CA9 (carbonic anhydrase 9) and CA 12 are markers of hypoxia and low pH; IDO (Indoleamine 2,3-dioxygenase an
immunosuppressive factor; PD-L1 (programmed death-protein 1 ligand) and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) are
immune checkpoints; CD31 is a marker for endothelial cells; aSMA is a marker for cancer associated fibroblasts.

Gatenbee et al 3



of colorectal adenomas and carcinomas to better understand

what changes take place during the transition from benign to

malignant colorectal cancer.44 Further, computational models

have been used to simulate tumor-microenvironment eco-

evolutionary dynamics, often with a focus on examining how

the microenvironment shapes tumor evolution and response to

therapy (recently reviewed in.24,45

Potential Applications of Habitat Modeling
to Cancer

Species distribution models complement the current

approaches cancer researchers are taking to study the tumor

ecosystem. Because they are, at their core, statistical models,

SDMs can be used to determine which environmental factors

best predict the spatial distribution of cell types, such as tumor

cells or cytotoxic T-cells. This can be accomplished by using

information criteria to select the best SDM, revealing which

factors play the largest role in creating suitable tumor or

immune habitats.46 Such critical environmental factors may

then serve as potential therapeutic targets, which when

perturbed create inhospitable tumor habitats. Since habitats

directly affect the cell phenotype, creation of such inhospitable

habitats may have a larger impact on the tumor cells than

targeted therapies that focus on specifically mutated

populations.

SDMs are not limited to static snapshots, but are also

able to predict habitat suitability over time.47 Ecological

forecasting uses SDMs to predict what would happen to a

species distribution should the environment change. Figure

1 provides an illustrative example of how ecological fore-

casting using an SDM could be used to predict tumor

response to an immunotherapy that facilitates invasion of

cytotoxic T-cells into the tumor.

Since many primary tumors are resected during early treat-

ment, tumor biopsies tend to be one off opportunities. Even in

the metastatic setting, repeat biopsies are difficult to obtain,

therefore temporal data of this kind can be hard to come by.

However, tumor progression is often described in terms of

sequential stages, progressing from homeostatic to benign to

malignant to metastatic disease. Given tumors collected at dif-

ferent stages, temporal SDMs could potentially be used to

Figure 2. A Observed density of CD56. B Presence/absence map indicating high and low regions of CD56. C The trained SDM’s predicted
probabilities of CD56 high regions. D The overall influence each marker has on the SDM’s ability to predict the location of CD56 high regions. E
Response plot, showing how each marker influences the probability of there being a CD56 high region. Blues indicate the density of points, while
the red line shows the trend line fit using a generalize additive model.
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study progression, potentially revealing which factors are driv-

ing tumorigenesis.

Example Application

In the following example, we use an SDM to get a better

understanding of how the microenvironment shaped the

immune response in a non-smoker with squamous cell carci-

noma (SCC) of the head and neck. An increased understanding

of the dialog between the microenvironment and immune

response has potential significance for engineering effective

immunotherapies.

A slice from the patient’s biopsy was stained for 7 micro-

environmental makers and an immune marker, CD56 (Figure

1). CD56 is the archetypal marker for natural killer (NK) cells,

but is also found on other inflammatory cells, including gamma

delta (gd) T cells, activated CD8 T cells, and dendritic cells

(DCs).48 After undergoing co-registration and stain segmenta-

tion, each image, scanned at 40x magnification, was divided

into quadrats of 200 x 200 microns. Within each quadrat, the

density of each marker was calculated by dividing the number

of positive pixels by the quadrat area (in pixel units). The focus

of the SDM was to estimate the degree to which each environ-

mental factor affects the spatial distribution of CD56. As such,

we labeled each quadrat as being either CD56 high or CD56

low (Figure 2). A quadrat was considered CD56 high if its

CD56 density was greater than or equal to the 70th percentile

of CD56 densities in all quadrats (Figure 2B).

To estimate how the microenvironment determines the spa-

tial distribution of CD56 high regions, we fit a boosted regres-

sion tree (BRT) to the data, using the R package, dismo.49,50

The optimal model was found using cross-validation, and the

final model had an AUC (Area Under the Curve) ROC (Recei-

ver Operating Characteristics) score of 0.88. This value indi-

cates a fairly good fit to the data, as a value of 0.5 would mean

the prediction is as good as a random guess, while a value of 1

would indicate a perfect fit.

Examining the relative importance of each microenviron-

mental variable in predicting the presence of CD56 reveals that

CA9, a marker of hypoxia, is the dominant factor (Figure 2D).

One can determine how each marker affects the distribution of

CD56 high regions by examining the marker response func-

tions, which show how the probability of a CD56 high region

changes with marker density (Figure 2E). Here, the probability

of a CD56 high region increases dramatically with CA9. Both

of these observations are in line with experimental observations

that hypoxia can favor the recruitment and survival of CD56
bright NK cells.51

This example illustrates how one might use an SDM to

better understand how, and to what degree, the components

of the microenvironment sculpt the anti-tumor immune

response. However, application of SDMs to larger set of sam-

ples and markers would be needed to make more general pre-

dictions and gain further insights.

Conclusions

Oncology needs ecology. Imaging provides an overwhelming

amount of multidimensional data, similar to what the field of

landscape ecology has been working with for decades. The

toolsets and approaches developed by ecologists can and

should be adopted by cancer researchers to better describe and

understand the tumor as a complex evolving system. The field

of ecology may also benefit by investigating the tumor ecosys-

tem. Due to the large amounts of available data, sophisticated

experimental designs, and computational/mathematical models

and theory, ecological studies of tumors may also be used to

study fundamental ecological phenomenon, such as niche engi-

neering, or succession.

While the evolutionary nature of cancer (initiation, progres-

sion and treatment) is becoming more readily accepted, the

importance of viewing cancer through the lens of ecology still

remains in its infancy. Here we have only scratched the surface

of where landscape ecology can contribute to oncology, with-

out a doubt there is so much more. As technology continues to

enhance how we can measure cancer, not only at the genomic

scale but across multiple spatial and temporal scales, the impor-

tance of cancer ecology will only continue to grow.
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