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Abstract: The alteration of excitatory–inhibitory (E–I) balance has been implicated in various neu-
rological and psychiatric diseases, including autism spectrum disorder (ASD). Fragile X syndrome
(FXS) is a single-gene disorder that is the most common known cause of ASD. Understanding the
molecular and physiological features of FXS is thought to enhance our knowledge of the pathophysi-
ology of ASD. Accumulated evidence implicates deficits in the inhibitory circuits in FXS that tips E–I
balance toward excitation. Deficits in interneurons, the main source of an inhibitory neurotransmitter,
gamma-aminobutyric acid (GABA), have been reported in FXS, including a reduced number of
cells, reduction in intrinsic cellular excitability, or weaker synaptic connectivity. Manipulating the
interneuron activity ameliorated the symptoms in the FXS mouse model, which makes it reasonable
to conceptualize FXS as an interneuronopathy. While it is still poorly understood how the devel-
opmental profiles of the inhibitory circuit go awry in FXS, recent works have uncovered several
developmental alterations in the functional properties of interneurons. Correcting disrupted E–I
balance by potentiating the inhibitory circuit by targeting interneurons may have a therapeutic
potential in FXS. I will review the recent evidence about the inhibitory alterations and interneuron
dysfunction in ASD and FXS and will discuss the future directions of this field.
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1. Introduction

This review will discuss the pathophysiology of autism and fragile X syndrome (FXS)
from a neurophysiological viewpoint. I will take FXS as a model to understand autism
pathophysiology and will put this autism-related disorder at the center of the discussion.
Balanced excitation and inhibition in the brain is critical to maintaining proper neuronal
function. Alterations both in excitation and inhibition have been described in autism and
FXS, but the inhibitory system will be the main focus in this review. I will particularly
emphasize interneuron dysfunction as an important component responsible for inhibitory
alterations. Taking the developmental characteristics of autism and FXS into account,
how the developmental profile of the inhibitory system goes awry will also be precisely
described. I will summarize and discuss the published evidence and will present future
perspectives, particularly from a translational aspect, in this field.

2. Excitatory–Inhibitory (E–I) Imbalance

It is now cliché to say “Excitatory–Inhibitory (E–I) balance is disrupted in XXX dis-
orders”. Intuitively, disrupted E–I balance has been rigorously studied in paroxysmal
disorders where “more excitatory” and/or “less inhibitory” brain activity is associated
with epileptic seizures. While this straightforward connection makes sense, the hypothesis
that E–I imbalance is causal to a multitude of behavioral symptoms is undoubtedly too
simplistic [1–3]. “XXX disorders” now, however, range from paroxysmal disorders to vari-
ous other disorders, including autism [2–6]. Autism and epilepsy are commonly comorbid
conditions, and the genesis for the altered E–I balance theory in autism was because of this
co-occurrence [5].
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In 2003, Rubenstein and Merzenich published a seminal review in which they pro-
posed a model in which E–I balance was shifted towards excitation that was the basis for
the pathological brain circuitry function in autism [7]. Alterations both in the excitatory
and inhibitory systems can result in E–I imbalance. Multiple factors, including the number
of neurons, intrinsic excitability of neurons, synaptic connectivity, and network activity,
can all be critical components regulating E–I balance [3]. Indeed, both excitatory and
inhibitory alterations have been reported in autism [8]. In this review, inhibitory alterations,
particularly dysfunction of interneurons, the main source of an inhibitory neurotransmitter
gamma-aminobutyric acid (GABA), will be the primary focus.

3. Autism and Fragile X Syndrome

Autism is a neurodevelopmental disorder that is conceptualized as a spectrum of
disorders (autism spectrum disorder; ASD). ASD individuals have difficulties in social
behaviors and communication skills as core symptoms, but comorbid symptoms such as
stereotyped movements, restricted interests, anxiety, or sensory hypersensitivity vary con-
siderably in the type and magnitude among individuals [9–11]. The heterogeneity of ASD,
which likely involves multiple genetic and environmental factors, makes it challenging
to clarify the pathophysiological mechanism [12,13]. Several single-gene or chromosomal
disorders—for instance, FXS—have a high incidence of co-occurrence of ASD-like symp-
toms, and it is expected that understanding these disorders may lead to elucidating the
pathophysiology for the development of new therapeutic interventions for ASD [10,14].

FXS is the most common (with a prevalence of 1 in 4000–5000 in males and 1 in
6000–8000 in females, but it varies considerably among studies [15,16]) known cause of
intellectual disability and ASD [17,18]. FXS results from an epigenetic silencing of the
responsible gene FMR1 caused by an abnormal expansion of a CGG repeat sequence in the
5′ untranslated region, leading to hypermethylation, transcriptional silencing, and a loss
of expression of the protein product fragile X mental retardation protein (FMRP) [19–21].
FMRP is an RNA-binding protein enriched in neurons, epithelial tissues, and testes that
regulates the expression of other genes as a translational repressor [22–24]. Animal models
are particularly useful tools to understand the molecular, cellular, and circuit phenotypes,
because they allow an accessibility to study neuronal and circuit functions, which is very
difficult or practically impossible in affected human subjects. In FXS, multiple animal
models are available and commonly used, including Fmr1 knock-out (KO) mice [25], Dfxr
(Drosophila fragile X-related gene) null drosophila [26], Fmr1 KO zebrafish [27], and Fmr1
KO rats [28]. The “knock-in” of the expanded CGG repeat did not work well in mice to
model FXS phenotypes [29–31].

As a pathological phenotype, disruption in E–I balance has been reported in FXS. The
target of FMRP includes RNAs encoding synaptic proteins and trophic factors [21,32–35].
Therefore, it is not surprising that multiple morphological and functional alterations
affecting E–I balance exist in FXS. Although it is not the central focus of this review, the
excitatory neurotransmitter system has been intensively studied in FXS for more than
two decades, and studies have revealed that glutamatergic transmission goes awry in
FXS [36–38].

4. Inhibitory System Alteration

The inhibitory neurotransmitter system is a counter component to the excitatory sys-
tem determining E–I balance. There are multiple lines of evidence for inhibitory alterations
in individuals with FXS and in the animal models [21,39]. Circuit hyperexcitability is
consistently reported in FXS. Though there is huge variability in the prevalence among
the cohorts, FXS individuals have a high susceptibility to seizures, electroencephalogram
(EEG) abnormalities, and epilepsy syndromes [14,39,40], which may be, in part, due to
an abnormal inhibitory system. GABA is the main source of inhibitory transmission and
may play an important role in dysfunction in the inhibitory system in FXS [41,42], but
direct evidence for a dysfunctional GABA system in human subjects is relatively limited. A
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study using positron emission tomography (PET) in a small cohort of patients showed a
significant reduction of approximately 10% in GABAA receptor availability throughout the
brain, which may cause diminished GABA-mediated inhibition in FXS individuals [43].
A recent finding using transcranial magnetic stimulation (TMS) demonstrated that FXS
patients had significantly increased intracortical facilitation (ICF), reduced short-interval
intracortical inhibition (SICI), and increased long-interval intracortical inhibition (LICI),
which are believed to represent glutamatergic excitation, GABAA-mediated inhibition, and
GABAB-mediated inhibition, suggesting that cortical hyperexcitability is, in part, due to
reduced GABAA inhibition in FXS individuals [44].

In FXS animal models, however, aberrant GABA signaling has been reported in multi-
ple studies. At the behavioral level, there is evidence indicative of the altered inhibition.
Fmr1 KO mice have a lower threshold for audiogenic seizures, which is one of the most
robust and reliably reported behavioral phenotypes in this mouse line [45,46]. Audiogenic
seizures are possibly triggered by neuronal and circuit hyperexcitability due to altered
sensory processing and sensory hypersensitivity in the auditory system [21,45,47]. More-
over a causal relationship between diminished GABA-mediated inhibition and audiogenic
seizures has been established, as agonists of GABAA [48,49] and GABAB [50,51] receptors
can rescue enhanced audiogenic seizures in Fmr1 KO mice, and antagonists of GABAB
receptors mimic the Fmr1 KO phenotype [50].

Pre-pulse inhibition (PPI) is another indicator for auditory hypersensitivity, and
multiple studies have reported increased PPI in Fmr1 KO mice [52]. Increased PPI in mouse
models is contradictory to the finding in FXS individuals where PPI is reported to be
decreased [53]. A study using eye blink responses [54] and a recent study in young (P23–25)
Fmr1 KO mice [55] have shown a significantly reduced PPI, which is somewhat reminiscent
of the findings in human FXS individuals. Importantly GABAA receptor activation by its
agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) ameliorates increased PPI in
Fmr1 KO mice, suggesting a causal relationship between decreased GABA inhibition and
altered PPI [52]. Alterations in PPI may also, in part, arise from sensory hypersensitivity
to somatosensory stimuli, which is also one of the most commonly shared phenotypes
in FXS individuals. Evidence shows a negative correlation in the GABA concentration
in the somatosensory cortex to tactile sensitivity in humans [56–59]. In animal models of
FXS, a recent study demonstrated that sensory hypersensitivity can be reliably monitored
even in young (<P14) and in adult Fmr1 KO mice, which is associated with a deficit in an
adaptation in cortical neuronal response activity in the somatosensory cortex to repetitive
tactile stimuli [60].

5. ASD and FXS Are Interneuronopathy

The concept of “interneuronopathy” was originally proposed in X-linked lissencephaly
with abnormal genitalia (XLAG) [61], in which deficient tangential migration and a loss of
inhibitory interneurons were described [61,62]. It was later expanded to other intractable
epilepsy syndromes, such as Dravet syndrome [63,64] or West syndrome [65,66], in which
deficits in the development, the number, and the function of interneurons are thought to
contribute to clinical manifestations such as epileptic seizures. Interneurons have local
axons and innervate adjacent principal projection neurons and other interneurons [67,68].
Interneurons are composed of diverse subpopulations of neurons characterized by the
expression of specific marker proteins such as parvalbumin (PV), somatostatin (SST), or
vasoactive intestinal peptide (VIP) [67,68] (but there are also multiple different ways to
determine interneuron subclasses, including recently proposed ways based on single-
cell transcriptome or connectivity and projection pattern: please see these articles about
interneuron diversity for more details [68–73]). While interneurons represent a relatively
minor population (~20%) of all neurons in the brain [67,74,75], they are a source of GABA
and serve as a main source of inhibitory transmission, suggesting their indispensable roles
in physiological and pathological conditions.
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There is now growing evidence about interneuron dysfunction in ASD and FXS. While
it is not conclusive whether interneuron dysfunction is the primary pathological mech-
anism, it motivates researchers to consider these disorders to be interneuronopathies [8,
76,77]. In human research, postmortem studies have consistently reported reduced cell
density of PV positive fast-spiking interneurons, one of the most major classes of interneu-
rons [67] (Figure 1), in ASD individuals [77]. In FXS individuals, however, direct evidence
is limited about interneuron phenotypes. The deficit in interneurons in FXS was originally
reported in the mouse model. Selby et al. first described a remarkable (~20%) decrease
in the cell density of PV interneurons in the somatosensory cortex in Fmr1 KO mice [78].
Similar findings were reported in the developing auditory cortex, and perineuronal net
(PNN) formation, which is the extracellular matrix associated with PV interneurons, is
also impaired in the same mouse line [79]. These findings are interesting given the TMS
study in human subjects showing a reduced SICI in FXS [44], because TMS is believed to
act predominantly through modulating PV interneurons [80].
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Alterations in this subclass of interneurons are consistently reported in ASD. Scale bar: 50 µm. (B). Typical firing patter of
PV interneurons in response to depolarizing current injection (100 pA for 500 ms). These neurons fire action potentials at a
high frequency constantly for a prolonged period. The inter-spike intervals do not largely change during the prolonged
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Not only are the reductions in the number of cells, but also, the functional alterations
in inhibitory interneurons, particularly in PV interneurons, are implicated in multiple
studies in FXS animal models [77]. Early works demonstrated that, in the amygdala, there
is a drastic reduction both in phasic and tonic inhibitory transmission in Fmr1 KO mice [82].
This reduced inhibition is likely caused by functional deficits in presynaptic neurons in in-
hibitory synaptic circuits, i.e., GABAergic interneurons, as the GABA synthesizing enzymes
glutamate decarboxylase (GAD) 65/67 levels and synaptic GABA availability are reduced
in Fmr1 KO mice [82]. In vivo recording results in sensory cortices agree with the reduced
interneuron activity in Fmr1 KO mice [83] and Fmr1 KO rats [84]. Impaired interneuron
function was also implicated in a drosophila model of FXS [85]. The optogenetic activation
of interneurons fails to elicit as strong lateral inhibition in Dfmr1 KO flies as in wild-type
(WT), which indirectly indicates impaired interneuron function and outputs [85]. Proba-
bly one of the most direct and important pieces of evidence about abnormal interneuron
function is a recent finding in the visual cortex in Fmr1 KO mice [86]. The activity of PV
interneurons was directly monitored using in vivo Ca2+ imaging technique during a visual
discrimination task [86]. Fmr1 KO mice showed poor behavioral performances in the task,
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and the interneuron activity was reduced in Fmr1 KO mice [86]. Most importantly, artificial
activation of these neurons by designer receptors exclusively activated by designer drugs
(DREADD) restored the impairment in the behavioral performance, which strongly sug-
gests a causal relationship between the neuronal activity and the behavioral phenotype [86].
In addition, the poor performance in the behavioral task was fully translated in human
FXS individuals [86]. Evidence for alterations in other subclasses of interneurons such as
SST or VIP-positive interneurons is limited in ASD and FXS.

Although multiple studies have suggested reduced inhibition due to reduced in-
terneuron activity in animal models of FXS, evidence in the cerebellum of Fmr1 KO mice
counteracts that idea [87]. Cerebellar basket cells (BCs), a major class of cerebellar interneu-
rons, exhibit hyperactivity in their axonal terminals, leading to an exaggerated GABAergic
inhibition onto the principal neuron Purkinje cells (PCs) and reduced firing of PCs in
Fmr1 KO mice [87]. This hyper-inhibition is caused by a loss of direct modulation of the
voltage-gated potassium channel Kv1.2 by the N-terminal of FMRP [87]. Given the ubiqui-
tous expression of Kv1.2 across the brain, the mechanism for this dichotomy (increased
inhibition in the cerebellum vs. reduced inhibition in other brain regions) cannot be easily
explained. Interestingly, exaggerated inhibitory transmission and/or the reduced firing of
PCs have been reported in multiple ASD animal models, including in Tsc1 [88], PTEN [89],
Shank2 [90] mutants, and BTBR [91] mouse lines. Therefore, it might be possible that these
cerebellar cellular and circuitry phenotypes represent certain aspects of ASD. Given the
fact that the cerebellum is implicated to be one of the key brain regions responsible for the
pathophysiology of ASD [92], further studies are clearly needed to explore this regional
specificity or discrepancy with other brain regions.

6. Developmental Alteration

Given the characteristics of FXS as a developmental disorder, understanding the de-
velopmental profiles of the brain circuit is undoubtedly indispensable. However, current
evidence about the circuit development is relatively limited compared to the large number
of studies in adult FXS animal models. Here, I will focus on evidence in the somatosensory
cortex in which several studies have uncovered the abnormal development of both excita-
tory and inhibitory circuits. Several studies have demonstrated transient alterations in the
morphology and turnover of dendritic spines [93–98], functional maturation of excitatory
synapses [99,100], and the excitatory innervation pattern [101] during the somatosensory
critical period (1 to 2 postnatal weeks) in Fmr1 KO mice. The closure of the critical period
for synaptic plasticity was delayed in the somatosensory cortex in Fmr1 KO mice [99,100].
These series’ of developmental studies have demonstrated that alterations in the excitatory
synapses are parallel with the time course of the sensory critical period. Importantly, the
timing of the critical period closure is largely determined by cortical inhibition, particularly
by PV interneurons, which have been rigorously studied in the visual cortex [102].

Studies have uncovered developmental cellular and synaptic alterations in PV in-
terneurons during the sensory critical period. The intrinsic membrane properties and
characteristic fast-spiking firing patterns exhibit an immature profile in the developing
(P5–P10) somatosensory cortex (layer 4) in Fmr1 KO mice [81] (Figure 2A,B). Another study
demonstrated that PV interneurons show immature passive membrane properties but fire
an action potential more easily (lower rheobase current) in P10 Fmr1 KO mice [103]. These
studies demonstrated that the functional maturation of PV interneurons is significantly
delayed in Fmr1 KO mice. The development of excitatory synapses onto PV interneurons
is also significantly delayed during the critical period. The frequency of the spontaneous
excitatory postsynaptic current (sEPSC) recorded from PV interneurons is lower, and the
density of the synapses was decreased in <P10 Fmr1 KO mice, which suggests that the bulk
excitatory synaptic input and the number of synapses are reduced in PV interneurons in
Fmr1 KO mice [81] (Figure 2C–G). The synaptic connection probability and the strength
of the individual synapses between excitatory stellate neurons, the principal neurons in
layer 4, and PV positive fast-spiking interneurons are also reduced in 2-week-old Fmr1
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KO mice, which again suggests that the excitatory synaptic inputs onto PV interneurons
are weaker in Fmr1 KO mice [103–105]. These findings indicate that PV interneurons
demonstrate immature and defective activity both intrinsically and synaptically during the
critical period in Fmr1 KO mice.
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Figure 2. (A) Representative voltage response traces of PV interneurons in developing (postnatal day 9: P9) Fmr1 WT
(top) and KO (bottom) mice. The initial and final portions of the 500-ms-long traces were magnified for clarity. Note the
significantly greater ratio of the last three inter-spike intervals “b” to the first inter-spike interval “a” in KO mice compared
to in WT mice, which indicates that PV interneurons equip less fast-spiking properties in KO mice. Calibration: 50 ms.
(B) Collective data for fast-spiking property during the development (P5–P10) in Fmr1 WT and KO mice. The spiking
property was quantified by “a” divided by “b/3”. * Denotes p < 0.05. (C) Representative sEPSC traces recorded from
developing (P5–P9) PV interneurons in Fmr1 WT (top) and KO (bottom) mice. Calibration: 1 s and 10 pA. (D) Collective
data for sEPSC frequency. Each data point represents the mean sEPSC frequency in each cell. The frequency increases
developmentally but remains lower in Fmr1 KO mice. (E,F). Three-dimensional renderings of dendritic segments (green) of
PV interneurons in Fmr1 WT (E) and KO (F) mice. Synapses are labeled with the colocalized puncta of postsynaptic marker
PSD95 (red) and presynaptic marker synaptophysin (“Synapt”: blue). The reference cube represents 1-µm calibrations.
(G) Collective data for the analysis of the synapse densities in Fmr1 WT and KO mice (P9–P10). The density of the synapses
was significantly lower in Fmr1 KO mice (from Reference [81] with edits).

The deficits in the intrinsic and synaptic properties in PV interneurons result in an-
tagonistic complex alterations in thalamocortical circuit activity during the critical period.
Thalamocortical feed-forward inhibition (FFI) involves a di-synaptic circuit in which inhi-
bition is mediated by PV interneurons [106,107]. The FFI is deficient (lacked in a subset of
cells) in the somatosensory cortex (layer 4) in P10 Fmr1 KO mice [103] Nomura et al. unpub-
lished. Thalamic excitatory afferents produce action potentials in stellate cells more readily
but with less precise timing upon stimuli at physiologically relevant frequencies as a result
of deficiency in FFI [103]. While some cellular and synaptic measures of PV interneurons
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are normalized as the mice develop [81,104,105], as with excitatory synapses [94,99,101],
there are persistent circuit-level (including FFI in layer 2/3 [83]) and behavioral-level phe-
notypes in adult Fmr1 KO mice beyond the sensory critical period [60,83,100,108–110]. This
indicates that transient cellular and synaptic deficits in PV interneurons during the critical
period can still result in persistent improper thalamocortical circuit refinement, which
might warrant correcting these alterations during the developmental period is critical
to treat symptoms in Fmr1 KO mice. Indeed, manipulating GABA signaling by a Cl−

transporter modulator, which alters the GABA receptor polarity during the critical period,
restores the abnormal whisker-evoked responses (wider receptive field and stronger signal)
in the adult somatosensory cortex in Fmr1 KO mice [100]. Whether manipulating the
interneuron activity during the critical period has persistent beneficial effects in Fmr1 KO
mice has not been tested, but several approaches, including optogenetic or chemogenetic
tools, to specifically target interneurons may help testing this critical period-interneuron
hypothesis.

In addition to animal models, using human pluripotent cells such as induced pluripo-
tent stem cells (iPS) or embryonic stem (ES) cells allows analyses of developmental profiles
in vitro, which is not easy or even impossible in embryos of human patients. This approach
is also useful for neurodevelopmental disorders, including ASD and FXS [111,112]. Evi-
dence specific to interneurons in human-derived neurons is limited, but functional analyses
using human ES cell-derived excitatory neurons from FXS individuals uncovered impaired
action potential firing, which may be, in part, due to reduced activity in voltage-gated Na+

and K+ channels, as well as reduced synaptic excitation, which may be attributable to the
reduced excitability and impaired vesicular release in the presynaptic neurons [113,114].
Similar approaches could be applied to study the interneuron pathology in human FXS,
particularly developmental alterations in combination with experimental protocols, to
specifically differentiate interneurons from pluripotent cells [115–118].

7. Translational Perspective

As discussed, there is now considerable evidence to believe the inhibitory deficits
and interneuron dysfunction in the pathophysiology of FXS and ASD. It is theoretical and
justifiable to consider the GABAergic inhibitory system as a promising therapeutic target for
FXS [39,42]. However, up to now, there have been no successes in clinical trials in FXS that
have tested GABA-targeting drugs. Arbaclofen, which is an agonist of GABAB receptors,
was not effective in FXS individuals in phase 2 and phase 3 clinical trials, while the post
hoc analyses showed several beneficial results in several measures, which might suggest
younger and more severely affected individuals may have some beneficial effects [119,120].
Ganaxolone, which is an agonist of δ subunit-containing GABAA receptors, was not
effective in FXS individuals in a phase 2 clinical trial, while the post hoc analyses presented
some potential where individuals with higher anxiety or lower cognitive function may have
more beneficial effects [121]. These clinical studies may have indicated these treatments
might be effective in a subpopulation of affected individuals, depending on age, specific
symptoms, or severity, for instance. However, it appears not to be game-changing.

It might be worth noting that most clinical research so far has targeted GABA recep-
tors, the postsynaptic component of the inhibitory circuit. Given evidence is accumulating
about the dysfunction of inhibitory interneurons, the presynaptic component of the in-
hibitory system, targeting these presynaptic neurons might be worth considering. Though
manipulating a certain population of neurons is challenging, particularly in live human
brains, cell type-specific proteins such as channels, receptors, or transporters specifically
expressed in certain synapses or in certain circuits might be potential candidates to be
considered. For instance, Kv3.1, a subfamily of voltage-gated potassium channels, is
enriched in high-frequency firing neurons such as PV-positive fast-spiking GABAergic
interneurons, glycinergic medial nucleus of the trapezoid body (MNTB) neurons, and
cerebellar Purkinje neurons [122]. Modulators of Kv3.1 have been shown to manipulate
neuronal excitability in PV interneurons [123,124] and MNTB neurons [125]. A recent
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study demonstrated that AUT2, a positive modulator of Kv3.1, restored an enhanced wave
IV in the auditory brainstem response (ABR) recordings in Fmr1 KO mice, which may
have suggested a therapeutic potential for sensory symptoms in FXS individuals, although
the pharmacological actions for ABR rescue are likely through modulating the activity of
MNTB neurons, not GABAergic interneurons [126]. Further studies for the cell type and
circuit-specific analyses might be helpful for developing novel therapeutics in the future.

While the GABAergic inhibitory system looks like a reasonable therapeutic target for
ASD and FXS [39,42], recent research has critically questioned if E–I imbalance particularly
reduced inhibition is causal for ASD pathophysiology [83]. It has been demonstrated
that multiple ASD mouse models, including Fmr1 KO mice, show E–I imbalance towards
excitation and reduced interneuron activity in the somatosensory cortex (layer 2/3), but
the network excitability (postsynaptic depolarization and sensory-evoked firing) is largely
unchanged or even reduced in Fmr1 KO mice [83]. The authors concluded that altered
E–I balance is compensatory, instead of causal, change to stabilize depolarization and
spiking [83]. If this compensatory model is the case, targeting the inhibitory system to
enhance the inhibition by GABA receptor activators, for instance, may amplify, instead
of ameliorate, the symptoms of ASD and FXS. In addition, recent studies have shown
that the frequency of basal spontaneous inhibitory postsynaptic current (sIPSC) recorded
from principal neurons in the somatosensory cortex (layers 2/3) [127] and in the lateral
amygdala [128] is enhanced, which may reflect the circuit hyperexcitability in Fmr1 KO mice.
Synaptic plasticity in excitatory and inhibitory synapses are exaggerated and diminished,
respectively, in Fmr1 KO mice [127,128], which might help to stabilize the homeostatic
circuit activity. These findings may again question if correcting synaptic GABA signaling is
beneficial for FXS. Further studies are clearly needed to clarify and tackle this issue.

More generally, not restricted to ASD or FXS, successful translational research, partic-
ularly in seeking new therapeutics, is extremely rare. It is known that more than 80% of the
candidate compounds that demonstrated safety and efficacy in preclinical studies have no
beneficial effect in human patients [129]. This discrepancy may arise from multiple complex
factors, including the heterogeneity of the disorder, a lack of objective biomarkers and
measures of the outcome, invalid sample size, and publication and citation biases towards
positive results [129–135]. Registered reports in which research proposals are registered
and reviewed before experiments are started and publication is guaranteed regardless of
the outcome (whether positive or negative/novel or not novel) may reduce some of these
biases and may have a potential to serve as an alternative platform in translational research,
particularly in hypothesis-driven studies [136,137].

8. Conclusions

Decades of research uncovered circuit E–I imbalance as a shared feature in various
brain disorders, including ASD. Single-gene disorders, including FXS, have been serving as
a good model to study ASD pathophysiology together with their animal models. Evidence
is accumulating about alterations in the inhibitory system, and it looks like a promising
target to seek new therapeutics in ASD and FXS. Interneuron dysfunction is an important
contributor to impaired inhibition, and it may also be causal for the symptoms of ASD and
FXS. Evidence is accumulating about developmental alterations, but we are at an early
stage of understanding. The pharmacological and modern chemogenetic manipulations
of this inhibitory system ameliorate the pathological symptoms in animal models, but
no successful clinical trials targeting GABA receptors are available so far. The successful
translation from basic research to clinical practice is rare, which should not be overlooked.
Although we are still far behind a complete picture for the satisfactory understanding of
ASD and FXS, intense collaborative studies between clinical and basic researchers may
promote our knowledge about these intractable disorders.
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