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Continuous monitoring of frail individuals for detecting dangerous situations during their
daily living at home can be a powerful tool toward their inclusion in the society by
allowing living independently while safely. To this goal we developed a pose recognition
system tailored to disabled students living in college dorms and based on skeleton
tracking through four Kinect One devices independently recording the inhabitant with
different viewpoints, while preserving the individual’s privacy. The system is intended
to classify each data frame and provide the classification result to a further decision-
making algorithm, which may trigger an alarm based on the classified pose and the
location of the subject with respect to the furniture in the room. An extensive dataset
was recorded on 12 individuals moving in a mockup room and undertaking four poses to
be recognized: standing, sitting, lying down, and “dangerous sitting.” The latter consists
of the subject slumped in a chair with his/her head lying forward or backward as if
unconscious. Each skeleton frame was labeled and represented using 10 discriminative
features: three skeletal joint vertical coordinates and seven relative and absolute angles
describing articular joint positions and body segment orientation. In order to classify
the pose of the subject in each skeleton frame we built a two hidden layers multi-layer
perceptron neural network with a “SoftMax” output layer, which we trained on the data
from 10 of the 12 subjects (495,728 frames), with the data from the two remaining
subjects representing the test set (106,802 frames). The system achieved very promising
results, with an average accuracy of 83.9% (ranging 82.7 and 94.3% in each of the four
classes). Our work proves the usefulness of human pose recognition based on machine
learning in the field of safety monitoring in assisted living conditions.

Keywords: Ambient-Assisted Living, vision-based activity recognition, skeleton tracking, pose recognition,
machine learning, geometric features

Abbreviations: AAL, Ambient-Assisted Living; ANN, artificial neural network; DL, deep learning; DT, decision tree; HMM,
hidden Markov model; IoT, internet of things; KNN, K-nearest neighbor; LR, logistic regression; ML, machine learning; MLP,
multi-layer perceptron; NBC, Naïve Bayes classifier; RF, random forest; SVM, support vector machine.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 May 2020 | Volume 8 | Article 415

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00415
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2020.00415
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00415&domain=pdf&date_stamp=2020-05-14
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00415/full
http://loop.frontiersin.org/people/823353/overview
http://loop.frontiersin.org/people/5560/overview
http://loop.frontiersin.org/people/966079/overview
http://loop.frontiersin.org/people/898973/overview
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00415 May 12, 2020 Time: 21:21 # 2

Guerra et al. Pose Recognition for AAL

INTRODUCTION

The integration of frail people into society is a major issue in
developed countries for both social and economic motivations.
This inclusion should start with the environment in which these
subjects live, and can be achieved by improving well-being,
autonomy, care, and assistance in the home. Internet of things
(IoT) and modern domotic technologies offer a plethora of
solutions to implement intelligent and automated environments
allowing frail individuals to live in autonomy and safety in place
(Álvarez-García, 2013; Amiribesheli et al., 2015; Lloret et al.,
2015; Debes et al., 2016; Mehr et al., 2016; Majumder et al.,
2017; Guo et al., 2019). In the last years, Ambient-Assisted
Living (AAL) has attracted great attention and numerous projects
have proposed different networks of sensors and complex
monitoring algorithms which most frequently require to shift
from a low-level data collection and analysis toward high-level
information integration, context processing, activity recognition
and inference (Chen et al., 2012; Verrini et al., 2018).

The most commonly used sensors for AAL are wearable and
environmental sensors (Delahoz and Labrador, 2014; Pannurat
et al., 2014; Mehr et al., 2016; Torti et al., 2019). The first category
includes radio frequency identification tags, accelerometers,
gyroscopes, and more generally inertial sensors which can be
embedded in devices such as smartphones and smartwatches. The
main advantages of wearable sensors are to be particularly light
and non-intrusive, yet they have the important drawback of being
dependent on rechargeable batteries and of requiring correct
body positioning to maximize the signal quality and reduce noise.

The second category, environmental sensors, commonly
refers to cameras able to monitor an inhabitant behavior and
environment changes (vision-based activity recognition) (Chen
et al., 2012). Using properly located cameras, the inhabitant can
be recorded while free to perform the normal actions of daily life
without limitations and without having to be in anyway involved,
e.g., having to remember to wear a device or to charge it. The
cameras used for AAL purposes are commonly depth cameras,
such as Asus Xtion (Taipei, Taiwan), Intel RealSense (Santa Clara,
United States), Orbbec Astra (Troy, United States) and Microsoft
Kinect (Redmond, United States) (Ben Hadj Mohamed et al.,
2013; Han et al., 2013; Gasparrini et al., 2014; Mastorakis and
Makris, 2014; Pannurat et al., 2014; Visutarrom et al., 2014, 2015;
Damaševičius et al., 2016; Calin and Coroiu, 2018). Thanks to
many approaches based on RGB sequences, depth images or
their combination, these sensors are able to provide detailed
information about 3D human motion (Wang et al., 2014; Kim
et al., 2017). Moreover, real time algorithms can estimate the
body skeleton, which allows to describe human poses with a
lower dimensionality than RGB/RGB-D-based representations
while being intrinsically anonymous, thereby respecting the
privacy of the subject.

To infer what an individual is doing, and which pose he/she
assumes, the data collected from both wearable sensors and
cameras are commonly processed using data mining, machine
learning (ML), and deep learning (DL) algorithms. Machine
learning focuses on teaching computers how to learn from
experience, without the need to be programed for specific

tasks. This makes ML particularly suitable to analyze data
coming from smart house sensors in order to recognize falls
or to detect a dangerous situation during daily life activities.
Machine learning algorithms such as Naïve Bayes classifiers
(NBC), K-nearest neighbor (KNN), support vector machines
(SVM), hidden Markov models (HMM), and artificial neural
networks (ANN), random forest (RF), decision tree (DT), and
logistic regression (LR) (Begg and Hassan, 2006; Crandall and
Cook, 2010; Hussein et al., 2014; Visutarrom et al., 2014; Wang
et al., 2014; Amiribesheli et al., 2015; Jalal et al., 2015) are
the most popular algorithms used in sensor- and vision-based
activity recognition. K-nearest neighbor is widely used in real-
life scenarios since it is non-parametric, meaning that it does
not make any assumptions about the underlying distribution
of the data. The main disadvantage of this approach is that
the algorithm must compute the distance and sort all the
training data at each prediction, therefore it turns out slow with
large numbers of training examples. A similar weakness affects
the SVM algorithm, which nevertheless is considered relatively
memory efficient. Achieving the best classification results, for
any given problem, requires setting several key parameters that
need to be chosen correctly (Bishop, 2006). Artificial neural
networks, such as multi-layer perceptron (MLP) algorithm, can
be applied to many smart home problems, ranging from activity
classification, to novelty and anomaly recognition, to activity
prediction (Begg and Hassan, 2006; Hussein et al., 2014). Patsadu
et al. (2012) compared four ML algorithms (MLP, SVM, DT,
and NBC) training the models on a dataset of 7200 frames and
testing them on further 3600 frames to identify three different
human poses: standing, sitting, and lying down. The poses were
performed by a subject positioned in front of the camera and
each videoframe was encoded as a row of 20 body-joints positions
that were used as features for ML algorithms. The best classifier
was found to be the MLP network (100% of accuracy vs. 99.75%
of SVM, 93.19% of DT and 81.94% of NBC). Visutarrom et al.
(2014) went deeper into this topic comparing six different ML
classifiers and two different sets of features (geometric vs. skeletal
joints features). Four poses (standing, sitting, sitting on floor,
and lying down) of a subject watching television in front of the
Kinect device were classified. They compared MLP, DT, NBC,
RF, LR, and SVM by training and testing the six models on a
dataset of geometric features and found that DT, RF, and MLP
algorithms performed best (accuracy about 97.9%), followed
by the SVM (accuracy about 97.5%). Altogether various ML
algorithms have been successfully applied to pose recognition,
yet all these approaches suffer from various limitations that do
not prove their usefulness in the context of identifying dangerous
situations in ecological conditions of assisted living. Indeed, all
algorithms were applied to recordings performed by subjects
statically facing the camera, i.e., the ideal conditions for skeleton
tracking systems, which are nonetheless unlikely to occur while
monitored subjects perform their daily living activities at home.
Furthermore, their performance has been tested in recognizing
upright standing or poses typically assumed immediately after a
fall, e.g., lying down or sitting on the floor, yet omitting more
general dangerous situations such as recognizing that a person
has fainted while sitting on a chair.
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In an automated monitoring system for AAL, the accuracy of
event recognition is vital. False negatives are unacceptable as they
would imply the lack of intervention in a dangerous condition.
Recognition accuracy is strongly dependent not only on the
model algorithm, but also on the type and number of attributes
that make up the database used to train the network. In vision-
based action recognition, the common approach is to extract
image features from video data and to issue a corresponding
action class label (Poppe, 2010; Babiker et al., 2018). Nevertheless,
when skeleton representation of the human body is used, the
most privileged discriminative features are the raw data coming
from the skeletal tracking (joint spatial coordinates) (Patsadu
et al., 2012; Youness and Abdelhak, 2016) or some indices
expressing geometric relations between certain body points, such
as: the vertical distance from hip joint to room floor (Visutarrom
et al., 2014, 2015), the distance between the right toe and the
plane spanned by the left ankle, the left hip and the foot for a
fixed pose (Müller et al., 2005) the distance between two joints,
two body segments, or a joint and a body segment (Yang and
Tian, 2014), the relative angle between two segments within
the body kinematic chain (Müller et al., 2005) and finally,
the size of the 3D bounding box enclosing the body skeleton
(Bevilacqua et al., 2014). Geometric features are synthetic in the
sense that they express a single geometric aspect making them
particularly robust to spatial variations that are not correlated
with the aspect of interest (Müller et al., 2005). In order to
identify the best attribute set to classify, off- and on-line, standing,
bending, lying, and sitting poses, Le et al. (2013) compared
the results of a ML algorithm trained and tested with four
different sets of features. They trained an SVM with a radial
basis function kernel on off-line data referred to a subject in
front of the camera, using 7, 9, and 17 joint angles with and
without scaling, and absolute joint coordinates without scaling.
In off-line, optimal Kinect acquisition configuration, very good
results were obtained with the absolute coordinates without
scaling. They then tested the algorithm also using on-line data
of a subject at a different distance from and at different angles
with the Kinect camera. In the latter, more realistic scenarios,
the angles were found to represent more relevant features for
posture representation.

In this paper we focus on the problem of skeleton-
based human pose recognition for the detection of dangerous
situations. This work is part of a broader project (TheDALUS,
The Disable Assisting Living for University Students), aimed
to promote the inclusion of disabled students in a university
environment (a room in college dorms) guaranteeing them safety
and autonomy. This is done using a net of four Kinect One
devices, whose data are collated and processed to identify both
voluntary requests for help and dangerous situations (i.e., the
subject has fainted or slipped from the wheeling chair, etc.)
to trigger an alarm toward third parties, when needed. During
daily activities a subject assumes a set of poses that can be
very similar to those assumed during dangerous situations. Our
approach is based upon the consideration that to distinguish
these two different scenarios knowledge of the location domain
is fundamental (the spatial position of the room inhabitant,
objects and room furniture position and the relative position

of the inhabitant with respect to the objects and the room
furniture). Indeed, a normal pose could become a dangerous one
when it takes place in relatively specific locations of the room.
For example, the lying down pose is a daily living pose if it
occurs on the bed. Conversely, it takes the form of a possible
alarm condition if it occurs on the floor. In this context, an
accurate body pose pattern recognition model must be defined
first, and, in a later processing stage, the identified poses can be
joined with the knowledge of the location domain. This implicit
relationship between body poses and related spatial context
provides the heuristics to infer the occurrence of a dangerous
scenario, thereby broadening the scope of current approaches
of ML in human pose recognition to the field of monitoring
safety in assisted living conditions. The aim of this study is to
implement the first step of this analysis procedure by using a
large amount of skeleton tracking data referred to real scenarios,
in which a more extensive camera coverage of the room is
obtained by using four Kinect One devices. As such, here we are
interested in classifying each acquired skeleton frame provided
by the device in a set of predefined poses (standing, sitting, lying
down and “dangerous sitting”). To this goal a three layers MLP
network was trained and tested using a custom-built data set
of robust and discriminative kinematic features computed based
on skeleton data.

MATERIALS AND METHODS

Experimental Set-Up
In order to minimize the invasiveness of the monitoring system, a
main requirement in a 24-h surveillance of daily activities setting,
we decided to avoid any wearable sensor. On the other hand,
considering the constraints raised by the privacy of the students
inhabiting the rooms, video recording and video surveillance
systems did not represent a viable option. We therefore chose a
motion sensing system based on skeletal tracking (Booranrom
et al., 2014; Du et al., 2015; Gasparrini et al., 2015; Visutarrom
et al., 2015; Liu et al., 2018). The current implementation is
based on Microsoft’s Kinect One motion sensing system, yet it
is easily portable to any skeletal tracking device that can provide
the 3D coordinates of the chosen set of skeletal joints. The
Kinect One motion sensing system can detect a human body
and voice signal using an RGB camera (1920 × 1080 pixels), a
depth sensor (512× 424 pixels) and an array of four microphones
(48 kHz). The depth sensor is composed of an IR emitter and
an IR camera and provides depth measurements based on the
Time of Flight principle (Pagliari and Pinto, 2015; Sarbolandi
et al., 2015; Corti et al., 2016). Acquisitions can be carried out
with a framerate up to 30 Hz and require a computer with an
USB 3.0 interface for data transfer. The ideal distance of an
object from the sensor is 0.8–3.5 m, with a maximum range
of 0.5–4.5 m. The angle of vision is 60◦ vertically and 70◦
horizontally (Sell and O’Connor, 2014; Fankhauser et al., 2015;
Pagliari and Pinto, 2015). Microsoft released also a Software
Development Kit (SDK), used for skeletal estimation. It is
capable of tracking 25 joints for up to six users simultaneously
(Microsoft, 2019).
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Experimental acquisitions were performed in a prototype
room, mimicking that of the university college dorms
(same dimensions and similar furniture) that was set up in
the laboratory. In this setting, we decided to record each
experimental trial using four Kinect One devices (K1, K2, K3,
and K4 in Figure 1). Two are positioned to sense the whole room
(K1 and K4), while the remaining two are placed to specifically
acquire two areas of the room, such as the bed (K2) and the
desk (K3), which were especially relevant to our aim. This
decision was made after several careful eye-inspections of the
different shots obtained with different camera configurations.
Each arrangement was different for number, position and
orientation of the devices. The goal was to ensure recording
of the entire room minimizing possible blind spots. The data
of the four Kinect One were acquired at the same time but
processed separately. A custom-made C#-based tool with GUI
was developed using VisualStudio 2017 to control the Kinect
One acquisitions.

Acquisitions
We decided to focus our acquisitions around the three most
frequent and recurrent poses assumed by a person in a room
during daily activities (Datasets – Advise, 2019; Fall detection
Dataset, 2019; Fall detection testing dataset, 2019; Weblet
Importer, 2019): standing, sitting, and lying down. In addition to
the listed poses, we added one further pose, labeled “dangerous
sitting,” which grouped all situations of malaise or fainting
resulting in a seated person slumped or lying backward. This
allowed us to perform a first distinction, prior to establishing a
relationship between the subject location and the room furniture,
between routine activities and alarm situations. Experimental
protocols were designed to simulate the actions and poses
performed during the daily life of a general disabled student, not
necessarily having motor disabilities.

In order to build a dataset suitable for training a neural
network to discern the four poses we performed a set of
experimental acquisitions on a group of 12 normal subjects (7
females and 5 males; age ranging 25 and 60 years old; height
ranging 1.55 and 1.90 m). All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The four
Kinect One devices installed in the room acquired simultaneously
the movement of the subject. The acquisitions were structured as
four separate sessions performed on the same day for a total of
about 13 min:

• subject starts to walk from standing position in front of K1
(Figure 1), then grabs a chair near the desk, placing it in
front of the camera, and finally sits on it. While sitting, the
subject first moves the head backward and then leans the
trunk forward, while simultaneously pitching the head as an
unconscious person. The subject then returns to the normal
sitting position and finally gets up and brings the chair back to
its original location. Each pose was maintained for 10 s. The
sequence was then repeated in front of the other cameras (K2,
K3, K4 in Figure 1);

• subject starts sitting on the bed, then lies down on the back,
turns on the right side, then returns on the back and turns to
the other side;
• subject starts lying on the ground on the back, then turns on

the left side;
• subject starts sitting on the bed, then lies down. The action is

repeated three times.

The sequence of poses in each acquisition was timed by the
operator running the acquisitions.

Data Pre-processing
Using custom developed software based on the Kinect’s SDK we
computed the spatial coordinates (x, y, z) of the standardized
25 skeletal joints (Microsoft, 2019). Based on considerations
relative to the reliability of the detected joints and to the aim
of this study, we decided to reduce the number of skeletal
joints from 25 (Figure 2A) to 16. An additional joint labeled
Hc was instead added as the midpoint between the two hips
joints (Figure 2B).

The 17 selected joints were (Figure 2B): head (1), shoulders
segment’s mid-point (C7), acromion (3–4), elbow (5–6), wrist
(7–8), iliac crest (9–10), knee (11–12), malleolus (13–14), foot
(15–16); hips segment’s mid-point (Hc). In order to identify
the position of the subject in the room, the coordinates of
the 17 joints were roto-translated to obtain data referred to
an absolute reference system (X, Y, Z) located in one corner
of the mock-up room (Figure 1). The absolute position in
space of each body joint, described by the corresponding X, Y,
Z triplet, isn’t the most convenient description for classifying
human poses, since: (1) coordinates depend on the relative
location of the individual in the room, while the same posture
can be taken in different locations within the room; (2) the
joint coordinates of two subjects having the same pose in the
same room location have different values depending on the
size of the subject’s body; and (3) posture is independent of
where it occurs in space while it is defined by the geometrical
relationship between the different body segments. The latter
can instead be efficiently captured by articular angles, so that
we chose to compute the following 16 articular angles defined
between two consecutive body segments measured in the plane
defined by the segments themselves: head–shoulder axis (µ1,
µ2), head–trunk (ξ ), shoulder axis–trunk (τ1, τ2), shoulder axis–
arm (η1, η2), arm–forearm (θ1, θ2), trunk–iliac crest axis (δ1,
δ2), iliac crest axis–thigh (γ1, γ2), thigh–leg (β1, β2), and leg–
foot (α1, α2) (Figure 2B). Based on the same line of reasoning
we further computed the roll and pitch angles of the head
and trunk and labeled them as follows: A_pitch (trunk pitch),
A_roll (trunk roll), B_pitch (head pitch), and B_roll (head
roll). All angles were normalized dividing them by 180◦. We
further considered the vertical coordinates (Z) of the skeletal
joints as they are significant for distinguishing the lying down
from the standing pose. On the other hand these are not so
discriminative for discerning between sitting and “dangerous
sitting” poses, which are more easily identified through joints
angles’ values. The joints’ Z coordinates werethen scaled on the
height of each subject.
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FIGURE 1 | Kinect one positions in the prototype room (K1, K2, K3, and K4), reconstructed with a CAD software (SketchUp). Two different fields of view.

FIGURE 2 | (A) 25-joints skeleton computed by Kinect One; (B) reduced skeleton used in this analysis with 17 joints for the left and right hemi-body. The relative
angles computed in the plane defined by the two body segments are depicted, for illustrative purpose, only for the frontal plane and labeled with Greek letters. For
clarity, except for τ1, only the angles of the right hemi-body are shown.

During the acquisition process we noted that sometimes
Kinect One was not able to recognize the subject. For example,
transient exits of the subject from the camera sight (Figure 1)
could cause temporary non-identifications of all skeletal joints,
and the same may occur when the subject assumes a “dangerous
sitting” pose while not facing the camera. This could generate
temporal holes between data frames (missing data). For these
frames we decided to assign the value “999” to all the selected
parameters in order to maintain consistency among the data of
the four Kinect One systems. All the pre-processing algorithms
were implemented using MATLAB.

Database
Once all joints’ Z-coordinates, the relative angles and the chosen
pitch and roll angles were obtained, i.e., a total of 37 (17
vertical joints coordinates, 16 relative angles, 4 absolute angles)
features describing the skeleton in each frame. We then applied a
ReliefF (Urbanowicz et al., 2018) algorithm for feature selection

(MATLAB) and selected a subset of ten attributes: A_pitch,
A_roll, B_pitch, B_roll, ξ , µ2, δ2, Z_1, Z_C7, Z_Hc (see Figure 2B
for the last six attributes).

Using a custom-made LabView (National Instruments,
Inc.) software, angles and joints position traces were then
visually inspected together with a graphical visualization of the
reconstructed skeleton to label each frame with one of the
following four poses:

• Class 1: standing pose;
• Class 2: sitting pose;
• Class 3: lying down pose;
• Class 4: “dangerous sitting” pose.

Using the same software we also identified the frames
corresponding to the transition from a pose to another and
removed them from the dataset. The data from the four
Kinect One systems were collated to build the final database
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FIGURE 3 | Data acquisition and processing with the proposed MLP network model having two hidden layers and a “SoftMax” output layer. The considered features
are 10 kinematic parameters computed from skeletal tracking. The output classification corresponds to the one of the four classes (Class 1, Class 2, Class 3,
Class 4).

composed by 602,530 frames. Among these, 145,196 frames
belonged to Class 1, 233,593 to Class 2, 86,786 to Class 3, and
136,955 to Class 4.

A training set was eventually built using the data from 10 of
the 12 subjects (database of 495,728 frames). The test set was
built using the data of the 2 remaining subjects (database of
106,802 frames).

Neural Network
The aim of this work was not to detect dynamic situations,
such as the falling of the subject in order to prevent it, but
rather to identify the subject lying on the floor immediately
after the fall in order to activate an alarm and intervene with
first aid actions. Therefore, in the current implementation we
wanted to identify a subject pose at any one time, leaving the
decision-making process about alarm triggering to a downstream
algorithm having access to more data (e.g., subject’s position
in the room). The pose classification problem is therefore seen
as a static mapping problem. For this reason, among a range
of possible ML algorithms, we have selected an MLP Neural
Network to classify predefined human poses. The network was
implemented in MATLAB using the Neural Network Toolbox.
We designed a network consisting of three fully connected layers
of neurons, plus an input layer connected to the 10 features
describing each frame in the database (Figure 3). The first hidden
layer has a number of neurons equal to the number of attributes
in the database (10), each with a hyperbolic tangent transfer
function and a bias. The second hidden layer has a structure
similar to the first one, but contains a smaller number of neural

units (6). The output layer is instead composed by a number
of neurons equal to the number of target classes (4) and their
transfer function is the “SoftMax” function producing, for each
input element, the probabilities of belonging to each considered
class. The MLP network was trained using the Levenberg-
Marquardt backpropagation algorithm, first with a k-fold cross
validation (k = 10), and then using the whole training set. The
learning process was performed over a maximum of 1000 epochs,
i.e., 1000 iterations on the training set.

Statistical Analysis
MLP network was trained and tested 50 times to study its
classification robustness. Total accuracy (mean over the four
classes), class accuracy, F-score, sensitivity, and specificity were
calculated for each network simulation. These parameters rely
upon the concept of True Positive (TP, a pose correctly classified
as pertaining to the considered class), True Negative (TN, a pose
which is correctly classified as pertaining to a class different
from the one considered), False Positive (FP, a pose that is
wrongly classified as pertaining to the considered class), and False
Negative (FN a pose that is wrongly classified as not pertaining to
the class considered).

Accuracy
Accuracy is a metric parameter for evaluating classification
models. In general, for binary classification, accuracy can be
calculated as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
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Sensitivity
The Sensitivity (also called Recall) is a metric parameter that
measures the proportion of genuinely positive samples that are
currently identified as such. It is defined as:

Sensitivity =
TP

TP+ FN

Specificity
The Specificity is the proportion of genuinely negative samples
that are currently identified as such. It is defined as:

Specificity =
TN

TN+ FP

F-Score
F-score is an overall measure model’s accuracy that combines
precision and recall. Precision is the number of positive results
divided by the number of all positive results returned by a
classifier. Recall, instead, is the ratio between TP and the number
of all samples that should have been identified as positive, which
corresponds to the sensitivity parameter.

F-score = 2×
Precision× Recall
Precision+ Recall

where:
Precision =

TP
TP+ FP

For each of five parameters considered, the mean value over
the 50 network simulations was then computed. This average
operation was done only after verifying that the results listed
above were normally distributed. Since the number of samples
was 50, i.e., the number of network simulations, we decided
to use the Shapiro–Wilk test as a hypothesis test (Hanusz and
Tarasińska, 2015). The null hypothesis of this test is that the
population is normally distributed. For each test performed the
p-value was greater than the chosen alpha level, therefore the
null hypothesis that the data came from a normally distributed
population cannot be rejected (IBM SPSS Statistics, IBM).
Therefore, in the result section, for each of the five parameters,
the mean and the standard deviation are considered.

Confusion Matrix
Confusion matrix is a specific table summarizing the results of the
classifier used to visualize the performance of a machine learning
algorithm. The rows of the matrix represent the classifications
predicted by the MLP network while the columns represent the
instances actually belonging to each class.

In the present study we computed a confusion matrix for
each of the 50 network simulations. Then, we computed a mean
confusion matrix in which the number of frames reported in each
cell is the mean, over the 50 confusion matrices, of the frames
pertaining to that cell.

ROC Curve
ROC curve graph shows the performance of a classification
model. True positive rate (sensitivity) is plotted against the false
positive rate (1-specificity) at different classification thresholds.

FIGURE 4 | Mean, SD of the mean total accuracy obtained over the 50
network simulations. The mean total accuracy from each of 50 the simulations
are superimposed (black empty triangles).

The area under the ROC curve (AUC) gives an index of the
performance of the classifier. Higher values of AUC correspond
to a good prediction of the model.

In the present study we computed, for each class, the ROC
curve graph for each of the 50 network simulations. Then, to
obtain a mean ROC curve, we averaged the ROC curve of the
50 simulations as the mean true positive rate for each value of the
false positive rate considered on the abscissa.

RESULTS

In Figure 4 the mean value (Mean), the corresponding standard
deviation (SD) and the distribution of the 50 mean total accuracy
values, each corresponding to one of the 50 network simulations
(0.839± 0.0073) are shown. Values range 0.852–0.820.

Figure 5 shows mean values, SD, and the distributions of
the accuracy, F-score, sensitivity, and specificity of each of the
four classes. All four variables represented in Figure 5 show a
similar trend. Class 3, which corresponds to the lying pose, and
Class 1, which corresponds to the standing pose, represent the
classes best identified by the net. The network, on the other
hand, classified Class 2 (sitting pose) and, especially, Class 4
(“dangerous sitting” pose) with more difficulty for each of the
four variables calculated (Figure 5).
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FIGURE 5 | Mean, SD and individual results (black empty triangles) of the 50 network simulations. From top left: accuracy, F-score, sensitivity, and specificity for
each of the 4 classes.

Figure 6 shows, for each class, the ROC curves calculated on
the 50 network simulations. The average ROC curve has been
calculated for each of the four classes, in order to observe the
learning behavior of the network during its 50 simulations. The
average ROC curves confirm the observations made previously,
i.e., that Class 1 and Class 3 are better identified by the neural
network than Class 2 and Class 4. The same results are confirmed
also by computing the AUC values for the average ROC curves of
the four classes (97.2 for Class1, 92.1 for Class2, 98.5 for Class3
and 89.2 for Class4). Figure 6 also shows the greater variability of
the ROC curves relative to Class 4, compared to those obtained
with Class 1, Class 2, and Class 3.

Figure 7 shows the mean confusion matrix computed over the
entire set of 50 network simulations performed. It summarizes
the average values of the False Positives (FP), False Negatives
(FN), True Negatives (TN) and True Positives (TP) for each class.

DISCUSSION

In order to grant the safety of disabled students living in
automated rooms of university dorms while allowing for their
independency, their privacy and freedom of movement, we

developed a 24/7 monitoring system being able to raise an
alarm, either upon request of the student, or automatically when
a danger situation is identified. The approach implemented
here was based on instrumenting the room with four skeleton-
tracking Kinect One devices providing the data for identifying
dangerous situations.

In this work we presented a pose recognition system
processing the skeleton information provided by the Kinect One
devices using a static neural network that classifies the data
relative to each frame in one of four classes corresponding to
the four poses considered. Three of these (standing, sitting, and
lying) represent the most common poses taken by a subject while
living in a room, while the fourth (“dangerous sitting”) represents
a potential danger situation in which the subject is sitting on a
chair with the head forward or backward, that might need an
external intervention.

We decided to train and test an MLP model with two hidden
layers and a “SoftMax” output layer, in order to classify the
four poses described before. After the selection of the attributes
and the construction of the database, the MLP neural network
was trained and tested 50 times in order to provide data for a
statistically reliable description of its performances.
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FIGURE 6 | Set of 50 ROC curves calculated for each of the four classes (gray traces). The average ROC curve (black trace) was also calculated and superimposed.

Previous studies have faced similar problems using ML
algorithms with good results, although on smaller datasets and
asking the subject to maintain the planned poses while facing
the camera, i.e., a very favorable condition for the Kinect
acquisition, yet unlikely in our project scenario (Patsadu et al.,
2012; Visutarrom et al., 2014). Our study considered a less
constrained dataset in which 12 subjects were recorded in the
defined poses both statically (e.g., lying down) and while moving
over the entire room area (e.g., the subjects were walking when
assuming the standing pose) for a total of 495728 frames for
training and 106802 frames for testing. As a result, our data

was more variable in terms of how each subject interpreted the
requested poses, and noisier for the different views recorded by
each of the four Kinect One devices, which were necessarily
frequently sub-optimal.

In spite of these limitations, nonetheless, required to mimic
real life conditions, the proposed MLP classifier achieved good
results with a total average accuracy of 83.9%. A more detailed
inspection of the results relative to the four classes shows that
Class 3 and Class 1 are better recognized than the remaining
two classes, with average accuracies around 94% (94.3 and 93.8%,
respectively). On the other hand, Class 2 and Class 4, both
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FIGURE 7 | Mean confusion matrix obtained from the 50 network simulations.
It represents the False Positive (FP), False Negative (FN), True Negative (TN)
and True Positive (TP) values computed for each of the four classes.

regarding sitting positions yet differing mostly in terms of trunk
and head pitch angles, were less accurately recognized (86.9 and
82.7%, respectively), with frames being incorrectly assigned to
the two classes (see accuracy values in Figure 5). These lower
accuracy values are mainly due to the misclassification errors
between Class 2 and Class 4 and vice-versa. Indeed the 6.01%
of frames labeled as Class 2 were identified as Class 4 and
the 2.91% of Class 4 data were classified as Class 2 (see the
mean confusion matrix in Figure 7). At least two plausible
reasons can be considered as contributing to this misclassification
error in recognizing these two poses. First and foremost, during
sitting some articular joints are covered by other body parts,
thereby requiring the Kinect One system to reconstruct the
positions of the hidden joints and making the resulting data
very noisy. Second, despite the careful choice of features as
powerful descriptors of body poses while being independent
from the physical characteristics of the subjects who participated
to the study, the distinction between two kinematically very
similar poses is very difficult. The number of features that can
help the classifier to distinguish between them is reduced. Only
the upper body features may be discriminative and probably,
even among these, the normalized vertical positions of the head
and cervical vertebrae (Z_1, Z_C7), i.e., the most discriminative
joint-related features for the identification of Class 1, 2 and 3,
sometimes take comparable values between Class 2 and 4 due
to the subjects’ individual interpretation of the description of the
“dangerous sitting” pose.

Another relatively important misclassification error was
between Class 1 and Class 2 and vice-versa (2.24% Class 1

identified as Class 2 and 1.15% Class 2 identified as Class 1).
For the identification of these two poses, the vertical position of
the joints (Z_1, Z_C7 and Z_Hc) should be more informative
for the MLP network. Nevertheless, in our study this was not so
evident probably because some of the data calculated by Kinect
One devices are particularly noisy, especially when the subject
is not exactly in front of the camera (Rougier et al., 2011; Li
et al., 2019). The relative angles and the head and trunk absolute
angles do not weight as much in the distinction between the two
classes since they assume comparable values. Conversely, lower
misclassification error was found for the standing pose (Class 1)
and the “dangerous sitting” pose (Class 4) and vice-versa (0.25%
Class 1 identified as Class 4 and 0.62% Class 4 identified as Class
1, respectively). In this case, the relative and absolute angles of
head and trunk features in the database are more discriminant.

The lowest misclassification error, almost equal to zero, was
that between the identification of standing (Class 1) and lying
down (Class 3) poses and vice-versa, where the vertical position
of the joints is very discriminative.

Considering the assumptions made so far in order to
explain the misclassification errors we can hypothesize that
an appropriate pre-processing of the data could significantly
reduce the number of misclassifications. A classification model
requires a reliable and valid dataset to efficiently generate
the decision-making rules. To reduce classification errors, the
quality of the data provided to the classifier is important
during both the training and the usage phases, so that data
pre-processing techniques removing anatomically implausible
body reconstructions resulting in longer than real limbs or in
impossible articular angles may be needed.

CONCLUSION

We have proposed an implementation of a pose classification
system for monitoring frail individuals in their daily living
facilities. Kinect One devices, recording an inhabitant moving
in a room in real scenarios, provided skeleton data frames.
These data were processed to compute a set of features that
make up the database for training and testing a three layers
MLP neural network for inhabitant pose recognition (standing,
lying, sittingand “dangerous sitting”). We built a database
with a large amount of data (over 600,000 frames) in which
each pose was described by a set of geometric and vertical
joint position features. Despite the data were quite noisy as
they were acquired with the subject not necessarily facing the
camera, the proposed MLP network achieves a good mean total
accuracy of 83.9%.

This work is, to our knowledge, the first attempt to classify
human poses based on skeleton tracking data acquired in an
ecological daily living scenario, with no constraints on the relative
position of the subject with respect to the recording devices,
and with an extensive dataset comprising sitting and “dangerous
sitting” classes.

This work has been designed for a room tailored to disabled
students, but it can be extended to all those categories of
individuals living in community environments, such as the
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elderly, where safety, accessibility and autonomy can be a
restriction to participation.
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