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Abstract: Phosphoinositides (PIs) play important roles in the structure and function of the brain.
Associations between PIs and the pathophysiology of schizophrenia have been studied. However,
the significance of the PI metabolic pathway in the pathology of schizophrenia is unknown. We
examined the expression of PI signaling-associated proteins in the postmortem brain of schizophrenia
patients. Protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma
(PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA, also known as PIK4A), phosphatase and
tensin homolog deleted from chromosome 10 (PTEN), protein kinase B (Akt), and glycogen synthase
kinase 3β (GSK3β) were measured using enzyme-linked immunosorbent assays and multiplex
fluorescent bead-based immunoassays of the prefrontal cortex (PFC) of postmortem samples from 23
schizophrenia patients and 47 normal controls. We also examined the association between PIK4CA
expression and its genetic variants in the same brain samples. PIK4CA expression was lower, whereas
Akt expression was higher, in the PFC of schizophrenia patients than in that of controls; PIP5K1C,
PTEN, and GSK3β expression was not different. No single-nucleotide polymorphism significantly
affected protein expression. We identified molecules involved in the pathology of schizophrenia
via this lipid metabolic pathway. These results suggest that PIK4CA is involved in the mechanism
underlying the pathogenesis of schizophrenia and is a potential novel therapeutic target.

Keywords: phosphoinositides; phosphatidylinositol 4-kinase alpha; protein kinase B; schizophrenia;
postmortem brain; prefrontal cortex; multiplex immunoassay

1. Introduction

It is crucial to overcome schizophrenia because of its high prevalence, poor social
prognosis, and considerable socio-economic cost [1]. However, as biological diagnostic
indicators of schizophrenia have not been determined, the condition is still diagnosed
symptomatically in clinical practice. Moreover, the treatment methods for schizophrenia
are limited, and the outcomes of treatment, including improved social functioning, are not
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sufficient. Therefore, it is essential to elucidate the biological pathology of schizophrenia
and develop new therapeutic methods.

The pathology of schizophrenia involves changes in the brain, and total lipids make
up half of the brains dry weight. Moreover, approximately 60% of total lipids are phos-
pholipids [2–4], which are amphipathic molecules that form a lipid bilayer and are the
main component of biological membranes. Phospholipids are classified into glycerophos-
pholipids and sphingophospholipids based on their backbone. Among the glycerophos-
pholipids, some are abundant in the cell membrane, such as phosphatidylcholine, phos-
phatidylethanolamine, phosphatidylserine, and phosphatidylinositol (PI) [5,6] (Figure 1A).
Phosphoinositides (PIs), a collective term for PI and its phosphorylated derivatives, are
involved in intracellular signal transduction as substrates for second messenger production
(Figure 1A,B). Additionally, they localize target proteins to biological membranes by bind-
ing to their specific binding motifs. Structurally, fatty acid residues are bound to the C1
and C2 positions of the glycerol backbone of PI, and inositol, which can be phosphorylated
at positions 3, 4, and 5 to produce PIs, is bound via the phosphate at the C3 position.
More than 240 PIs have been identified in vivo as more than 30 combinations of fatty acid
residues and eight phosphorylation states are possible [7,8].
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Phospholipids play a crucial role in the structure and function of the brain [6]. They 
are degraded by several classes of phospholipases and act as second messengers in sig-
naling pathways in neural and glial cells [9]. Therefore, adequate phospholipid produc-
tion is essential for normal brain function, and alterations may be associated with the 
pathophysiology of schizophrenia [5] (Figure 2). Studies have focused on the relationship 
between schizophrenia and lipids since the 1970s, when researchers suggested that the 
prostaglandins synthesized from phospholipids are associated with schizophrenia [10,11]. 
Multiple studies have shown decreased levels of polyunsaturated fatty acids in the cell 
membrane of red blood cells from patients with schizophrenia, and this discovery has 
been confirmed by meta-analyses [12,13]. However, because a Cochrane review [14] indi-

Figure 1. (A). Structure of phosphatidylinositol (PI). PI is composed of fatty acid residues attached
to the C1 and C2 positions of the glycerol backbone, and inositol is attached via phosphate at
the C3 position. The hydroxyl groups at positions 3′, 4′, and 5′ of the inositol head can undergo
additional phosphorylation. As there are more than 30 different combinations of fatty acid residues
and 8 different phosphorylation states are possible, there are more than 240 molecular species of PI
in vivo. (B). Schematic diagram of phosphoinositide signaling and associated proteins analyzed in
this study.

Phospholipids play a crucial role in the structure and function of the brain [6]. They
are degraded by several classes of phospholipases and act as second messengers in sig-
naling pathways in neural and glial cells [9]. Therefore, adequate phospholipid produc-
tion is essential for normal brain function, and alterations may be associated with the
pathophysiology of schizophrenia [5] (Figure 2). Studies have focused on the relationship
between schizophrenia and lipids since the 1970s, when researchers suggested that the
prostaglandins synthesized from phospholipids are associated with schizophrenia [10,11].
Multiple studies have shown decreased levels of polyunsaturated fatty acids in the cell
membrane of red blood cells from patients with schizophrenia, and this discovery has been
confirmed by meta-analyses [12,13]. However, because a Cochrane review [14] indicated
that the clinical effects of polyunsaturated fatty acid administration for schizophrenia have
been inconsistent among studies, it was suggested that alterations in fatty acid levels are
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not the main contributor to the pathophysiology of schizophrenia. Instead, to elucidate the
cause of schizophrenia, researchers need to focus on phospholipids, which are the main
source of lipid signaling-associated fatty acids in the brain tissue [15].
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Figure 2. Schematic diagram of the association between phosphoinositides (PIs) and pathophysiology
of schizophrenia. PIs are one of the components that make up the cell membrane of neurons. PIs
also function as second messengers for neurotransmitter signaling. The signaling of dopamine,
serotonin, and glutamate, which is associated with schizophrenia, converges with the activation
of phospholipase C (PLC) and the production of inositol trisphosphate (IP3) and diacylglycerol
(DAG) as second messengers from PIs. In schizophrenia, genetic vulnerability and environmental
factors may lead to functional impairment in multi-neurotransmitter systems through structural and
functional dysfunction of PIs.

Indeed, many studies of lipid analysis using postmortem brain tissues from patients
with schizophrenia have been conducted by using various analytical technologies such as,
magnetic resonance spectroscopy [16,17], high performance liquid chromatography [18,19],
and gas chromatography [20,21]. However, most of these studies could not measure PIs
with specific fatty acid combinations. In our previous studies using liquid chromatography-
electrospray ionization mass/mass spectrometry and imaging mass spectrometry [22,23],
we showed that although the levels of most phospholipid molecular species in the post-
mortem prefrontal cortex (PFC) were not different between subjects with schizophrenia and
controls, the levels of some species were lower in the PFC from patients with schizophrenia
than in that from controls.

However, the metabolic pathway of PIs is complex and, currently, its association
with the pathophysiology of schizophrenia is unknown. In this study, we investigated
the expression of proteins involved in the phosphorylation/dephosphorylation of PIs
and the subsequent signal transduction pathway in the postmortem brain of patients
with schizophrenia. Specifically, in the PFC, we analyzed the protein expression of phos-
phatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol
4-kinase alpha (PIK4CA), and phosphatase and tensin homolog deleted from chromosome
10 (PTEN) as upstream, midstream, and downstream enzymes of the metabolic pathway
of PIs. PIP5K1C belongs to a family with three members. Among them is the PIP5K1C
that was studied here, which is predominantly expressed in the brain [24,25]. The PIP5K1C
(PIP5Kγ) has three splicing variants, PIP5Kγ635, PIP5γ661, and PIP5Kγ687, but in this
study we measured total protein levels of PIP5Kγ including all three variants without
distinguishing between splicing variants. We also measured the protein expression of
protein kinase B (Akt1) and its downstream factor, glycogen synthase kinase 3β (GSK3β),
because phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3), one of the fully phospho-
rylated PIs, activates Akt by recruiting it to the plasma membrane, thereby allowing its
phosphorylation by 3-phosphoinositide-dependent protein kinase 1 and mechanistic tar-
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get of rapamycin complex 2 on Thr308 and Ser473, which are important for its catalytic
activity [26]. Moreover, we examined the relationship between the expression levels and
gene polymorphisms (single-nucleotide polymorphisms [SNPs]) of PIP5K1C, PI4KA, PTEN,
and GSK3B.

2. Results
2.1. Expression of Phospholipid Signaling-Associated Molecules in PFC of Patients with
Schizophrenia and Controls

The PIK4CA level in the PFC was significantly lower in patients with schizophrenia
than in controls (p = 0.01, Figure 3A). The levels of PIP5K1C and PTEN in the PFC did
not differ significantly between the groups (Figure 3B,C). The level of Akt in PFC was
significantly higher in patients with schizophrenia than in controls (p < 0.01, Figure 4A),
whereas the levels of GSK3β did not differ significantly between the groups (Figure 4B). In
the PFC of patients with schizophrenia, there was no significant correlation between the
PIK4CA expression level and chlorpromazine equivalent dose (CPZeq; Table 1); the Akt
level in PFC was also not correlated with CPZeq.
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Figure 4. Expression levels of proteins downstream of phosphoinositide signaling pathway in the
prefrontal cortex of patients with schizophrenia and controls. (A): Akt1, (B): GSK3β. Means ± SD are
shown as bars and whiskers. * p < 0.05.

Table 1. Correlations between potential confounding factors (DOI and CPZeq) and protein expres-
sion levels.

DOI CPZeq

Spearman’s Rank Test Spearman’s Rank Test

PIK4CA (µg/mg) rs = −0.18 (p = 0.47) rs = 0.13 (p = 0.57)
PIP5K1C (µg/mg) rs = −0.28 (p = 0.25) rs = −0.11 (p = 0.65)

PTEN (µg/mg) rs = −0.11 (p = 0.66) rs = 0.32 (p = 0.19)
Akt (µg/mg) rs = −0.14 (p = 0.58) rs = 0.26 (p = 0.28)

GSK3β (µg/mg) rs = −0.08 (p = 0.75) rs = 0.23 (p = 0.35)
Spearman’s rank correlation coefficients (rs) and p-values are listed. DOI: duration of illness, CPZeq: chlorpro-
mazine equivalent dose.
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2.2. Analysis of mRNA/Protein Expression Correlation of PIK4CA and Akt1

To confirm whether the expression levels of PIK4CA and Akt1 proteins are regulated
by mRNA expression levels, we analyzed the correlation between mRNA and protein
expression of PIK4CA and Akt1. There was no significant correlation between mRNA and
protein expression for either PIK4CA or Akt1 (Figures 5 and 6).
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patients with schizophrenia. Spearman’s correlation coefficient (rs) and p value are indicated. The
lines indicate the correlation trend.

2.3. Effects of Phospholipid Signaling-Associated Molecule Genotype on Their Protein Expression

We focused on SNPs of PI4KA, the gene that encodes PIK4CA, and compared the
protein expression levels with the genotypes of these SNPs. Among 32 SNPs of PI4KA
included in the chip, four (rs165634, rs165793, rs2072517, and rs4822606) were retrieved for
the analysis based on the criteria described in Section 4. We did not identify any SNPs that
significantly affected the expression of proteins investigated in this study (Figure 7).
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Figure 7. (A). Linkage disequilibrium map of PI4KA locus, the gene encoding PIK4CA protein show-
ing the four SNPs (rs165634, rs165793, rs2072517, and rs4822606) analyzed in this study. For linkage
disequilibrium analysis, we used the Japanese healthy controls in the database of the 1000 Genomes
Project. Haploblocks were drawn using Haploview v.4.2 software with standard color scheme.
(B). The allele frequencies of each SNPs of PI4KA. (C). The effect of SNPs variants of PI4KA on the
protein expression of PIK4CA. The expression levels of proteins were compared between groups
using the Mann–Whitney U-test.
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3. Discussion

Our study is the first analysis of the expression levels of enzymes associated with the
metabolic pathway of PIs in the postmortem brains of patients with schizophrenia. We
showed that the expression levels of PIK4CA were significantly lower in the PFC of patients
with schizophrenia than in controls. Among the molecules examined in this study, the pro-
tein expression of PIK4CA, located upstream of the metabolic pathway of PIs, was altered
in patients with schizophrenia, but there was no change in the expression of molecules
located downstream. Additionally, among molecules related to the signaling pathway of
PIs, the expression of Akt was significantly higher in patients with schizophrenia than in
controls, but the expression of GSK3β was unchanged. We also examined the association
between the expression of PIK4CA and its 32 SNPs in postmortem brain samples but did
not identify any SNPs that significantly affected protein expression.

PIs affect the regulation of the actin cytoskeleton and contribute to the formation
of dendritic spines and development of synapses in nerve tissue [27]. As disturbances
during neurodevelopment are implicated in the etiology of schizophrenia, it is supposed
that PIs are involved in its pathophysiology. However, it is assumed that there are more
than 240 molecular species of PIs in vivo as there are at least 30 combinations of fatty
acid residues and eight phosphorylation states [7,8] (Figure 1A). Therefore, it was thought
necessary to first focus on the processes related to phosphorylation in order to obtain a
complete picture of this pathway. Then, in this study, we investigated the expression of
PIP5K1C, PIK4CA, and PTEN, which are enzymes involved in the metabolic pathway of
PIs. In detail, PIK4CA phosphorylates PI to produce phosphatidylinositol 4-phosphate
(PI(4)P), a phosphatidylinositol 1 phosphate (PIP1), and PIP5K1C phosphorylates PI(4)P
to produce phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a PIP2; meanwhile, PTEN
dephosphorylates PIP3 to produce PI(4,5)P2 (Figure 1B). In this way, the molecules analyzed
in this study are involved upstream, midstream, and downstream of the metabolic pathway
of PIs, respectively [7,28]. Our results indicate that further detailed analyses should focus
on the molecules upstream of this complex lipid metabolic pathway.

Considering their role as precursors of two critical second messengers, inositol
trisphosphate (IP3(1,4,5)) and diacylglycerol (DAG), PIs are pivotal phospholipids [7,29]
(Figure 1B). IP3(1,4,5) and DAGs are produced from PI(4,5)P2 by phospholipase C (PLC).
PLCβ-1-knockout mice exhibit a schizophrenia-like phenotype, with an increased incidence
of adult hippocampal neurogenesis [30], and deletions of PLCβ-1 have been observed in
the orbitofrontal cortex of patients with schizophrenia [31]. Therefore, we assume that the
lower PIK4CA level located upstream of this pathway might be related to the pathogenesis
of schizophrenia through decreased DAG or IP3(1,4,5)-mediated signaling activity. More-
over, PI(4,5)P2, produced by the enzymatic function of PIK4CA, interacts with proteins
involved in membrane transport. In detail, PI(4,5)P2 plays a pivotal role in membrane
trafficking and the regulation of synaptic and dense core vesicle exocytosis, namely glu-
tamate and dopamine release [28], which are the main etiological neurotransmitters of
schizophrenia. Interestingly, lithium carbonate, which has been used to augment antipsy-
chotics in the treatment of schizophrenia [32], affects the synthesis of PIP2 and subsequent
generation of IP3(1,4,5) and DAG [33]. Taken together, decreased PIK4CA levels might be
associated with the etiology of schizophrenia, and this protein seems to be a promising
therapeutic target.

The locus of PI4KA is located on chromosome 22q11, which has been suggested to be
strongly associated with schizophrenia. In a Dutch genetic association study of 310 cases
and 880 controls, association analysis of 138 myelin-related genes using 771 SNPs demon-
strated that SNPs of PI4KA are the SNPs most significantly associated with schizophre-
nia [34]. This result, that PI4KA SNPs are associated with schizophrenia, has been recon-
firmed in several studies [35,36], but not in Japan [37]. Among the PI4KA SNPs associated
with schizophrenia, only one, rs165793, was included in our current study, but it did not
have a significant effect on PIK4CA protein expression in the postmortem brain.
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Additionally, in this study, we elucidated that the protein expression of Akt was
significantly higher in the postmortem PFC of patients with schizophrenia than in that
of controls. Several previous studies have shown that the levels of Akt protein and phos-
phorylated Akt are decreased significantly in postmortem brain tissue of patients with
schizophrenia [38,39]. However, one study reported that the phosphorylated/total Akt
ratio does not differ between patients with schizophrenia and controls [40]; we also ob-
served this in our previous study, which showed that the level of phosphorylated Akt
was increased in the PFC of patients with schizophrenia [41]. However, there were many
reports that the protein expression level of Akt decreased in the postmortem brain with
schizophrenia, including a very recent article [42], which was not consistent with the results
of our study. On the other hand, we have found that there are gene polymorphisms that
have opposite effects on molecular expression in the brain between Japanese and Cau-
casians [43], and it is possible that opposite patterns of molecular expression in the brain
appear depending on race or ethnicity. In any case, the protein expression results obtained
in this study need to be validated using pairwise matched cohorts and by other methods
such as Western blotting. While our results were not in accordance with the published
literature, it seems that Akt expression was altered in the brain of patients with schizophre-
nia. Moreover, as PI(3,4,5)P3 activates Akt by recruiting it to the plasma membrane, it is
possible that lower PIK4CA levels impact Akt signaling, and dysfunction of this pathway
may be a mechanism of schizophrenia pathology.

Meanwhile, we did not show significant correlation between mRNA and protein
expression for either PIK4CA or Akt1. Postmortem analyses of the brains of patients with
schizophrenia have extensively investigated the expression levels of mRNA. Even though
alterations in mRNA expression likely relate to certain biological phenomena or disease,
changes in mRNA levels do not always reflect those in protein levels, which in turn directly
determine physiological activities. From the point of view of drug discovery, elucidating
levels of protein expression is important for choosing novel molecular targets in drug
development. Additionally, it would be very interesting to examine what happens by
activation of the proteins measured in this study and so this will be considered a top
priority for the next target of our research.

This study, conducted using brain tissues, has some limitations that need consideration.
First, disease-related confounding factors, including drugs administered antemortem, may
have affected protein expression. Although we did not observe any effects of clinical factors,
including duration of illness (DOI) and daily dosage of antipsychotic or anticholinergic
drugs, on the levels of protein expression, additional animal studies are required to examine
the effects of these factors on protein expression in the postmortem brain. Second, our
postmortem sample size was relatively small, particularly for a genetic association study.
Therefore, the results of this study have to be confirmed by a postmortem examination
of a larger cohort. Lastly, since the subjects diagnosed with schizophrenia studied here
were not pair matched with comparison subjects by sex, age, and PMI, the results of the
statistical analysis should be treated with caution. In the next phase, we need to validate
the results in this study with a pairwise matched cohort.

4. Materials and Methods
4.1. Human Postmortem Brain Tissue

Postmortem brain tissue samples from patients with schizophrenia and control sub-
jects were obtained from Fukushima Brain Bank at the Department of Neuropsychiatry,
Fukushima Medical University; Brain Research Institute, Niigata University; and Choju
Medical Institute Fukushimura Hospital, Toyohashi as described previously [41]. The use
of postmortem human brain tissues was approved by the ethics committees of Fukushima
Medical University, Niigata University, and Fukushimura Hospital, and complied with the
Declaration of Helsinki (revision in 2013) and its later amendments. All procedures were
carried out with the informed written consent of the next of kin. Detailed demographic
information of brain tissues from the 23 subjects with schizophrenia and 47 control subjects
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used in this study is summarized in Table 2. The patients with schizophrenia fulfilled the
diagnostic criteria established by the American Psychiatric Association (Diagnostic and
Statistical Manual of Mental Disorders: DSM-IV). For patients with schizophrenia, the
daily dose of antipsychotics prescribed during the 3 months immediately preceding death
is shown as the CPZeq (mg/day; Table 2).

Table 2. Demographic information and clinical characteristics of patients with schizophrenia and
matched controls.

Variables Controls Schizophrenia p-Value

Number of samples 47 23
Gender
Female 21 9 0.28 b

Male 26 14
Race
Asian 47 (100%) 23 (100%)

Age at death a (years) 75.5 (SD 15.8) 69.2 (SD 10.7) 0.05 d

PMI a (hour) 12.0 (SD 16.3) 16.8 (SD 11.9) 0.21 c

DOI (years) 40.4 (SD 15.0)
CPZeq (mg/day) 528.3 (SD 647.3)

PMI: postmortem interval, DOI: duration of illness, CPZeq: chlorpromazine equivalent dose, SD: standard
deviation; a Data are reported as mean ± standard deviation; b χ2-test; c Student’s t-test; d Welch’s t-test.

4.2. Protein Expression Analysis by Enzyme-Linked Immunosorbent Assay (ELISA) and
Multiplex Assay

Pieces of gray matter tissue (weighing approximately 100 mg) from Brodmann area 10
in the PFC were isolated from frozen brains. These frozen brain tissues were suspended
in 100 µL of 2% sodium dodecyl sulfate (SDS) solution, incubated for 20 min at room
temperature (approximately 20 ◦C), subjected to three cycles of freeze on dry ice and thaw
in water bath, and sonicated for 10 min. Then, the samples were diluted in phosphate
buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.76 mM KH2PO4) to
ensure that the final concentration of SDS was below 0.2%. After centrifugation (10,000× g
for 3 min at 4 ◦C), total protein concentration in the supernatant was measured using
the Bradford method (Bradford protein assay kit, Bio-Rad Laboratories, Hercules, CA,
USA) with bovine serum albumin as the standard. The expression of proteins was de-
termined by using commercial ELISA kits (SEG843Hu, Cloud Clone Corp, Houston, TX,
USA for PIK4CA and MBS282297, MyBioSource, San Diego, CA, USA for PIP5K1C) and
multiplex fluorescent bead-based immunoassay kits (MAPmateTM 46-678MAG for PTEN,
46-675MAG for Akt/PKB, and 46-689MAG for GSK3β; Merck Millipore, Tokyo, Japan).
The analysis was performed according to the manufacturer’s protocols. The expression
levels of each protein were normalized against the total protein concentration.

4.3. DNA Collection and SNP Genotyping

Genomic DNA was extracted from the frozen cerebellum or occipital cortex and geno-
typing was performed using HumanCoreExome -24 v1.0 Beadchip on an iScan system
(Illumina, Tokyo, Japan) as described previously [39]. For association analysis between
SNPs and protein expression, we excluded SNPs with call rates < 99%, minor allele fre-
quencies < 5%, and Hardy–Weinberg equilibrium test p-values < 0.05.

In order to examine the relationship between the selected SNPs, Linkage disequi-
librium analysis using Japanese healthy controls in the 1000 Genomes Project database
(https://www.internationalgenome.org/, accessed on 29 April 2021) was performed.
Haploview v.4.2 software (https://www.broadinstitute.org/haploview, accessed on 29
April 2021) was used for this analysis.

https://www.internationalgenome.org/
https://www.broadinstitute.org/haploview
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4.4. RNA Collection and mRNA Sequencing

Total RNA was isolated from PFC of frozen brain using AllPrep DNA/RNA Mini Kit
(Quiagen, Tokyo, Japan). RNA purity was evaluated by the RNA integrity number (RIN)
determined using the Agilent 2200 TapeStation (Agilent, Santa Clara, CA, USA). The polyA
fraction was isolated from total RNA, followed by its fragmentation. Then double-stranded
(ds) cDNA was reverse transcribed from fragmented mRNA. The ds cDNA fragments
were processed for adaptor ligation, size selection (for 200 bp inserts) and amplification
to generate cDNA libraries. Prepared libraries were subjected to paired-end 2 × 101 bp
sequencing on the HiSeq 4000 platform, using HiSeq 3000/4000 SBS Kit.

4.5. Statistical Analysis

Demographic variables (sex, age, and postmortem interval) were compared between
groups using the χ2-test and Student’s and Welch’s t-tests. The expression levels of proteins
were compared between groups using the Mann–Whitney U-test. We also performed
Spearman’s rank correlation analysis to investigate the correlation between parameters,
namely DOI and CPZeq, and protein expression levels. We also conducted Spearman’s
rank correlation test for correlation analysis of mRNA and protein expression. To study the
association between SNPs and protein expression, we divided all samples into minor allele
carriers and non-carriers for each SNP. The Mann–Whitney U-test was used to compare the
levels of protein expression between the genotypes of each SNPs. For all test, p < 0.05 was
considered significant. SPSS ver. 25.0 (SPSS, Chicago, IL, USA) and SigmaPlot ver. 14.0
(Systat Software Inc., San Jose, CA, USA) were used for all analyses.

5. Conclusions

In conclusion, our results show that the expression of PIK4CA, located upstream of the
metabolic pathway of PIs, was lower in the postmortem PFC of patients with schizophrenia
than in that of control subjects, which was accompanied by altered Akt expression in the
signaling pathway. Our results reflect the potential molecular mechanisms underlying the
pathophysiology of schizophrenia and may result in the development of a novel therapeutic
agent.
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