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Abstract
Introduction According to the Chinese Health Commission guidelines, coronavirus disease 2019 (COVID-19) severity is 
classified as mild, moderate, severe, or critical. The mortality rate of COVID-19 is higher among patients with severe and 
critical diseases; therefore, early identification of COVID-19 prevents disease progression and improves patient survival. 
Computed tomography (CT) radiomics, as a machine learning method, provides an objective and mathematical evaluation 
of COVID-19 pneumonia. As CT-based radiomics research has recently focused on COVID-19 diagnosis and severity analy-
sis, this meta-analysis aimed to investigate the predictive power of a CT-based radiomics model in determining COVID-19 
severity.
Materials and methods This study followed the diagnostic version of PRISMA guidelines. PubMed, Embase databases and 
the Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews were searched to 
identify relevant articles in the meta-analysis from inception until July 16, 2021. The sensitivity and specificity were analyzed 
using forest plots. The overall predictive power was calculated using the summary receiver operating characteristic curve. 
The bias was evaluated using a funnel plot. The quality of the included literature was assessed using the radiomics quality 
score and quality assessment of diagnostic accuracy studies tool.
Results The radiomics quality scores ranged from 7 to 16 (achievable score: 2212 8 to 36). The pooled sensitivity and speci-
ficity were 0.800 (95% confidence interval [CI] 0.662–0.891) and 0.874 (95% CI 0.773–0.934), respectively. The pooled area 
under the receiver operating characteristic curve was 0.908. The quality assessment tool showed favorable results.
Conclusion This meta-analysis demonstrated that CT-based radiomics models might be helpful for predicting the severity 
of COVID-19 pneumonia.
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Introduction

Coronavirus disease 2019 (COVID-19) is a pandemic [1]. 
COVID-19 has spread worldwide and has led to millions 
of deaths. According to the Chinese Health Commission 
(CHC) guidelines, COVID-19 severity is classified as mild, 
moderate, severe, or critical [2]. The Chinese Center for Dis-
ease Control and Prevention reported that 81% of COVID-19 
cases were non-severe, and the remaining 19% were severe 

or critical [3]. Existing epidemiological studies suggest that 
the mortality rate of patients with severe COVID-19 is more 
than ten times higher than that of patients with non-severe 
COVID-19 [4]. To treat patients with COVID-19, early iden-
tification of severe cases directly influences treatment and 
prevents clinical deterioration. Similarly, early identification 
and management of patients with severe COVID-19 prevent 
disease progression and improve survival [5].

According to recent experience, abnormal findings on 
lung imaging appear before clinical symptoms develop, 
which highlights the importance of lung imaging in screen-
ing for COVID-19 pneumonia [6]. Computed tomography 
(CT) is helpful for COVID-19 diagnosis and in assessing 
COVID-19 pneumonia progression [7, 8]. The typical find-
ings on chest CT imagery for patients with COVID-19 are 
ground-glass opacities and bilateral lung consolidations with 
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peripheral involvement [9]. However, the evaluation of these 
conventional textures varies among radiologists and is often 
subjective.

Computed tomography radiomics, a non-invasive devel-
oping machine learning technology, can extract histograms, 
shapes, or textural features from images. In addition, arti-
ficial intelligence can further quantify textural information 
using mathematical analysis; therefore, abnormal lesions on 
CT images can be evaluated precisely and objectively using 
radiomics. Recently, CT-based radiomics has been widely 
used for tumor diagnosis, cancer treatment, and prognosis 
assessment [10, 11].

In previous studies on COVID-19, machine learning CT-
based radiomics has been shown to help diagnose and dif-
ferentiate COVID-19 pneumonia from pneumonia caused by 
other pathogens [12–14]. Additionally, CT-based radiomics 
reportedly predicts the severity and outcome of COVID-19 
pulmonary opacities [15]. However, the mechanism between 
COVID-19 pneumonia severity, pulmonary opacities, and 
clinical manifestations has not been well addressed, and a 
detailed meta-analysis using CT-based radiomics has not 
been performed. Therefore, this study aimed to investigate 
whether CT-based radiomics models can predict COVID-19 
pneumonia severity.

Materials and methods

Study protocol and literature search

This study followed the diagnostic version of PRISMA 
guidelines [16]. Two investigators searched PubMed, 
Embase, the Cochrane Central Register of Controlled Tri-
als and the Cochrane Database of Systematic Reviews for 
articles published between the inception of the databases 
until July 16, 2021. The keywords used were as follows: 
(“COVID-19” OR “severe acute respiratory coronavirus-
2[SARS-CoV-2]”) AND (“radiomics” OR “textural”) AND 
(“computed tomography” OR “CT”).

Literature selection criteria

The inclusion criteria were as follows:

1. Studies using shape- and texture-based radiomics to pre-
dict COVID-19 severity.

2. Studies wherein COVID-19 severity was defined accord-
ing to the CHC guidelines.

3. Studies with full text available.
4. Studies published in the English language.

In contrast, the exclusion criteria were as follows:

1. Studies wherein radiomics was not used to predict the 
severity of COVID-19.

2. Conference posters or papers for which only the abstract 
was available.

COVID‑19 pneumonia severity classification

According to the CHC guidelines, COVID-19 illness is 
classified according to disease severity [4]. Patients with 
COVID-19 pneumonia included in this study were classi-
fied into those with non-severe disease (non-SVD) and those 
with severe disease (SVD). Patients who met any of the fol-
lowing criteria were included in the SVD group: (1) respira-
tory rate ≥ 30 times per minute, (2) oxygen saturation ≤ 93% 
by finger oximetry at resting status, (3) partial pressure of 
oxygen in arterial blood  (PaO2)/fraction of inspired oxygen 
 (FiO2) ≤ 300 mmHg), (4) patients with > 50% lesion pro-
gression on chest imaging over 1–2 days, (5) respiratory 
failure and assisted ventilation requirement; (6) shock, or 
(7) organ failure that required admission to the intensive 
care unit (ICU).

Data collection

We extracted the true-positive, false-positive, false-negative, 
and true-negative rates from the literature. The radiomics 
model with the highest area under the receiver operating 
characteristic curve (AUC) within the articles was used for 
extraction. Some studies used bootstrapping or cross-vali-
dation; therefore, the resulting values were not integers that 
could be used for extraction. For simplicity, we rounded the 
figures used in the calculations. Additionally, we extracted 
other information from the literature, including the author 
details, publication year, nation, number of patients, and 
further information.

Statistical analysis

The pooled sensitivity and specificity of the included radi-
omics studies were determined using statistical analysis. The 
pooled results are presented as forest plots. The overall pre-
dictive power was calculated by creating a summary receiver 
operating characteristic (SROC) curve. We evaluated the 
heterogeneity of the included literature by visually inves-
tigating the SROC curve [17]. The analysis was conducted 
using the R language [18], R package (Mada [19] and Meta 
[20]), and R studio [21].

Bias and study quality assessment

The publication bias was evaluated using a funnel plot. The 
quality of the included studies was assessed using the radi-
omics quality score (RQS) [22] and quality assessment of 
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diagnostic accuracy studies (QUADAS-2) tool [23]. The 
RQS assessment investigated 16 components, which resulted 
in a score ranging from − 8 to 36, defined as 0% and 100%, 
respectively. The QUADAS-2 tool, which assesses seven 
components, was used to evaluate the risk of bias and appli-
cability concerns. Two authors independently scored the 
RQS and QUADAS-2 tools. If a discrepancy was observed, 
the final score was discussed by the two authors to reach 
consensus.

Results

We retrieved a total of 682 articles. After removing dupli-
cates, 118 articles were selected for evaluation. After screen-
ing for eligibility based on titles and abstracts, 12 articles 
were retrieved for complete evaluation. Four studies were 
excluded from the analysis as follows: one observational 
study [24], which used a repetitive patient population, one 
observational study [15], which used pulmonary opacities 
on chest images to predict disease severity, and two obser-
vational studies [25, 26], which used other severity assess-
ment protocols to predict disease outcome. Finally, eight 
articles were used for qualitative analysis [27–34]. Only 
seven reports were included in the meta-analysis as a study 
by Li et al. [34] was excluded because only patients with 
severe COVID-19 were included in the report. A flowchart 
of the literature review is shown in Fig. 1. The details of the 
selected studies are presented in Table 1.

Pooled analysis of the included studies

Seven studies comprising 1460 patients with COVID-
19 were included in this meta-analysis. The forest plot 
of pooled sensitivity was 0.800 (95% confidence interval 
[CI] = 0.662–0.891), as shown in Fig. 2. The forest plot of 
pooled specificity was 0.874 (95% CI = 0.773–0.934), as 
shown in Fig. 3. The pooled AUC was 0.908, and the SROC 
curve is shown in Fig. 4. We identified the heterogeneity 
within the included studies by visually investigating the 
SROC curve.

SROC, summary receiver operating characteristic curve; 
conf. region, 95% confidence region for the SROC curve.

Radiomics quality score of the included studies

The radiomics quality scores of the included studies are pre-
sented in Table 2. The radiomics quality scores ranged from 
7 to 16. After a detailed evaluation of each RQS component 
by two authors, all included studies presented their image 
protocols, feature reduction performance, discrimination 
statistics reports, a comparison of the results to the gold 
standard, and potential clinical utility.

Qualities assessment of the selected literature

The QUADAS-2 tool was used to evaluate the literature. All 
studies had at least five out of seven low-risk bias assessment 
points. The results are presented in Fig. 5.

Fig. 1  A flowchart illustrating 
the inclusion process used to 
identify studies
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Publication bias assessment of the included studies

The funnel plot is shown in Fig.  6. As the number of 
included studies was less than 10, we cannot conclude 
whether a publication bias exists.

Review of the radiomics and clinical features used 
in the included studies

As stated by the IEEE International Symposium on Bio-
medical Imaging, there are many types of texture fea-
tures, including first-order texture features, shape-based 
texture features, gray-level distance-zone matrix texture 
features, gray-level size-zone matrix texture features, 

Table 1  Characteristics of the selected studies

ROI Region of interest, CHC Chinese health commission, SVD severe disease, AUC  the area under the receiver operating characteristic curve, CI 
confidence interval, PN pneumonia

Author Nation, 
year

Study type Patient selection, 
ROI

Patient number 
of disease 
severity by CHC 
guidelines

Patient number of radiomics training model Highest AUC (95% 
CI)

Non-SVD SVD Training set Internal valida-
tion

Test cohort

Xie et al. China, 
2021[27]

Retrospective 
Observational

Hospital admis-
sion, PN

110 40 105 Tenfold cross-
validation

45 0.98

Liang Li et al. 
China, 2021[28]

Retrospective 
Observational

Hospital admis-
sion, PN

246 70 159 70 87 0842 (0.761–
0.922)

Wang et al. 
China, 2020[29]

Retrospective 
Observational

Hospital admis-
sion, PN

216 44 156 Tenfold cross-
validation

104 0.978

Xiong et al. 
China, 2021 
[30]

Retrospective 
Observational

Hospital admis-
sion, PN

136 83 175 Fivefold cross-
validation

44 0.97

Wei et al. China, 
2020 [31]

Retrospective 
Observational

Hospital admis-
sion, PN

60 21 81 100-fold cross-
validation

Nil 0.93 (0.86–1.00)

Cai et al. China, 
2020 [32]

Retrospective 
Observational

Hospital admis-
sion, PN

25 74 99 Tenfold cross-
validation

Nil 0.927 (0.92–0.931)

Tang et al. China, 
2021 [33]

Retrospective 
Observational

Hospital admis-
sion, PN

76 42 55 24 39 0.98

Cong Li et al. 
China, 2020 
[34]

Retrospective 
Observational

Hospital admis-
sion, PN

Nil 217 174 Tenfold cross-
validation

43 0.861 (0.753–
0.968)

Fig. 2  The forest plot for sensitivity

Fig. 3  The forest plot for specificity

Fig. 4  The SROC curve
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neighborhood gray-tone difference matrix texture fea-
tures, neighboring gray-level dependence matrix texture 
features, gray-level run-length matrix texture features, 
and gray-level co-occurrence matrix texture features [35]. 
The types of textural features used in the included stud-
ies are listed in Table 3. Four studies used shape-based 

radiomics features, six studies used first-order radiomics 
features, and five studies used second-order radiomics 
features.

Table 2  Radiomics quality scores of the selected literature

Study criteria Xie et al. 
2021[27]

Liang 
Li et al. 
2021[28]

Wang et al. 
2020[29]

Xiong et al. 
2021[30]

Wei et al. 
2020[31]

Cai et al. 
2020[32]

Tang et al. 
2021[33]

Cong 
Li et al. 
2020[34]

Image protocol 
quality

 + 1  + 1  + 1  + 1  + 1  + 1  + 1  + 1

Multiple con-
touring

 + 1  + 1  + 1  + 1  + 1  + 1  + 0  + 0

Phantom study  + 0  + 0  + 0  + 0  + 0  + 0  + 0  + 0
Imaging at 

additional 
time points

 + 0  + 0  + 0  + 0  + 0  + 0  + 0  + 0

Feature reduc-
tion or mul-
tiple testing 
correction

 + 3  + 3  + 3  + 3  + 3  + 3  + 3  + 3

Multivariate 
analysis with 
non-radiom-
ics covariates

 + 1  + 1  + 1  + 0  + 1  + 1  + 1  + 0

Detection and 
discussion 
of biological 
mechanism

 + 0  + 0  + 0  + 0  + 0  + 0  + 0  + 0

Cutoff analyses  + 0  + 0  + 0  + 0  + 0  + 0  + 0  + 0
Discrimination 

analyses
 + 2  + 2  + 2  + 2  + 2  + 2  + 2  + 2

Calibration 
analyses

 + 1  + 1  + 1  + 0  + 0  + 0  + 0  + 0

Prospec-
tive study 
registration 
in a study 
database

 + 0  + 0  + 0  + 0  + 0  + 0  + 0  + 0

Validation  + 2  + 3  + 2  + 2 -5 -5  + 2  + 2
Comparison 

to the “gold 
standard”

 + 2  + 2  + 2  + 2  + 2  + 2  + 2  + 2

Future applica-
tion

 + 2  + 2  + 2  + 2  + 2  + 2  + 2  + 2

Cost–benefit 
analysis

 + 0  + 0  + 0  + 0  + 0  + 0  + 0  + 0

Public science 
and data

 + 0  + 0  + 0  + 0  + 0  + 0  + 0  + 0

Total score 
(possible 
score range

 − 8 (0%) to 36 
(100%))

15 (34%) 16 (36%) 15 (34%) 13 (30%) 7 (16%) 7 (16%) 13 (30%) 12 (27%)
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Review of the prediction algorithms used 
in the included studies

Three selected studies used the least absolute shrinkage and 
selection operator (LASSO). One of the included studies 
used the XGBclassifier. Two of the studies used the random 
forest method. The other two studies used logistic regres-
sion, and the details of the prediction algorithms are listed 
in Table 4.

Discussion

Our meta-analysis revealed that CT-based radiomics could 
be used to predict the severity of COVID-19 pneumonia. 
In other CT-based radiomics studies, different COVID-19 
pneumonia severity protocols could predict the severity 

of COVID-19 pneumonia [25, 26]. The management of 
COVID-19 pneumonia depends on disease severity [38, 39]. 
Therefore, early prediction of severe COVID-19 pneumonia 
before clinical deterioration using CT-based radiomics may 
aid in providing early management for these patients and 
reduce mortality [5, 40].

Our study included 1460 patients. The pooled sensitiv-
ity and specificity were 0.800 (95% CI = 0.662–0.891) and 
0.874 (95% CI = 0.773–0.934), respectively. The pooled 
AUC was quite high at 0.908, indicating that radiomics is 
a promising tool for predicting the severity of COVID-19 
pneumonia. The heterogeneity within the included studies 
may be attributed to the properties of radiomics features. 
As a previous study implied, radiomics features could be 
influenced by the calculation kernel, tumor delineation 
variability, technical settings of the CT scan, and software 
used to produce radiomics features [41]. This meta-analysis 
pooled results from various studies with different settings, 
thus providing robust results.

The RQS assessment resulted in a score ranging from −8 
to 36, defined as 0% and 100%, respectively. The RQS values 
of the included literature ranged from seven to 16; thus, the 
highest RQS in the selected studies was only 40%. A previ-
ous meta-analysis also found a maximum RQS score of 16 
for CT-based texture features used to differentiate between 
COVID-19 and viral pneumonia [14]. Compared with this 
study, a low RQS score makes it challenging to conduct a 
high-quality radiomics study in current research settings.

In contrast, the QUADAS-2 tool showed a favorable qual-
ity assessment of the selected studies. The risk of bias was 
primarily low in the selected studies, except for the patient 
selection bias. The patient selection bias was unclear or high 
because the selected studies were retrospective, and the 
patients were not randomly enrolled. The concern of appli-
cability rating was low because the patient and index test 
interpretations were suitable for our review of the selected 
studies.

The types of radiomics features used in the selected 
studies should be discussed. While six studies assessed 

Fig. 5  Quality assessment of diagnostic accuracy studies

Fig. 6  Funnel plot
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first-order features, five studies assessed second-order fea-
tures, either alone or in combination with other features. 
Second-order features have been widely used in radiomics 
models for cancer patients, as they measure the heteroge-
neity within the region of interest. Hence, future studies 
investigating the molecular mechanisms associated with 
second-order radiomics features are warranted to deepen 
the understanding of COVID-19.

The algorithms used significantly varied between the 
selected studies. The most frequently used algorithm was 
the LASSO. The LASSO algorithm is a logistic regression-
based algorithm that adds a regularization term to reduce 
the effect of noise on prediction. Another study used the 
XGBclassifier, a tree-based prediction algorithm that starts 
with a weak classifier and subsequently boosts to a stronger 
classifier [42]. Two of the included studies used the random 
forest method, another tree-based classifier, which starts 
with a robust classifier and reaches the final prediction result 

by voting [43]. The other two studies used traditional logistic 
regression models.

This meta-analysis had some limitations. First, the articles 
selected for this meta-analysis were retrospective. Second, 
the study protocols for each article were conducted in China, 
which can be attributed to our use of the CHC guidelines for 
COVID-19 pneumonia severity classification. Third, as this 
meta-analysis focused on predicting COVID-19 pneumonia 
severity using a CT-based radiomics learning model, the 
patients’ clinical data and disease course spectrum were not 
analyzed further. Although CT-based radiomics models were 
helpful for predicting COVID-19 pneumonia severity, the 
equivalence of pneumonia severity prediction to the prog-
nosis and mortality prediction was not investigated in this 
meta-analysis. Therefore, future prospective and multicenter 
research should be performed to verify the effectiveness of 
radiomics in predicting COVID-19 pneumonia severity.

Conclusions

Our meta-analysis demonstrated that CT-based radiomics 
feature models might be powerful tools for predicting the 
severity of COVID-19 pneumonia.
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Table 3  The type of radiomics and non-radiomics features used in the selected studies

CT score.※, the score used to evaluate the severity of ground-glass opacity [36]
GLCM, gray-level co-occurrence matrix; GLRM, gray-level run-length matrix; GGO, ground-glass opacity; GLDRM, gray-level distance-
zone matrix; GLSZM, gray-level size-zone matrix; NGTDM, neighborhood gray-tone difference matrix; CTSS*, CT severity score, volume 
of lesions/volume of the lungs on CT; CTLP.#, CT lesion percentage of pulmonary involvement [37]; WBC-DC, white blood cell differentiated 
count

Author, year Radiomics features Non-radiomics features

Xie et al. 2021 [27] Shape-based, first-order, GLCM, GLRM Age, number of lesions, CT  score※, comorbidity, 
GGO with consolidation

Liang Li et al. 2021 [28] First-order, GLCM, GLDZM, GLRM, GLSZM, NGTDM Age, comorbidities, CTSS*,  CTLP#

Wang et al. 2020 [29] Shape-based Nil
Xiong et al. 2021 [30] Shape-based, first-order, GLCM, GLRM, GLSZM, 

NGTDM, GLDZM
Nil

Wei et al. 2020 [31] GLSZM, GLRM CT  score※

Cai et al. 2020 [32] First-order PaO2; eosinophil ratio; blood oxygen saturation; age
Tang et al. 2021 [33] Shape-based, first order WBC-DC, blood coagulation function, blood elec-

trolytes, inflammatory markers
Cong Li et al. 2020 [34] First-order, GLCM, GLDZM Deep learning features

Table 4  The prediction algorithms used in the selected studies

LASSO, least absolute shrinkage and selection operator

Author, year Algorithms used in the study

Xie et al. 2021 [27] LASSO
Liang Li et al. 2021 [28] LASSO
Wang et al. 2020 [29] LASSO
Xiong et al. 2021 [30] XGBClassifier
Wei et al. 2020 [31] Backward stepwise multivar-

iate logistic regression
Cai et al. 2020 [32] Random forest
Tang et al. 2021 [33] Random forest
Cong Li et al. 2020 [34] Logistic regression
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Human and animal rights The study data were extracted from the 
included papers. The research was conducted in accordance with the 
1964 Helsinki declaration and its amendments.

Informed consent This meta-analysis was performed using data 
extracted from published papers. Informed consent was obtained from 
included papers.
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