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Phylogenetic analysis 
of mutational robustness 
based on codon usage supports 
that the standard genetic 
code does not prefer extreme 
environments
Ádám Radványi1* & Ádám Kun2,3,4

The mutational robustness of the genetic code is rarely discussed in the context of biological diversity, 
such as codon usage and related factors, often considered as independent of the actual organism’s 
proteome. Here we put the living beings back to picture and use distortion as a metric of mutational 
robustness. Distortion estimates the expected severities of non-synonymous mutations measuring 
it by amino acid physicochemical properties and weighting for codon usage. Using the biological 
variance of codon frequencies, we interpret the mutational robustness of the standard genetic 
code with regards to their corresponding environments and genomic compositions (GC-content). 
Employing phylogenetic analyses, we show that coding fidelity in physicochemical properties can 
deteriorate with codon usages adapted to extreme environments and these putative effects are not 
the artefacts of phylogenetic bias. High temperature environments select for codon usages with 
decreased mutational robustness of hydrophobic, volumetric, and isoelectric properties. Selection at 
high saline concentrations also leads to reduced fidelity in polar and isoelectric patterns. These show 
that the genetic code performs best with mesophilic codon usages, strengthening the view that LUCA 
or its ancestors preferred lower temperature environments. Taxonomic implications, such as rooting 
the tree of life, are also discussed.

The origin of translational apparatus and the genetic code is amongst the greatest conundrums of Life1. Its fun-
damental challenge is to uncover the constraints, historical accidents, and evolutionary driving forces that could 
have shaped the standard codon table. The current views propose the general mechanisms of (1) stereochemical 
affinity between codons and attributed amino acids (stereochemical theory2,3), (2) coevolution between the 
biosynthetic paths of amino acids and cognate codons (coevolution theory4,5), and (3) minimization of transla-
tion errors (adaptive, physicochemical or error minimization theory6,7) as possible explanations for the overall 
structure of the standard genetic code. Here, we focus and expand on the third one.

Although these existing hypotheses for the development of the genetic code are still hotly debated (including 
other theories, see other reviews8,9 for a recent overview of the field), the scientific community tends to agree on 
that the code is robust to mutations because its structure reduces the deleterious effects of translational errors. 
The error minimization theory proposes that the universal genetic code was shaped under selective forces that 
made the code at least partly optimized for fidelity in the physicochemical properties of mutated amino acids 
(or such aspects played a role during its development). With a few notable exceptions showing that the code 
can be locally improved with codon reassignments10,11, several studies have pointed out that the overwhelming 
portion of random alternative genetic code structures have inferior error capacities, leading to the argument 
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of “optimality” of the standard genetic code6,7,12. The basis for these comparisons is the average fitness cost of 
replacing one amino acid with another due to mutation, measured on a scale of some physicochemical property 
(e.g. hydrophobicity or polarity).

Unfortunately, this is only one piece of the puzzle, because the majority of analyses operate under the implicit 
assumption that codons occur in a uniform distribution, which fails to address the possible variance in codon 
usage and its effect on robustness13,14. In contrast to this, a large body of studies has shown that adaptions to 
special environments and lifestyles, such as high salinity or extremely high temperatures, select for characteristic 
amino acid and codon compositions due to their special physicochemical requirements with regards to protein 
structure15–25. Also, there is an obvious correspondence between codon usage frequencies and GC-content21,26,27. 
The latter is associated with specific environments and lifestyles28,29 and mutational bias30–32.

Being aware of these facts, one can narrow the question further: Supposing that the universal genetic code is 
optimized for mutational robustness, in what condition does it have maximal efficiency? We could argue that it 
was the most likely environment to witness the final mappings between amino acids and their respective codons.

The information theoretic measure of distortion33,34 is a suitable concept to study the structure and “environ-
mental behaviour” of the standard genetic code. In this framework, distortion is the expected average effect of 
mutations on the level of amino acid physicochemical properties, given a distribution of codon usage. It contains 
the same essentials as previous measures of code performance: (1) the estimate for the cost of faulty translation 
(one amino acid replaced by another), usually based on some physicochemical trait (e.g. hydrophobicity), and 
(2) the estimated probability of such translation errors being the result of a code in question. However, unlike 
conventional error definitions, distortion builds in a third term (3) by weighting for codon usage. Then, supple-
mented with a simple “background mutation model” (see “Methods” section), one can use distortion to compare 
the mutational robustness of codon usage profiles associated with different environments.

A previous study (Radványi and Kun, submitted) has suggested that extremophile codon usages might lead 
to diminished mutational robustness compared to that of mesophiles. Consequently, in thermophiles, the aver-
age effect of mutations, that is the distortion in physicochemical properties on the level of amino acids, was 
estimated to be greater than in mesophiles. Similar were the implications with regards to the GC-content of the 
coding region, implying a universal AT-bias. In that analysis, phylogenetic bias was not accounted for. Here we 
show that our result remains robust to taxon sampling.

Methods
Data.  For codon usage profiles, we used the Uniprot Reference Proteome database within UniProtKB35. A 
Python script was used on the corresponding mRNAs to calculate nucleobase and codon distributions along 
with the distortion measures for each organism. This data was cross-referenced with optimal environmental 
conditions via NCBI Taxonomy ID-s36. The environmental data for optimal growth temperature, pH, and salt 
concentration were obtained from the BacDive database37. S16 rRNAs were retrieved from the 16S RefSeq 
Nucleotide38 sequence records. Sequences were aligned using MUSCLE39. The final dataset contained 64 taxa (8 
archaeal and 56 bacterial), representative of the molecular diversity in each domain.

Phylogenetic tree construction.  We used Beast v1.10.440 for a Bayesian analysis. The S16 rRNA phyloge-
netic tree was built from the 64-sequence alignment with a GTR​41 model, a gamma law with eight categories and 
an estimated proportion of invariant sites, using default priors, and an uncorrelated relaxed clock. Chains were 
run for 50,000,000 generations and samples were collected in each 1000 generations. The analysis in Tracer42 
demonstrated a good mixing of the chains. A burn-in of 5,000,000 samples was discarded, and a maximum clade 
credibility tree was computed from the remaining samples (Supplementary Data S1 online).

Distortion as a measure of mutational robustness.  In order to provide a practical measure for the 
error-rate of mistranslation and point-mutations, the information theoretic concept of distortion (Eq. 1)33,34 is 
used to estimate the average effect (cost per symbol) of mutations given a source distribution of codons and the 
uncertainty of the code resulting from noise, i.e. the probability of codon ci mutating into cj (see next section 
about background mutation model). Another important element of distortion is the distortion matrix, which 
reflects the underlying genetic code and corresponding physicochemical properties. This distortion matrix is 
essentially identical with matrices widely used in other studies, summarizing the errors of one amino acid mutat-
ing into another6,7. Distortion matrix with elements d(aai,aaj) specifies the distortion associated with mistaking 
the encoded symbol aai (amino acid) in the source (X) and reproducing it as aaj in the reproduced copy (Y). We 
define d

(

aai , aaj
)

= 0 if aai = aaj , that is, ci and cj codes for the same amino acid.

Distinct distortion matrices were defined to provide different physicochemical measures of robustness. We 
decided to use properties made available by Haig and Hurst7. These include polar requirement, hydropathy, 
molecular volume and isoelectric point, yielding four different measures of code performance, denoted as DHyd, 
DPol, DVol, DpI (Supplementary Data S2 online).

Background mutation model.  The conditional probabilities P(Y = cj | X = ci) are the result of random 
mutations appearing in the genome and describe the chance of codon ci mutating into codon cj. In order to 
approximate these probabilities, a simple background mutation model is required describing the generalized 
mechanism for spontaneous DNA mutations. However, we must estimate the raw, a priori performance of the 

(1)D =
∑

i,j

P(ci)× P
(

Y = cj|X = ci
)

× d(aai , aaj)
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genetic code without natural selection introducing additional bias. We introduce a simplified model of random 
amino acid mutations (Eqs.2–4), which essentially invokes Kimura’s two parameter model43. Here, κ denotes 
the transition/transversion rate ratio, otherwise known as ti/tv ratio; pti is the probability of transition, ptv is 
the probability of transversion, and µ is the mutation rate. The inherent structure of the genetic code defines 
the probability of which codon i mutates into codon j given that a transition or transversion occurs; these are 
denoted by terms P(ci → cj | ti) and P(ci → cj | tv), respectively.

Expected proteomic distortions were then calculated for each taxon’s codon composition. Since our goal is a 
comparative analysis between taxa, the effect of µ is unimportant. Our preliminary work showed that although 
ti/tv ratio has a quantitative impact on distortion, the qualitative outcomes remain robust (Radványi and Kun, 
submitted). Our calculations concerning the distortion values were restricted to κ = 2.5 (roughly 71% of muta-
tions are transitions), approximating ratios encountered by studies of genome-wide and intronic sequences30,44. 
Such regions ought to represent a more relaxed state of selection against mutations, hence providing a closer 
estimate of the background ratio of ti/tv prior to selection.

Comparative analysis.  To correct for non‐independence because of common ancestry of species, we per-
formed Phylogenetic Generalized Least Squares (PGLS) models on the combined data. The analyses were car-
ried out with the ape45, phytools46, caper47 and geiger48 packages in RStudio v3.549. Response variables DHyd, DPol, 
DVol and DpI were modelled separately using the available environmental variables as predictors. The genomic 
content of guanine and cytosine (GC-content) was also used as predictor since preliminary studies have shown 
its predominant effect on the codon and amino acid composition of proteomes21,26,27. Model assumptions were 
checked; no violations were apparent. Based on Akaike information criterion (AIC) values, we apply a Brownian 
model; further branch length transformations and correlation structures did not result in generally better fits.

Results
In all four cases of physicochemical distortions, the PGLS resulted in significant models. In the obtained phy-
logenetic tree, deeper phylogenetic topologies are well supported by posterior values (Fig. 1). The results of the 
PGLS regressions are shown on Fig. 2, including partial regression lines. The standardized partial coefficients 
(where variables were Z-transformed prior to analysis) can be found as Supplementary Table S1 online. The 
highest proportion of explained variances is found in the case of distortion of hydrophobic properties (R2 = 0.633; 
F4,59 = 25.492; p = 2.726 × 10−12). The second highest proportion is explained for the distortion calculated for iso-
electric points (R2 = 0.397; F4,59 = 9.689; p = 4.311 × 10−6), followed by that of the volumetric distortion (R2 = 0.361; 
F4,59 = 8.314; p = 2.180 × 10−5). The least amount of variance was found in the case of distortion in polar require-
ments (R2 = 0.249; F4,59 = 4.880; p = 1.816 × 10−3).

The effect of GC‑content.  GC-content has a significant positive effect on hydrophobic distortion 
(β = 0.237; t = 9.464; p = 1.945 × 10−13). A less dominant, but significant negative effect is encountered in the dis-
tortion of isoelectric properties (β =  − 0.078; t =  − 2.147; p = 0.036). In other words, increasing the GC-content of 
the coding region results in lowered accuracy for hydrophobic traits, but the maintenance of molecular patterns 
related to isoelectric points becomes easier.

Environmental effects.  The effect of optimal growth temperature was positive and significant on hydro-
phobic (β = 4.510 × 10−4; t = 2.690; p = 0.009), volumetric (β = 0.015; t = 5.433; p = 1.100 × 10−6) and isoelectric dis-
tortion (β = 0.001; t = 4.467; p = 3.645 × 10−5); its effect on distortion in polar requirement was not significant. As 
for optimal NaCl concentration, significant positive effects were encountered with regards to distortions in polar 
requirement (β = 0.001; t = 2.479; p = 0.016) and isoelectric point (β = 0.001; t = 2.491; p = 0.016).

These effects translate to a general decrease in the expected physicochemical fidelity both in thermophiles 
and halophiles. In other words, such extremophilic codon usages could decrease the chance of preserving the 
respective physicochemical patterns with an occurring mutation, diminishing their mutational robustness.

The effect of ambient pH remains less conclusive. Although there is a significant positive effect on distortion 
in polar requirements (β = 0.006; t = 2.206; p = 0.031), other properties are not shown to be significantly influ-
enced. Evidence of substantial selection on proteins in extreme acidophiles or alkaliphiles is sparse. This may 
be attributed to the relative invariance of intracellular pH regardless of the ambient environment50. We note, 
however, that our sample provides only a narrow pH range, and bias in codon usage have been recently noted16.

Model robustness to ti/tv‑ratio.  To verify the robustness of these effects, we extended our analysis to a 
wider range of ti/tv-ratios (κ = 2.5–10; Supplementary Figure S1 online). The quantitative coefficients of the tested 
factors change asymptotically and remain significant. The signs of the significant coefficients do not change. The 
only exception is the GC-content where its negative impact on isoelectric properties becomes non-significant 

(2)κ =
pti

ptv

(3)P
(

Y = ci|X = cj
)

= µ×

[

κ

(1+ κ)
× P

(

ci → cj|ti
)

+
1

(1+ κ)
× P

(

ci → cj|tv
)

]

(4)P(Y = ci|X = ci) = 1− µ



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10963  | https://doi.org/10.1038/s41598-021-90440-y

www.nature.com/scientificreports/

(κ > 2.5); therefore, only its positive effect on hydrophobic distortion is confirmed. Thus, we may conclude that 
the effects of environmental selection are robust on a broader range of ti/tv-ratios, and our interpretations con-
cerning the impact of environmental selection, especially the distortive effect at high temperature, remains valid.

Discussion
The optimality of the genetic code should be discussed in the context of different gradients, such as environ-
mental selection or GC-content. Their possible repercussions on codon distribution will fundamentally impact 
the expected errors made by the code. In order to study this question, we have applied a previously developed 
minimalistic background mutation model for the generalised mechanism of emerging point-mutations. Then, we 
calculated distortions for codon distributions encountered in different taxa with known environmental require-
ments. Distortion measures were based on different physicochemical properties: hydropathy, polar requirement, 
volume, and isoelectric point.

Next, in order to account for phylogenetic non-independence, we performed four distinct Phylogenetic Gen-
eralized Least Squares (PGLS) regressions on these physicochemical distortion measures using a 16S rRNA tree 
(Fig. 1). One of the putative predictors was the GC-composition of the coding region of the genome, based on a 
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large number of studies supporting its predominant effect on the amino acid composition of proteomes26,51. The 
other group of predictors included environmental variables, which can select for characteristic codon or amino 
acid compositions of proteomes: temperature, salt concentration, and pH optima.

The key insight provided in this study is that adaptations to certain extreme environments and GC-bias seem 
to have drastic effects on the physicochemical fidelity of translation and the severity of incidental mutations, and 
these putative effects are not the artefacts of phylogenetic bias.

While we have included only a limited number of taxa based on the availability of their proteomes and 
the environment they live in, they can be considered representative. Any phylogeny is constrained by what 
we know at the moment about the diversity of life on Earth. Current diversity is only a subset of the diversity 
that ever existed (which we need to keep in mind when we want to infer past events based on characteristics of 
current species), and metagenomics has repeatedly demonstrated that we know only a fraction of the current 
diversity. Metagenome studies discovered a previously unknown diversity of microbes52,53. Quite some of the 
microbial dark matter54 were first assigned to novel clades distinct from the established great groups of Bacte-
ria and Archaea. Nowadays it seems, that the truly novel clades are fewer54,55. A recent catalogue of microbes, 
incorporating more than 50 thousand new metagenome-assembled genomes, concluded that the majority of 
deep-branching lineages (lineages that would be represented on the level of phylum) are represented by current 
genome sequences56; the Candidate Phyla Radiation57 could be merged into one monophyletic phylum58. Con-
sequently, even a limited sample of taxa from all great branches of microbes can be considered representative.

Substitution biases might be caused by aversions of certain physicochemical distortions.  We 
have shown that high GC-content is expected to increase hydropathic distortion. Only this effect of nucleotide 
composition is robust to ti/tv-ratio, which would predict an AT-bias for the highest fidelity in hydrophobic 
attributes, pointing towards a general substitution trend that resembles preliminary observations of AT-biased 
substitution patterns30–32. Hydrophobic patterns are regarded as a primary force of protein folding59–62, further 
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supported by the fact that secondary structures can be described and predicted along these properties63. There-
fore, A/T-mutations should be more likely to fix due to their lower risk of jeopardizing the structure.

Environmental selection influences the mutational robustness of the genetic code.  With 
regards to environmental gradients, we show that selection in halophiles and thermophiles results in codon 
usage profiles generally worse for maintaining physicochemical patterns. Despite the observed adjustments 
against such mutations16 the conservation of the required physicochemical properties tends to be more unreli-
able and the average effects of incidental mutations are expected to be more severe and deleterious. Here, we 
have demonstrated reduced fidelity in hydrophobic, volumetric, and isoelectric patterns of thermophiles, as well 
as the vulnerability of halophiles to mutations disturbing polar and isoelectric arrangements in proteins. This is 
a possible explanation of why these extremophiles possess remarkably low mutation and substitution rates64–68: 
it is a straightforward result of avoiding harsh fitness costs, especially if we consider higher importance of hydro-
phobic interactions and salt bridges in thermophilic proteins18,69, as well as the central role of polar properties 
in halophiles17,70.

We conclude that such low mutation rates and strong selection patterns encountered in extremophiles are 
caused by the inefficiency of the genetic code, as it seems especially ill-suited for extremophile codon usages 
with regards to mutational robustness, which also means that evolvability diminishes with the employment of 
standard genetic code, casting doubts on what role extreme environments could have played at development of 
the codon mapping.

Implications of the mesophile optimality of the genetic code and codon usage.  Along with our 
estimated phylogeny, the majority of influential phylogenies have also provided an intuitive evidence of an extre-
mophile LUCA, by placing thermophiles as the most basal groups71–74. This observation has long facilitated the 
somewhat overreaching logic that the cradle of life, including the development of the genetic code, was always 
associated with “infernal” environments of the Hadean Earth. At the same time, the genetic code is usually con-
sidered as a near-optimal, robust mapping that is able to partially maximize the fidelity of translation, since the 
majority, but not all10,11, of alternative codes falls short of such error capacity6,7.

Having these facts put together, our study implies a contradiction between these two notions: The fidelity of 
the genetic code is expected to decrease with higher temperatures. This not only collides with earlier reports sup-
porting the extremophilic nature of the code75–77, but also points out that claims between its error-minimization 
and thermophilic origin seem non-compatible: if “(and oh what a big if)”78 the genetic code evolved in order to be 
optimal for physicochemical properties, then it is more likely to finish its emergence among milder conditions.

A mesophile optimality of the genetic code could be still compatible with phylogenies placing thermophiles 
at basal locations near LUCA. The evolution of the genetic code preceded LUCA. A well-thought-out rooting 
of the tree of life puts the bacterial clade Chloroflexi closest to the root55, and it has thermophilic members. 
Chloroflexi are photosynthetic bacteria, meaning that LUCA was an autotroph. But, the first cell was, by necessity, 
heterotrophic, i.e. dependent on the environment for organic building blocks; the fully fledged photosynthesis 
can evolve only later. This means that inferences about LUCA does not help us understand the environment in 
which the first cell or the organism inventing the standard genetic code thrived.

But there is no need to accept a thermophilic LUCA. Both rRNA and protein sequences indicate that hyper-
thermophilic features of Bacteria and Archaea are parallel adaptations, while their ancestors could have been 
mesophilic or only slightly thermophilic79–81. Furthermore, the idea of a thermophile LUCA comes from accept-
ing the root of the universal tree of life to lay between Bacteria and Archaea. Cavalier-Smith has argued for quite 
some time, that the root lies within Gram negative bacteria, and Archaea and Eukaryotes (compromising the 
clade Neomura) are derived from Gram positive bacteria82,83. Archaea are the exemplars of extremophiles, but 
if their extremophilic characteristic is derived84, then there is no need for LUCA to be an extremophile. Indeed, 
among the Chloroflexi, there are mesophilic members, so even that does not contradict the proposition. Our 
own results presented here also strengthen the view that LUCA was a mesophile85.

Outlook.  Our work supports the expanded view on the optimality of the genetic code by involving codon 
usage13,14. The “mesophilic genetic code” hypothesis demands further research. Psychrophiles and organisms 
preferring extreme pH conditions could not be sufficiently represented in our current analysis, and albeit linear 
responses had a good fit in our case, increasing the environmental ranges should lead to more accurate estima-
tions of translational preference. It must be also emphasized that our interpretation of codon usage analysis 
remains conditional on the assumption of error minimization. It does not weaken the case of other dominant 
theories of the evolution of the genetic code. The evolution of genetic code is likely to be a result of multiple driv-
ing forces and cannot be understood solely by natural selection increasing mutational robustness86.

Relying on simple codon usage data have disadvantages. Thermophiles and halophiles possess elevated rates 
of horizontal gene transfer87–89. The codon bias of recently acquired, not completely adapted genes originally 
hosted by non-extremophilic hosts can interfere with the analysis, thus a later focus on core genes is needed. 
Upcoming studies are also yet to address the effect of mRNA expression patterns. Here, the implicit assumption 
is that proteins are expressed on the same level in each proteome. However, difference in expression has clear 
evolutional implications90 that are also related to thermophilic properties91 and misfold chance92. We believe 
that these observations can be incorporated into theory.

On the other hand, our result should not be taken as a direct confirmation of the universal genetic code 
being an inefficient mapping at extreme conditions. To assess that point better, it would demand us to gather 
data about the robustness of alternative codes and the proportion of variants where codon usage response to 
extreme environments can increase fidelity.
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There is another point where biological codon usage data fails to elaborate. Simply extending the measure of 
distortion to the domain of alternative codes poses a paramount challenge. The currently known codon usage 
profiles cover only the standard genetic code (and alternative genetic code variants to some extent14). As codon 
frequencies and their environmental response already carry the inherent effect of the standard genetic code, 
their variance cannot be directly applied to randomized codes. This warrants further investigation into the 
physicochemical requirements of extreme habitat conditions as the likely causes of characteristic amino acid 
compositions that influence codon distribution.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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