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Adenocarcinoma is the most common type of lung cancer, and patients have varying prognoses. RNA-binding proteins (RBP) are
deemed to be closely associated with tumorigenesis and development, but the exact mechanism is currently unknown. This study
was aimed at constructing a new robust prognostic model based on RNA-binding protein-related gene pair scores for better clinical
guidance. The model for this study was constructed based on data of lung adenocarcinoma from The Cancer Genome Atlas
(TCGA) database. Prognosis-related RBP gene pair models were created based on differentially expressed genes, and the
accuracy of the models was verified in a different age, staging, and other subdatasets. A total of 379 RNA-binding protein-
related genes were differentially expressed in tumor tissue. From these genes, we constructed a prognostic model consisting of
33 gene pairs, which were found to be significantly associated with survival in TCGA dataset (P < 0.0001, hazard ratio (HR) =
4.380 (3.139 to 6.111)) and different subdatasets. As expected, the results were verified in the GEO validation cohort
(P=7.8x107% HR=1.597 (1.095 to 2.325)). We found that the signature exhibited an independent prognostic factor in both
the univariate and multivariate Cox regression analyses (P <0.001). CIBERSORT was applied to estimate the fractions of
infiltrated immune cells in bulk tumor tissues. CD8 T cells, activated dendritic cells, regulatory T cells (Tregs), and activated
CD4 memory T cells presented a significantly lower fraction in the high-risk group (P < 0.01). Patients in the high-risk group
had significantly higher tumor mutational burden (TMB) (P = 4.953e — 04) and lower levels of immune cells (P =3.473e - 05)
and stromal cells (P =0.005) in the tumor microenvironment than those in the low-risk group. Furthermore, the Protein-
protein interaction (PPI) network and various enrichment analyses have genuinely uncovered the interrelationships and
potential functions of the RBP genes within the model. The results of the present study validated the importance of RNA-
binding proteins in tumorigenesis and progression and support the RBP gene-related signature as a promising marker for
prognosis prediction in lung adenocarcinoma.

1. Introduction

Non-small-cell lung cancer typically includes lung adenocar-
cinoma and lung squamous carcinoma, with lung adenocar-
cinoma accounting for about 40-55% of all lung cancer
patients [1]. Unlike lung squamous carcinoma, lung adeno-
carcinomas tend to originate in the smaller bronchial tubes

and are therefore more likely to occur in the peripheral lobe
of the lung and are more likely to occur in women and non-
smokers. The prognosis of patients with lung adenocarci-
noma is usually closely related to the pathological type of
the tumor, the pathological stage, the genetic characteristics
of the patients, and the selectivity of surgery or targeted ther-
apy options [1, 2]. Overall, patients with larger inoperable
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tumors or early metastases usually have a poorer prognosis
and reduced survival. For earlier, more localized lung adeno-
carcinoma lesions, surgery has been the preferred option
with excellent results [3]. In inoperable patients, a puncture
biopsy of the lesion, genetic testing, and immunohistochem-
ical testing are usually performed clinically to determine
whether molecular targeted therapy or immunotherapy can
be used properly [4]. Commonly used targeted therapeutic
agents primarily target tumor angiogenesis and epidermal
growth factor receptors. Immune checkpoint inhibitors
targeting the PD-1/PD-L1 pathway have shown significant
efficacy in the treatment of some patients [5]. Patients with
poor immunotherapy or targeted therapy will require
systemic chemotherapy and chemotherapy.

RNA-binding protein (RBP) is a category of proteins that
accompany RNA to regulate the metabolic process and bind
to RNA. Approximately 60% of RNA-binding proteins were
found to interact extensively with chromatin and are
enriched in gene promoter and enhancer regions [6]. RNA-
binding proteins are core components of various ribonucleo-
protein (RNP) complexes and are essential for posttranscrip-
tional gene regulation (PTGR). RNA-binding proteins are
involved in multiple aspects of RNA metabolism, including
RNA splicing, RNA translocation, intracellular localization,
and translation control [7]. Although RNA plays an indis-
pensable role in RNA metabolism in organisms, its role in
different diseases, especially in the development and progres-
sion of cancer, is still poorly understood. However, from the
few relevant studies, it appears that RNA-binding proteins
are closely related to both tumor origin and progression [7-
9]. For instance, Zhang et al. found that a natural compound,
neobractatin (NBT), significantly upregulates the expression
of the RNA-binding protein Muscleblind-like 2 (MBNL2),
which in turn inhibits tumor metastasis [10]. Another study
on melanoma found that the RNA-binding protein ELAVLI
was overexpressed in tumor tissue and significantly corre-
lated with tumor progression and prognosis, promoting
tumor formation and inhibiting cancer cell senescence [11].
The critical role of RBP has also been found in lung cancer
research; for instance, Li et al. found that the expression of
several essential RBP genes is strongly associated with the
prognosis of lung adenocarcinoma [12]. However, the diver-
sity of data from different sequencing platforms and the het-
erogeneity of tumors also affect the integration and analysis
of large amounts of gene expression data. The standardiza-
tion of crossplatform data is also a critical and challenging
point for analysis. Recently, a new method based on relative
sequencing of gene expression levels has been developed to
overcome the shortcomings of traditional gene expression
data processing and has yielded stable and reliable results in
several studies [13-15].

In our research, the expression levels of a range of RBP-
related genes within each tumor sample were compared in
pairs using a novel method, ultimately generating a score
for each gene pair [13, 15]. Scoring for this gene pair-based
approach is based entirely on gene expression profiles within
a single tumor sample. It does not need to be normalized
across samples to account for differences between multiple
samples or sequencing platforms [15]. We used The Cancer

BioMed Research International

Genome Atlas (TCGA) RNA-seq dataset to construct the
gene pair signature and to validate it by stratifying the dataset
and by using the Gene Expression Omnibus (GEO) dataset.
Subsequently, we confirmed the efficacy of this immunomar-
ker in predicting tumor prognosis by comparing it with other
clinicopathological information. The relationship between
the signature and other prognosis-related factors, including
tumor-infiltration lymphocyte cell content, tumor muta-
tional burden (TMB), and tumor microenvironment, was
further explored.

2. Materials and Methods

2.1. Data Sources of Lung Adenocarcinoma. The HTSeq-
FPKM RNA-seq expression data, Masked Somatic Mutation
data based on the “VarScan2 Variant Aggregation and Mask-
ing” workflow, and corresponding clinical data of 522 lung
adenocarcinoma patient samples were retrieved from The
Cancer Genome Atlas (TCGA) program dataset (https://
portal. https://gdc.cancer.gov). Another validation dataset
(GSE72094) was extracted from the Gene Expression
Omnibus (GEO) database with corresponding survival infor-
mation (http://www.ncbi.nlm. http://nih.gov/geo). The
GSE72094 dataset of 442 lung adenocarcinoma patients was
published on Oct 21, 2015, and based on the GPL15048 plat-
form. Patients with overall survival time (OS) less than one
month or missing survival information were excluded from
the study. In total, 477 cases retrieved from TCGA database
and 386 cases from the GEO database were recruited and
analyzed in the present study.

2.2. Gene Expression Data Processing. The RNA-seq expres-
sion data was HTSeq-FPKM type. The expression profile
data for each gene was converted to the corresponding gene
symbol from the probe level according to the annotation file.
No further standardization of the expressed data is required.
If the patient has multiple samples, take the average expres-
sion value of each gene to represent the gene expression level
of the patient. If there are multiple probes for a single gene,
the average expression value will be taken as the expression
level for that gene.

2.3. Modeling of the RBP-Related Gene Pair (IRGP) Signature.
The extraction of RNA-binding protein-related genes was
determined based on outstanding research published by
Gerstberger et al’s team in 2014. In total, they identified
1542 RNA-binding protein-related genes that are highly rel-
evant to RNA metabolism [16]. We then calculated genes
with differential expression between tumor samples and nor-
mal samples by applying the R package “limma.” We used
these genes as candidate genes for the next gene pair analysis.
The specific method of constructing the prognostic model is
as described in the previous study [15]. Briefly, we performed
a pairwise comparison to obtain a score for each gene pair
between the gene expression values within each sample in
the TCGA cohort. The score of a specific gene pair was set
to one when the expression level of the first gene was higher
than the other; otherwise was zero. We would discard the
pairs if more than 90% of the scores of a pair were identity
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in the samples. We eventually constructed a signature of 33
IRGPs using the Lasso Cox proportional risk regression
model. We then stratified patients into low- and high-risk
groups using the most appropriate cutoff value. We used
the “survivalROC” R package (using R package “survival-
ROC,” version 1.0.3) to obtain the cutoff value by the time-
dependent receiver operating characteristic (ROC) curve
analysis at three years for overall survival in TCGA dataset.

2.4. Prognostic Value of the Signature in the TCGA Cohort
and Subcohorts. Survival analysis by the log-rank test was
performed between the different immune risk groups. Subse-
quently, both univariate and multivariate Cox proportional
hazard regression analyses of the risk factor and other clinical
factors for the overall survival were performed in TCGA
cohort. Pathologic stage and gender were converted as con-
tinuous variables. Stage I to stage IV were transformed into
1 to 4. We also randomly divided TCGA dataset into two dif-
ferent subcohorts and even split it into different subdatasets
based on clinical characteristics such as age, gender, and
pathological staging to verify the accuracy and validity of
our model building in different subdatasets. Patients were
divided into older and younger groups according to the
median value of their age.

2.5. Dataset Validation of the Signature. To further prove the
prognostic value of the signature in different cohorts, we
applied the risk model to another independent cohort from
the GEO database (GSE72094) for validation. We performed
the same univariate and multivariate analyses as in TCGA
cohort. Patients without matching clinical information will
be excluded from the study.

2.6. Estimation of Immune Cell Abundance in Tumor Tissue.
To analyze whether there were differences in the immune cell
abundance of the tumor tissue in different risk groups, we
used CIBERSORT (https://cibersort.stanford.edu/) to evalu-
ate the relative fraction of predefined cell types in mixed solid
tissues. The data used were normalized gene expression data
of the tumor tissue [17]. We used the default LM22 leukocyte
gene signature matrix from the CIBERSORT website. LM22
contains 547 genes distinguishing 22 types of immune-
related cells. Disabling quantile normalization was checked.
We set the number of permutations to 1000 for robust anal-
yses. Then, CIBERSORT enumerated the relative propor-
tions of the 22 infiltrating immune cells, including B cells,
dendritic cells, T cells, natural killer cells, and macrophages.

2.7. Estimation of the Tumor Microenvironment (TME) and
TMB. TMB usually refers to the number of somatic cell
mutations detected per million bases, including gene coding
errors, base substitutions, gene insertion, or deletion errors.
After calculating TMB values for all samples, patients were
grouped according to the previous risk cutoff values to
explore whether there was a difference in TMB between high-
and low-risk groups. TME is a general term for immune infil-
trating cells and stromal cells in the tumor tissue other than
tumor cells. Based on the RNA expression data, we used R
package “estimate”(version 1.0.13) to score the immune
microenvironment of all tumor tissue samples and scored

the immune cell content and stromal cell content, respec-
tively, to calculate the final tumor purity. We then grouped
patients according to the previous prognostic model to com-
pare whether there were differences in the TME between
high- and low-risk groups.

2.8. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Functional Enrichment
Analysis and Gene Set Enrichment Analyses (GSEA). GO
and KEGG enrichment analysis was performed utilizing
genes in the signature. We completed the GO and KEGG
pathway analysis using R packages (“enrichplot,” “cluster-
Profiler,” and “ggplot2”) [18]. We used P value < 0.05 and
Q —value < 0.05 as the threshold for GO and KEGG enrich-
ment analysis. GSEA is used to assess the distribution trends
of genes in a predefined set of genes in a gene set sequenced
for phenotypic relevance and thus to determine their contri-
bution to the phenotype [19]. We applied the GSEA software
(Version 4.0.3, http://software.broadinstitute.org/gsea/) with
1,000 phenotype permutations for GSEA. The threshold of
statistically significant gene sets was set to nominal P value
< 0.05 with an FDR-adjusted Q — value < 0.25. We classified
the patients into two groups according to their risk values.
We then performed a GESA to compare whether there were
pathways of differential enrichment between the two groups.
MSigDB oncogenic signature gene sets (version 7.1, https://
www.gsea-msigdb.org/gsea/downloads.jsp) were applied in
the GSEA.

2.9. Protein-Protein Interaction (PPI) Network of Genes in the
Signature. The genes that make up the prognostic model
were used to construct the PPI network to analyze the intrin-
sic function of the model. The PPI network construction was
based on the STRING database (https://string-db.org/), and
we subsequently applied Cytoscape software (version 3.8.0)
for the reconstruction and visualization of the network.

2.10. Statistical Analyses. Statistical analyses were mainly per-
formed on R software (version 3.6.3, http://www.r-project
.org). Survival analyses were performed using the “survival”
package (version 3.1-11) with the Kaplan-Meier method.
We used the Student two-sample ¢-test or Wilcoxon rank-
sum test to compare the continuous variables. The “survival”
package also calculated the RMS curve and time ratio. For all
analyses, the statistical threshold was set to P value < 0.05.

3. Results

3.1. Differential Expression Analysis of RBP-Related Genes. A
total of 1542 RBP-related genes that are highly relevant to
RNA metabolism were recruited in the study. Overall, 379
RBP genes were differentially expressed in tumor tissues
compared to normal tissues (FDR P value < 0.05 while
LogFCvalue > 0.5). Two hundred forty-six genes were
upregulated in expression, and 133 were downregulated in
the tumor tissue (see Table S1 for details). The heat map
and volcano plot of gene differential expression are detailed
in Figures 1(a) and 1(b).
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FIGURE 1: Abnormally expressed RBP genes existed in tumor tissues in TCGA. Heat map (a) and a volcano plot (b) of RBP gene expression.

3.2. Construction of the RBP-Related Gene Pair Signature.
Gene expression data with corresponding clinical data of
the TCGA cohort (n=477) was used as an exploratory
dataset. Genes with an average expression greater than 0
and genes with median absolute deviation (MAD) > 0.5
are included in the subsequent analysis. Patients with OS less
than 30 days or without corresponding survival information
were excluded. We used a total of 380 differentially expressed
RBP genes as candidate genes for constructing the prognostic
model. After rigorous screening to remove relatively small var-
iation genes (MAD = 0), only 339 candidate genes were left for
further study. Finally, a series of 33 gene pairs were recruited
in the risk model using Lasso Cox proportional hazard regres-
sion from TCGA cohort (Table 1). Using the model, we can
calculate a risk score for each sample. The fittest cutoff value
of the IRGP risk score was set at —0.075 using a time-
dependent ROC curve analysis. We then stratified the dataset
into the high- or low-risk group according to the cutoff value
(see Figure S1 in Supplementary Materials). Significantly,
compared to the low-risk group, the high-risk group in the
exploratory TCGA cohort exhibited an even worse OS
(P<0.0001, hazard ratio (HR)=4.380 (3.139 to 6.111))
(Figure 2). The risk curves plotted in TCGA dataset based
on model scores are shown in Figure 3(a). Significant
differences in the pathologic tumor stage, T stage, and N
stage were demonstrated between groups related to OS in
the univariate Cox analysis (P <0.001). However, in the
multivariate Cox, only the phenotype of the signature
exhibited a robust independent prognostic factor (P < 0.001)
(see in Figure S2(a) and Table 2 for details). Highly similar
results were found in the two randomly divided TCGA
subcohort and other subcohorts stratified by age, gender,
pathologic stage, and N stage. Risk subgroups obtained in
each subcohort were consistently significantly correlated
with survival prognosis (see in Figure 2).

3.3. Signature Validation in the GEO Dataset. Using the risk
score cutoff, we stratified the patients in the GEO validation
cohort into high- and low-risk groups. Consistent with the
findings previously obtained in TCGA dataset, a significant
difference of OS was found between the two groups
(P=7.8%x107%, HR=1.597 (1.095 to 2.325)) (see in
Figure 2). Notably, the RBP gene pair signature remained
an independent predictive value of OS in both the univariate
and multivariate Cox analyses in the validation dataset
(P <0.001) (see in Table 2 and Figure S2(b)). And the risk
curves were similar to TCGA dataset, and high-risk patients
also had a poorer prognosis (Figure 3(b)).

3.4. Immune Cell Infiltration between Different Risk Groups.
CIBERSORT was used to estimate the fractions of 22 infil-
trated immune cells using the RNA-sequence data. We used
a threshold of P < 0.05 to rule out unreliable results. Among
the 535 tumor samples in TCGA, only 477 tumor samples
were eligible for further analysis. The relative abundance of
parts of the 22 infiltrated immune cells exhibited significant
differences between the high- and low-risk groups (Figure 4).
Compared to the low-risk group, the proportion of MO macro-
phages, M1 macrophages, activated CD4 memory T cells, acti-
vated mast cells, eosinophils, and resting NK cells exhibited
higher fraction in the high-risk group (P < 0.01). Conversely,
memory B cells, resting dendritic cells, resting mast cells,
monocytes, activated NK cells, regulatory T cells (Tregs),
and restingCD4 memory T cells presented a significantly
lower fraction in the high-risk group (P <0.01) (Figure 4).
Naive CD4 T cells were present in only two samples, so we
did not include this type of cell in the statistical analysis.

3.5. Estimation of TME and TMB. Based on the prognostic
risk model, we divided both TMB and TME data into high
and low-risk groups and used the Wilcoxon signed-rank test
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FIGURE 2: Survival curves for different risk groups in TCGA and GEO datasets. According to the optimal cutoff value, patients from different
cohorts were stratified into the high- or low-risk group. Kaplan-Meier curves were used for survival analyses between different risk groups in
different datasets: TCGA cohort (a), two TCGA validation subcohort (b, ¢), and the GEO validation cohort (d) groups stratified by pathologic

stage (e, f), age (g, h), gender (i, j), and N stage (k, 1).

to explore differences across risk groups. Notably, both the
TMB- and TME-related indicators in the high and low-risk
groups showed significant differences. Immune and stromal
cells scored lower in tumor tissues in the high-risk group
than in the low-risk group, and the corresponding average
purity of tumors was higher than in the low-risk group
(Figures 5(a)-5(c)). Besides, higher TMB values were present
in the higher risk group than in the lower risk group
(Figure 5(d)).

3.6. GO and KEGG Functional Analysis of Genes in the
Signature. For the above 49 genes that make up the 33 genes
pair prognostic model, we used GO and KEGG analyses to
explore the closely related functions and pathways of these
genes. Results of GO enrichment analysis revealed that the
signature genes were enriched significantly in ncRNA pro-
cessing, catalytic activity (acting on RNA), cytoplasmic ribo-
nucleoprotein granule, and other GO terms (P < 0.05 and
Q — value < 0.05) (Figure 6(a), Figure S3(a), and Figure S4).
Results of the KEGG functional enrichment analysis
revealed that genes in the signature were significantly
enriched in five KEGG pathways (P < 0.05 and Q — value <
0.05). Among them, the pathways of RNA transport and
RNA degradation were most significantly enriched
(Figure 6(b), Figure S3(b), and Table S2).

3.7. GSEA Based on Risk Scoring. Since the established signa-
ture was found to be highly correlated with prognosis, we
then attempted to explore their functional implication and
intrinsic association through enrichment analysis. We classi-
fied patients into high- and low-risk groups based on gene
pair risk score cutoff value and used this risk classification
as a phenotype for GSEA of TCGA cohort. As a result, we
found the enrichment of three oncogenic signatures gene sets
in the high-risk group, including “JAK2_DN.V1_DN,”
“MTOR_UP.N4.V1_DN,” and “CSR_EARLY_UP.VI1_DN”
(significant at FDR Q — value < 25% and nominal P value <
1%) (Figure 7 and Table S3), which suggests a crucial role
in lung adenocarcinoma progression and prognosis of these
significantly enriched gene sets.

3.8. PPI Network Construction of the Genes in the Signature.
To better explore the potential function of the genes in the

signature, we constructed a protein-protein interaction net-
work using the STRING database. A total of 40 gene nodes
and 69 edges are included in this PPI network (Figure 8
and Table S4). Most of the genes that make up the PPI
network are overexpressed in the tumor tissue.

4. Discussion

As the most common pathological type of lung tumor, lung
adenocarcinoma usually occurs around the lobe of the lung.
In particular, a large proportion of lung cancers detected at
an early stage are lung adenocarcinomas. The prognostic
profile of lung adenocarcinoma is diverse, and overall,
patients who are identified early and can undergo surgery
survive much longer than patients who are no longer consid-
ered for surgery. Patients who can benefit from targeted ther-
apy or immunotherapy have more prolonged survival and
higher quality of life than those on regular chemotherapy,
based on gene mutations and immunohistochemistry.
According to previous studies, an excellent prognostic
marker or model helps in predicting patient survival and bet-
ter clinical management [20, 21]. Recently, Ling et al. used
differentially expressed genes closely related to the tumor
microenvironment to construct models to predict patient
prognosis and explore the relationship between patient
responsiveness to immunotherapy and the tumor microenvi-
ronment [21]. Zhao et al. created a tumor immunoscore clin-
ical prognostic signature of lung adenocarcinoma using 109
immune-associated genes and validated its accuracy in differ-
ent datasets [20]. However, the clinical applicability of these
biomarkers remains limited due to tumor heterogeneity and
sequencing technical problems. In particular, the issue of
standardization of the data from different sequencing plat-
forms is also a challenge in clinical applications. Therefore,
in our study, to eliminate the influence of different platforms
and interindividual standardization on the results, we intro-
duced the concept of gene pairs. And by assigning the size
of a particular pair of RBP gene expression values, we
obtained a new predictive model that is more suitable for
individual studies and clinical application. As described by
Li et al., there is no need for data normalization or to consider
technical bias across platforms as it only performs pairwise
comparisons of the expression values of the target genes
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TABLE 2: Summary of the results of univariate and multivariate analyses of the risk factors for the overall survival of patients with lung

adenocarcinoma in TCGA cohort and the GEO cohort.

Univariate analysis

Multivariate analysis

Datasets Variables HR (95% CI) P value HR (95% CI) P value
Age 0.997 (0.978-1.015) 0.718 1.008 (0.989-1.028) 0.402

Gender 1.000 (0.694—1.441) 1.000 0.980 (0.673—1.428) 0.917

Stage 1.648 (1.396-1.946) <0.001 2.119 (1.250-3.590) 0.005

TCGA (exploratory dataset) T stage 1.600 (1.285-1.994) <0.001 1.083 (0.835-1.404) 0.549
M stage 1.748 (0.959-3.187) 0.068 0.272 (0.071-1.039) 0.057

N stage 1.787 (1.455-2.195) <0.001 0.759 (0.472-1.233) 0.258

Risk-score 3.967 (3.068—5.131) <0.001 3.666 (2.791-4.815) <0.001

Age 1.008 (0.985-1.031) 0.517 1.004 (0.980-1.028) 0.754

Gender 1.885 (1.223-2.905) 0.004 2.205 (1.417-3.430) <0.001

GSE72094 (validation dataset) Smoking 1.261 (0.549-2.897) 0.584 0.904 (0.390-2.095) 0.815
Stage 1.704 (1.393-2.083) <0.001 1.855 (1.499-2.297) <0.001

Risk-score 2.202 (1.525-3.179) <0.001 2.214 (1.533-3.198) <0.001

Abbreviations: HR: hazard ratio; CI: confidence interval.

within a single sample [15]. Several previous studies have
confirmed the availability and accuracy of this immune gene
pair method in predicting overall survival in different types of
cancer, including serous ovarian carcinoma and hepatocellu-

lar carcinoma [13-15, 22].

Although the exact mechanism is not yet clear, a growing
body of research suggests that RBP plays an essential role in
tumorigenesis and development [23, 24]. A study of glioblas-
toma found that expression levels of eight RBP-related genes

were strongly associated with tumor prognosis, and
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identified PTRF and FNDC3B among them as potential
prognosis-related biomarkers [23]. The RNA-binding pro-
tein PSF was found to play a pathophysiological role in ER-
positive breast cancer by posttranscriptional regulation of
the expression of its target genes ESR1 and SCFD2. Further-
more, PSF and SCFD2 were recognized as potential diagnos-

tic and therapeutic targets for primary and hormone-
refractory breast cancer [24]. To explore the function of RBPs
in lung squamous cell carcinoma (LUSC), Li et al. obtained
300 RBP-associated genes that are aberrantly expressed in
tumor tissues and ultimately screened 9 nine genes and suc-
cessfully constructed a prognostic signature [7]. In our study,
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a robust signature of 33 RBP gene pairs that consists of 49
genes (Table 1) was identified to predict overall survival for
lung adenocarcinoma patients. Some of these genes have
been reported in previous studies to be associated with tumor
development and prognosis [25, 26]. It was found that
increased expression of INTS8 in the tumor tissue was asso-
ciated with a more reduced overall survival and prognosis in
patients with HCC. The authors suggested that the primary
mechanism is to accelerate the epithelial-to-mesenchymal
transition (EMT) by upregulating the TGF-f3 signaling path-
way to promote tumor progression and metastasis [25].
IGF2BP1 also plays crucial roles in the generation and out-
come of human tumors, such as the presence of high expres-
sion of IGF2BP1 in pancreatic tumor tissues, and its
expression level is significantly associated with patient prog-
nosis [27]. Similarly, DCAF13 has also been found to be
highly expressed in a variety of tumors, including breast can-
cer, leading to a poorer tumor prognosis [28].
Tumor-infiltrating lymphocytes (TILs) are those leuko-
cytes (NK cells, myeloid-derived suppressor cells (MDSCs),
B cells, T cells, macrophages, dendritic cells (DCs), and
others) that leave the bloodstream and enter the tumor tissue.

Researchers have conducted relevant studies in many of these
cancers, quantifying these tumor-infiltrating cells and corre-
lating their abundance with tumor features and outcomes
[29]. Previous studies have provided substantial evidence to
support a favorable prognosis and outcome for malignant
melanoma with abundant infiltration of TILs [30, 31]. In
the current study, by using the CIBERSORT platform, we
have estimated the relative fractions of 22 TILs in tumor tis-
sues from TCGA cohort using the CIBERSORT platform.
Using the prognostic signature cutoff, we divided the 22 TILs
that resulted in high- and low-risk groups and compared
whether differences exist in the content of each type of cell
between the two groups. Significant differences in the relative
fraction of infiltrated immune cells in tumor tissue were
observed between the two different risk groups. In our study,
we found more M1 macrophage, activated CD4 memory T
cells, activated mast cells, and eosinophil infiltrates in the
high-risk group.

Tumor-associated macrophages (TAM) not only prevent
T cells from attacking tumor cells but also secrete growth fac-
tors that nourish tumor cells and promote tumor angiogene-
sis, leading to tumor cell expansion and metastasis [32-34].
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MO macrophage is an inactivated macrophage that, without
any inflammatory or tumor-associated function, can be
transformed into classically activated M1 macrophages and
alternatively activated M2 macrophages. M1 macrophages
have mainly antitumor effects and can differentiate tumor
cells from healthy cells, recognize, and then kill tumor cells
by mediating cytotoxic effects. The role of M2 macrophages
is, on the contrary, to promote tumor growth and metastasis
[32]. Both eosinophils and mast cells belong to inflammatory
cells. These inflammatory cells are sought to contribute to
barriers to antitumor immunity [35], because the inflamma-
tory environment in the tumor tissue is believed to promote
the development and progression of the tumor according to
previous studies [36]. And conversely, we found that mono-
cytes, activated NK cells, and Tregs presented a significantly
lower fraction in the high-risk group. NK cells are critical
immune cells in the body and are lymphocytes that can non-
specifically kill tumor cells and viral cells without presensiti-

zation. Lower levels in the tumor tissue predicted reduced
tumor-killing capacity, favoring tumor progression, and a
poorer prognosis.

Also, the high-risk group in our study had significantly
increased TMB levels, which may suggest whether tumor
patients could benefit from tumor immunotherapy, such
as programmed death receptor 1 (PD-1) inhibitors,
because, based on clinical and prior knowledge, patients
with higher TMB values have a significantly higher
response rate to immune checkpoint inhibitors than
patients with lower TMB [37, 38]. According to the results
of the tumor microenvironment in this study, tumor purity
was significantly higher in the high-risk group than in the
low-risk group. This suggests that the lower the amount
of immune and stromal cells surrounding the tumor cells,
the faster the tumor proliferates and progresses, and the
worse the patient’s prognosis may be. And this is relatively
consistent with previous studies [20, 21].
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Consistent with previous studies, GSEA of TCGA cohort
revealed that three oncogenic signatures gene sets, including
“MTOR_UP.N4.V1_DN,” were significantly enriched in the
high-risk group, suggesting a crucial role in lung adenocarci-
noma progression and metastasis of these gene sets. The
present study found several JAK2-related genes in this signa-
ture. The JAK2-STAT signaling pathway is a cytokine-
stimulated signal transduction pathway that has been identi-
fied in recent years and is involved in critical biological pro-
cesses such as cell proliferation, apoptosis, and immune
regulation [39]. The JAK2/STAT3 signaling pathway has
been reported to be closely associated with the development
and metastasis of non-small-cell lung cancer [40].

There are several limitations of the present study. The
first is that the model built in this study is based on TCGA
database. Although its feasibility was validated in a GEO
dataset, it needs to be approved in more independent data
in the future. Secondly, there is limited clinical data in public
databases, and the impact of factors such as surgery, chemo-
therapy, and neoadjuvant therapy on clinical survival was not
taken into account. These could have some effect on the accu-
racy of the results. Thirdly, there is a need to conduct func-
tional analysis of genes in RBP-related prognostic models
from multiple perspectives in the future to explore their
intrinsic mechanisms related to survival, so as to provide
more accurate clinical guidance.

5. Conclusions

Based on the differentially expressed RBP gene in the tumor
tissue, we constructed a stable prognostic model for lung ade-
nocarcinoma using a novel gene pair approach. We success-
fully validated its accuracy and availability in another
independent dataset. This is strong evidence of the critical
role of RBP in tumorigenesis and development. Notably,
the method is based on pairwise comparison and assignment
of different gene expressions within a single sample, which
reduces the process and complexity of data processing for
different platforms or sources and, therefore, can better help
clinical treatment and management in the future.
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