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ABSTRACT
During a cell state transition, cells travel along trajectories in a gene expression 

state space. This dynamical systems framework complements the traditional concept 
of molecular pathways that drive cell phenotype switching. To expose the structure 
that hinders cancer cells from exiting robust proliferative state, we assessed the 
perturbation capacity of a drug library and identified 16 non-cytotoxic compounds that 
stimulate MCF7 breast cancer cells to exit from proliferative state to differentiated 
state. The transcriptome trajectories triggered by these drugs diverged, then 
converged. Chemical structures and drug targets of these compounds overlapped 
minimally. However, a network analysis of targeted pathways identified a core 
signaling pathway - indicating common stress-response and down-regulation of 
STAT1 before differentiation. This multi-trajectory analysis explores the cells’ state 
transition with a multitude of perturbations in combination with traditional pathway 
analysis, leading to an encompassing picture of the dynamics of a therapeutically 
desired cell-state switching.

INTRODUCTION

Systematic and genome-wide analysis of static 
molecular signatures of cancer cells and their susceptibility 
to panels of cancer drugs [1-4] and more recently, of 
transcriptome dynamics of cancer cells responding to 
libraries of drugs [5-7] have established encyclopedias 
of cell lines and their drug response profiles that can 
be used to predict therapy response and to repurpose 
drugs [8-10]. However, these analyses were performed 
without considering the fundamental principles of the 
state transition dynamics of large molecular regulatory 
networks that govern cell state transitions. 

Any directed change of a cell’s phenotypic state, 
such as the therapeutically desired transition from a 
proliferative or a stem-like to an apoptotic or a quiescent, 
differentiated state is driven by the coordinated change 
of activities at a large number of gene loci across the 
genome. Because genes influence one another’s expression 

via a network of regulatory interactions, genes cannot 
alter their expression independently, and transcriptomes 
(which are the measurable proxies for genome-wide gene 
activation profiles and hence, for cell states) can change 
only in a highly constrained manner. In the mathematical 
abstraction of the high-dimensional gene expression state 
space in which every transcriptome is specified by a point, 
the network constraints impose a particular structure on 
transcriptome dynamics - the shift of transcriptomes in 
state space. Constraints are most prosaically epitomized 
by “preferred” states: the attractor states that represent 
the stable, observable cell phenotypes in which all gene 
regulatory interactions are satisfied [11]. Accordingly, the 
switch from one stable cell state to another corresponds to 
a transition from one attractor to another [12, 13] in which 
the transcriptome moves along a specific trajectory in state 
space that manifests the state space structure. However, 
while studies have focused on molecular pathways that 
actuate a transcriptome change, the structure of the state 

mailto:sui.huang@systemsbiology.org


Oncotarget7416www.impactjournals.com/oncotarget

space around and between attractors of cancer cells is still 
unexplored. 

RESULTS

Drug screening and transcriptome measurement

To expose the state space constraints that govern 
the potential exit from the cancerous attractor state 
and to confirm that differentiation therapy switches 
cancers to a new attractor state, as proposed more than 
40 years ago [14, 15], we screened the Johns Hopkins 
Chemical Compound Library (JHCCL) of 1,528 FDA 
approved drugs [16] for compounds with the ability to 
stimulate MCF7 cells, a metastatic breast cancer cell line 
successfully used in drug discovery [17], to exit from the 
default [18] proliferative state to a differentiated state. 
Trajectories triggered by 16 differentiation-inducing drugs 
provided a first glimpse on the state space “landscape” 
(Figure 1A) around the attractor state of cancer cells.

Using high-content-high-throughput (HC/HT) 
single-cell resolution screening for fluorescently stained 

milk lipid vesicles in MCF7 cells that mark a non-
proliferative state with features of differentiation (Figure 
1A, 1B, see experiment details in Material and Methods), 
we identified 16 non-cytotoxic compounds that converted 
> 30% of cells into a lipid-vesicle positive state after 5 
days (Figure 1C, 1D, 1E; Table S1; confirmation by 
commercial versions of the compounds in Figure S2). 
They include antibiotics, psychopharmaceuticals, etc. but 
no chemotherapeutic agents. The statistical distribution 
of efficacies (% of lipid-vesicle positive cells) among the 
1,528 drugs (Figure 1F) shows the pharmacologically 
available “perturbation space” of these cells represented 
by the library. Interestingly, while only 14 drugs had 
> 75% differentiating activity (e.g., Thiostrepton, as 
previously reported [19]), a large group of 105 drugs 
displayed moderate (30-75%) dose-dependent ability 
to differentiate MCF7 cells. Such intermediate drugs, 
usually discarded in industrial drug screening, reflect cell 
population heterogeneity in susceptibility [20] and can be 
exploited to map the state space constraints. 

To characterize the high-dimensional gene 
expression trajectories along which cells move to the 
differentiated state, we measured transcriptomes of the 
MCF7 cells at Day 1, Day 3, Day 5 after incubation 

Figure 1: Experimental system and statistics of drug screening results. A. A structure of state space with multiple transition 
paths reflects the constraints imposed by gene regulatory network - being depicted as a quasi-potential landscape [30]. B. Screening 
bioassay: lipid-vesicles stained with green fluorescence LIPTOL. Arrow head - undifferentiated cells; triangles - differentiated cells; C. 
Histogram of differentiation efficiency in Z-Score for 1,528 drugs at 10 µM. The selection criteria is: Z-Score > 1.8 (blue dashed line). D. 
Histogram of living cell number in Z-Score. The selection criteria is: Z-Scores > -1. E. Scatter plots of all drugs ( = dots) for the effects on 
viability vs. differentiation at day 5. Drugs were defined to be ‘non-toxic’ when living cell number > 410 (Z-Score > -1) and ‘effective’ when 
differentiated cells > 30% (Z-Score > 1.8). F. Histogram of differentiation efficiency (in percentage of differentiated cells) of all drugs at 
all doses (note: there are about 25% basal (spontaneous) dose-independent differentiation).
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with each of the 16 selected compounds using DNA 
microarrays. For an error model for sample-to-sample 
variation, we measured 14 replicates of untreated cells as 
the gene expression reference (see Material and Methods). 
A subset of 2,013 genes that were differentially expressed 
(based on Significance Analysis of Microarrays [21]) 
between control and treated samples in at least one time 
point were used for subsequent analysis.

The divergence-convergence patterns of cell 
differentiation trajectories

To visually represent the global dynamics, the 
transcriptomes of all 16×3 samples (drugs × time points) 
and untreated controls were mapped into a 3D-state space 
using principal component analysis (PCA) (Figure 2A). 
For selected samples we displayed self-organizing maps 
using Gene Expression Dynamics Inspector (GEDI) [22]. 
This global view (Figure 2A GEDI heatmaps) reveals 
that transcriptome changes in response to the drugs 
were remarkably similar at Day 1 and Day 5. However, 
responses diversified at Day 1 (spread of green spheres 

in Figure 2A) compared to controls (black spheres, day 
0). Diversity was maximal at Day 3 (blue spheres) but 
transcriptomes converged at Day 5 although they did not 
reach the same compactness as before treatment. 

This divergence-convergence of trajectories is 
expected if the drugs act on distinct biochemically 
pathways but move the cells to the same (or similar) 
attractor state(s) [23]. To quantify the transient dispersion 
at Day3, we computed the Pearson correlation coefficients 
between all pairs of transcriptomes. The mean sample-
sample correlation was both lowest and had widest spread 
at Day 3 (Figure 2B) -consistent with diversification of 
transcriptomes. Statistical analysis of the 14 controls and 
random gene-subsampling show that the divergence did 
not reflect measurement noise and that the divergence-
convergence pattern was robust (Figure S6). Thus, drug-
induced exit from the proliferative state did not follow a 
single trajectory in gene expression state space. However, 
the heatmaps of correlation coefficients between all 
transcriptomes and hierarchical clustering (Figure 2C) 
revealed large cell clusters at Day 1 and Day 5 which 
broke into many smaller clusters at Day 3, suggesting that 
trajectories did not diversify into a continuum but were 

Figure 2: The transcriptomes of 16 effective drugs diverge and converge. A. Principle Component Analysis (PCA) of time-
courses of the transcriptomes of MCF7 cells responding to the 16 effective drugs. Each transcriptome sample is plotted as a sphere ball 
in the spanned space of the top three PCA components (black - Day 0; green - Day 1; blue - Day 3, red - Day 5). The transcriptomes of 
the selected samples were plotted in the self-organizing maps (heatmap) using Gene Expression Dynamics Inspector (GEDI) - showing 
that gene expression profiles are similar in Day 1 and Day 5 while they are quite different in Day 3. B. Violin plot of Pearson correlation 
coefficients quantify the dispersion of the transcriptomes in time. C. Heatmaps of Pearson correlation coefficients show the trend of 
divergence/convergence of the transcriptomes. (see drug No.-drug name mapping at Suppl. Table S1-1) D. The frequencies of various 
categories of gene expression patterns following perturbations with different drugs (blue and red curve represent response to two distinct 
drugs) for the 5 categories: C1-C5. 
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bundled into subgroups, manifesting constraints of the 
transient dynamics.

The diversity of state transition trajectories offers a 
new perspective for classifying genes beyond traditional 
“differential expression” (up- or down-regulation) and 
gene clusters. We divided genes according to their 
multi-trajectory behavior into five categories C1-C5 
with respect to the relative trajectory courses shown in 
Figure 2D (see quantitative criteria in Methods). Both 
groups of genes that either did not exhibit a net change of 
expression between Day 0 and Day 5 (C1+C2), or changed 
significantly (C3+C4) contained genes that exhibited 
significant transient divergence before convergence 
(C1+C3). These transiently disparate genes underlie the 
divergence-convergence course of trajectories (Figure 
2A) and may have a role in destabilizing the original cell 
state to overcome the “energy barrier” between the cell 
states [13]. Their early disparity indicates that various 
drugs trigger distinct transient destabilizations, hence 
distinct exit paths. The most prominent genes of these 
transient responses belong to groups functionally linked 
to apoptosis, cell stress and inflammatory response 
(Table S3, S4). By contrast, most genes displaying net 
differential expression in untreated vs. differentiated cells 
(C4) changed in a concordant way, pointing to a core set 

of genes possibly involved in guiding the state change 
towards the differentiated state as opposed to the genes 
driving the exit from the proliferative state.

The diversity of drugs that share the similar 
phenotype effect

The dynamical systems view of trajectories 
converging to attractors explain why biochemically 
distinct perturbations can elicit a common, specific 
phenotype [15] but does not exclude a common underlying 
molecular pathway. We used our 16 differentiation-
inducing drugs to expose possible common deterministic 
pathways using the STITCH drug target database [24]. As 
baseline, we found that 25% of compounds (n = 888) in the 
JHCCL library share at most one drug target with any of 
our 16 effective drugs (Figure 3A) and have low chemical 
similarity with any of these 16 compounds (Tanimoto-
2D-similarity (TS) score < 0.7 with p-value 0.006 (Figure 
3B). By contrast, some of the 16 effective drugs display 
partial chemical similarity among themselves (Figure 
3C); the most similar pair was Fluoxetine (drug 4, Figure 
3C) and Bifemelane (drug 5) with TS = 0.89. 47% of all 
pairs among the 16 drugs share at least 1 common target 

Figure 3: The statistics of drug characteristics and the common features of the 16 effective drugs. Histograms of 1,528 
drugs that A. share targets and B. have structural similarity with the 16 effective drugs. C. The heatmap showed the pairwise 2D-Tanimoto 
Chemical Similarity Scores (TS) among the 16 drugs. Overall similarity is low (TS < 0.7); blue rectangles mark the most similar pairs with 
their 2D structures displayed. D. The heatmap of common targets. Color represents log(P-value) of target sharing between any pair of the 16 
drugs by chance. E. There is no correlation between the chemical similarity and drug efficiency of 16 effective drugs (Pearson Correlation 
Coefficient (PC) = 0.035). F. There is no correlation between the shared drug targets and efficiency similarity of 16 drugs while there exists 
a moderate correlation (PC = 0.54) between shared differentially expressed genes (DEGs) and efficiency similarity. (Target sharing between 
any drug pair is calculated by Jaccard Index (JI), see Material and Methods).
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(Figure 3D P-value < 0.01; for significance estimation see 
Material and Methods). However, the similarity in efficacy 
(% of cells differentiated) did not significantly correlate 
with chemical similarity (Figure 3E) nor with number of 
shared targets (Figure 3F, blue triangles) but moderately 
(Pearson Correlation Coefficient = 0.54) with the net 
transcriptome. 

Common affected paths network (CAP-Net) 
analysis

Despite the low number of common drug targets, 
we asked if the 16 effective compounds still influence 
common downstream effectors in view of the robust core 
of concordant changes in gene expression that define the 
transition trajectory (Figure 2D category C4 genes). We 
developed a shortest-path-based method - Commonly 
Affected Paths Network (CAP-Net) - to identify common 
downstream pathways that may contribute to the same 
phenotypic drug effect (see Material and Methods). CAP-
Net uses two databases, STITCH (known and predicted 
drug targets) and STRING (known and predicted protein 
interactions) [25], to compute plausible pathways linking 
drug-targets to genes whose expression was significantly 
changed by the drugs. For each drug, CAP-Net computes 

the shortest paths on the protein-interaction network 
(extracted from STRING) between all pairs of immediate 
targets to the differentially expressed genes (Step 1 in 
Figure 4A). We then assembled all edges that appear in the 
shortest paths between at least two different drugs (Step 
2 in Figure 4A). Using the overlapping transcriptomes 
of the differentiated state (Day 5), CAP-Net analysis led 
to a set of common molecular pathways shared by the 
effective compounds (Figure 4B for Day 5 and Figure S7 
for Day 1) as well as a core circuit (see Figure 5). They 
include interferon family proteins (IFI6, IFI27, IFIT1 and 
IFITM3 etc. more in Suppl.) and, more importantly, STAT1 
[26] and STAT3 which were significantly down-regulated 
and would have been missed in traditional transcriptome 
analysis. 

DISCUSSION

The molecular mechanism of a cell state transition is 
usually revealed by identifying the differentially expressed 
genes from the transcriptomes at two conditions - GO term 
analysis is used to find their biological functions while 
the knock-out or over-/down-expression experiments to 
validate the key genes’ functions. From multiple time 
courses of transition transcriptomes induced by different 
drugs, our analysis of gene transition patterns shows that 

Figure 4: Commonly affected paths (CAP-Net) analysis. A. The principle of CAP-Net analysis. The shortest paths were calculated 
between the drug targets and the differentially expressed genes (DEG). The common pathways were found by the pathway overlap among the 
target-DEG pairs and the different drugs. B. CAP-Net showed the commonly affected downstream pathways during MCF7 differentiation 
(Day 5). Diamonds and circles, respectively, represent the targets and the differentially expressed genes. The color of a node represents the 
average expression level of the corresponding gene.
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the traditional approach is generally correct: a dominating 
trajectory in gene expression state space is shared by most 
drugs. However, the exit paths from the proliferation state 
vary from drug to drug. The transiently expressed genes 
and diverging-converging genes strongly influence the cell 
state transition - although we usually neglect them.

We found that MCF7 cells exit proliferation states 
in several distinctive trajectories after being stimulated 
by different drugs. Among the genes which significantly 
changed expression levels, about 10% of them diverged 
at first and converge later (Figure 2D). It means that cells 
are destabilized by drug stress, then move to different 
directions and may fall into the same cell state which 
are defined by the gene-gene interactions from gene 
regulatory network. The destabilization mechanism also 
explains why many nonspecific drugs induced MCF7 
cells differentiation in low efficiency (Figure 1F). These 
drugs destabilize the cancer cell state but lack of stimulus 
to guide the cells to differentiated state. The discovery 
implied a new direction of cancer drug development: 
rather than identifying one drug which cause cell transition 
in a well-defined pathway, we can use multiple drugs to 
destabilize the proliferation state of cancer and induce 
cells to exit in various ways. 

Although gene expression time course is usually 

avoided in transcriptome analysis of cell state transition. It 
is inadequate to identify the molecular mechanism of cell 
state transition by examining the differentially expressed 
genes only. Our analysis showed that about 11% of genes 
are transiently expressed during the cell state transition, 
which are generally neglected (Figure 2D). GO term 
analysis showed that these genes involve in apoptosis, 
cell stress/defense response, inflammatory response, cell 
replication, DNA translation, macromolecular complex 
assembly, mitochondrial activities etc. They influence the 
cell state transition by destabilizing the original cellular 
state and triggering the following cell state changes.

Even 16 drugs all lead MCF7 cells exit proliferation 
state, they do not bind to the same targets. According to 
Tanimoto 2D similarity score (cutoff = 0.8), most drugs 
do not share the same chemical structure (Figure 3C) and 
their chemical similarity do not correlate to drug efficacy 
(Figure 3E). These drugs share some targets, which do not 
correlate to the drug efficacy. Why do these drugs have 
similar effects when they do not share similar chemical 
structures and not share common causal drug targets? 
From our Common Affected Pathways (CAP-Net) 
analysis, most drugs have targets in a common pathway 
to trigger the MCF7 differentiation. They bind to different 
targets, but these targets locate in the same pathway of 

Figure 5: A core gene circuit of genes putatively involved in drug-induced MCF7 cell differentiation. We inferred a core 
gene circuit from the CAP-Net analysis. The immune response is down-regulated through Interferon pathway and Jak-STAT1 pathway. 
The proliferation pathway is down-regulated through growth factors EGF, Cytokines CSF1, and Chemokines IL6/IL8 through Jak-STAT3 
pathway. The apoptosis pathway is activated through BCL2L1. Angiogenesis pathway is down-regulated through VEFGA.
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exiting proliferation state. A moderate correlation is found 
between the drug efficacy and the common differentially 
expressed genes triggered by drugs (Figure 3F). It means 
that drugs with common effects can have different 
structures and bind to distinct drug targets. If we can 
identify the causal pathway of the drug, the similar effects 
of drugs can be found by identifying all possible drug 
targets along its effective pathways.

In conclusion, we used a drug library not only to 
identify new therapeutics but also as a tool to apply a 
diversity of perturbations to probe the “landscape” of gene 
expression state space that determines the differentiation 
paths available for cancer cells to exit the malignant stem-
like state. Although the partial response to drugs likely 
stem from cell population heterogeneity and individual 
cells may utilize distinct single-cell trajectories, the multi-
perturbed transcriptome time courses of the whole cell 
population collectively revealed that the drugs trigger the 
transition of cancer cells out of the proliferative state via 
various paths. This analysis opens a new perspective for 
identifying genes in causative pathways of malignancy by 
combining a dynamics systems framework with traditional 
transcriptome and pathway analysis, which might not have 
been revealed by simple differentially expressed gene 
analysis. 

MATERIALS AND METHODS

All computational analyses were performed using R, 
unless otherwise indicated.

Cell culture and drug screen

MCF7 cell culture

MCF7 cells, a breast cancer cell line of the 
luminal type (Figure S1), were derived from a single 
progenitor cell and were grown in DMEM (Dulbecco’s 
Modified Eagle Medium) with 4.5 g/L glucose and 
L-Glutamine, without sodium pyruvate (DMEM, 
Corning), supplemented with 10% fetal bovine serum 
(FBS, Atlanta Biologicals), penicillin (100 U/mL, Gibco) 
and streptomycin (100 mg/mL, Gibco), and insulin at 10 
μg/ml (Insulin solution from bovine pancreas, Sigma). The 
cells were grown to 80% confluency. They were passaged 
approximately every 3-4 days: washed with 1XPBS (PBS, 
pH 7.4, Gibco), trypsinized (Trypsin-EDTA, Gibco) and 
split at about 1:4 ratio).

High-content-high-throughput (HC/HT) drug 
screening for MCF7 cell differentiation based 
on automated image analysis of fluorescently 
(LipidTOX) stained lipid vesicles

MCF7 cell suspension (100 μL) was plated into each 
well of 96-well plates at day 1 using a liquid handling 
robot (Beckman Coulter Biomek FX). Each drug solution 
(dissolved 100 μL) at the concentrations 0.08 µM, 0.4 µM, 
2 µM and 10 µM in a separate VWR square deep-well 
96-well titer plate was transferred to the cell culture by 
the robot. The liquid volume in each cell culture well was 
200 μL. 

After MCF7 cells had been subjected to drugs for 
five days, cell were fixed and stained using the robot: Cells 
in each well were washed in PBS and fixed with 3.8% 
formaldehyde (in 100 μL PBS) for 20-30 minutes. Cells 
were washed with 160 μL PBS and stained with 50 μL 
LipidTOX Green phospholipid stain (Invitrogen) diluted 
1:1000 in PBS. After 30 minutes incubation another 50 μL 
4’,6-diamidino-2-phenylindole at 1:10000 in PBS (DAPI, 
Invitrogen) was added to the cells for another 30 minutes 
to strain the cell nuclei and washed with 160 μL PBS. The 
wash was replaced with a final 160 μL PBS and scanned 
by an IN Cell 1000 image analyzer (GE Healthcare Life 
Sciences). Four random fields per well were photographed 
(with 20X objective) at both wave length (for LipidTOX 
and DAPI). The percentage of positive cells (per living 
cell) were scored using the IN Cell 1000 workstation 
software (v. 3.4) after segmentation and non-apoptotic 
cell count based on DAPI; a cell with at least one lipid 
droplet was defined as a positive cell. The computationally 
determined percentage of positive cells correlated well 
with visual determination (not shown). 

Drug screening criteria

The drugs considered “effective” were chosen using 
two criteria, differentiation efficiency and toxicity: (1) 
the LipidTOX dye positive cell percentage after 5 days’ 
treatment of drugs at 10 µM Z-Score ≥ 1 (Figure 1C) (2) 
Toxicity Z-Score ≥ -1 was used to exclude drugs that were 
toxic. Toxicity was defined as the number of surviving 
cells (count live cells) at 10 µM drug (Figure 1D). All 16 
drugs passed these two criteria. 

List of 16 drugs, cell differentiation efficiencies 
and their dose-response curves

All 16 drugs are listed in Table S1-1 and dose-
response curves are shown in Figure S2.
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DNA microarrays (Illumina HumanHT-12 
BeadChip)

For gene expression profiling, MCF7 cells were 
cultured in 150mm dishes and treated 1/5/10 μM of each 
of the 16 drugs (see details in Tables S1-2). 14 plates of 
cells were left untreated as control samples. Cells were 
collected after 1, 3 and 5 days of drug treatment in RNeasy 
(Qiagen) lysis buffer and RNA was isolated according 
to the manufacture’s protocol and sent to Vancouver 
Prostate Center for transcript profiling using the Illumina 
HumanHT-12 v4 Expression BeadChip. The accesion 
number for the expression data is GEO: GSE74281.

Gene expression profile analysis 

Filtering out the background noise of gene 
expression

Illumina BeadChip has an internal background 
control of gene expression, thus gene expression 
significantly below the background threshold was 
considered as unreliable signal (detection p-value > 0.05). 
Since the gene expressions are measured as a time course, 
the criteria of a gene of being significantly expressed was: 
detection P-value ≤ 0.05 for at least one day in the entire 
whole time series. 

Error model and transcriptomes

The error model used is shown in Figure S3 
based on the 14 replicates of untreated samples. Self-
organizing maps (SOM) were generated with the gene 
expression dynamics inspector (GEDI) software [22]. The 
transcriptomes for samples of cells treated with selected 
drugs at different time points are illustrated as GEDI maps. 
Each GEDI map represents a microarray measurement or 
a transcriptome of an RNA sample ( = cell culture dish 
collected), that is, of a drug and a time point. (See Suppl. 
Figure S4 for entire set of GEDI maps). In GEDI maps the 
more similarly two genes are expressed across all samples, 
the closer to each other are they placed on the 2D grid of 
each GEDI map by the SOM. Each pixel in the GEDI map 
(grid element) represents a mini-cluster of highly similarly 
behaving genes. The pixel at the same position in each 
map represents the same (set of) genes; The color of each 
pixel represents the average of gene expression level of 
that set. Thus, global patterns in the GEDI maps give an 
intuitive notion of the entire transcriptome and allow for 
visual (“Gestalt”) comparison of the samples. The GEDI 
heatmap shows the similarities of 16 drug-treated MCF7 
differentially expressed genes at different time points 
(Figure S4).

The classification of dynamic patterns of gene 
expression during transition

(1) Criterion for differentially expressed genes 
upon differentiation (“up/down-regulated genes”) 
We defined the gene expression levels of one sample 
as x = (x1, x2,.., xi, .., xn), n = total number of genes. 
Then we calculated the averages of gene expression 

 and the standard deviations 

of the gene expressions of 14 
untreated MCF7 cell samples. A gene i was considered to 
be “up/down-regulated” if its expression level in a given 
drug-treated sample xi satisfied:

(2) Criterion for defining “divergent-convergent” 
genes

The availability of multiple drug-induced 
trajectories (treatment X time point) of the cell state 
affords an important unique perspective to characterize 
individual genes. In order to compare the gene expression 
differences caused by different drugs, we calculated the 
difference di

m of the expression level of gene xi in the m th 

pair of drugs (total pair number is pairs) 
for a given time point (Day 1, 3 5). If a gene xi displays the 
“divergent-convergent” pattern, the average differences di

m 
of the expression level of gene xi of all pairs of the drugs 
at either Day 1 or Day 3 should be bigger than three times 

the standard deviations of the untreated replicates  

while those at Day 5 should be smaller than . The 
condition for the “divergent-convergent” pattern of a gene 
xi is met if the first or the second condition and the third 
condition are satisfied:

Modified pearson correlation coefficients of 
samples

We used the Pearson correlation coefficient to 
quantify the difference between the transcriptomes of two 
samples X(ti), X(to) at two time points (X= a vector of n 
components representing the distinct gene expressions). 
In “standard” Pearson correlation coefficient r(X(ti); X(to), 
a deviation (xi-xi) is calculated between a gene expression 
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value xi and the mean expression value x̅ of all genes in 
this sample. Here we used a modified form in which the 
deviation is between a gene expression value xi and its 
own mean in all the samples along the time course for one 
drug [27]. This formula measures the temporal correlation 
of transcriptome deviations from their average values over 
time. 

To evaluate the statistical robustness of the 
divergent-convergent pattern, we plotted the distribution 
of 100 “modified” Pearson correlation coefficients r 
between all pairs of samples treated by the 16 drugs at 
Day 1, Day 3 and Day 5, vs. untreated samples, calculated 
from a set of 500 randomly-chosen genes (Figure S5). 
Indeed, drug-specific transcriptomes at Day 1 and 
day 5 showed a more similar distribution of r than the 
untreated samples (with the exception of treatment with 
Desloratadine, Flunisolide, Guanfacine and Maprotiline) 
whereas transcriptomes at day 3 had a distribution of 
correlation values that was remarkably distinct from that 
of other sample points. This finding further corroborated 
the finding that the drug-elicited transcriptomes at day 1 
and day 5 are more similar to the untreated controls than 
the transcriptomes at day 3 are.

Identify the differentially expressed genes and 
gene sets during MCF7 differentiation

Statistical significance analysis (SAM) of the 
differentially expressed genes was performed using the 
SAM 3.0 program [21] comparing the microarray samples 
in three settings: the transcriptomes of drug-treated 
samples at day 0 (non-treated) vs. day 1 vs. day 5, the 
transcriptomes at day 0 vs. day 1 and the transcriptomes 
at day 0 vs. day 5. Differentially expressed genes list from 
SAM analysis are shown in Table S2. We exploited the 
fact that day 1 and day 5 transcriptomes clustered closely 
together, forming two distinct clusters separated from the 
untreated samples to use standard multi-class SAM to 
identify gene expression changes common to most drugs 
(Figure S5A shows the top 138 differentially expressed 
genes. Gene names are listed in Suppl. Table S2). The 
differential expressions in day 1 samples (Day 1 vs Day 0) 
across all drug treatments (Figure S5B) showed a common 
(transient) early-response in which the most upregulated 
genes were CYP1A1, CYP1B1, TGFB etc. and the most 
down-regulated genes included KRT13, IFI6, IFI27, 
IFIT1 etc. By contrast, differential expression in day 5 
samples (Day 5 vs Day 0) (Figure S5C) reflected the net 
state displacement. In the gene expression space, the most 
down-regulated genes included cytokine CSF1, and again, 
IFI6/IFI27, as well as S100A7 and the most up-regulated 
genes were UGT1A6, GRHL3, DNaJB14 and MYLIP etc. 

While SAM identified significantly differentially 
expressed genes, we used GSEA algorithm [28] to identify 
the curated pathways that influence the cell state transition 

(27) (Suppl. Table S6). The differentially expressed 
gene sets were analyzed using the GSEA between the 
microarray samples day 0 vs. day 1 and day 0 vs. day 
5 (shown in Table S3). After 1 day of drug treatment, a 
prominent response was the expression of genes involved 
in xenobiotic metabolism - the P450 oxidation system 
(CYP1, CYP2, CYP3), membrane pumps (ABCB1,4-
10, ABCC1-13, ABCD1-3 and ABCA1-17), and stress 
response genes (RSPOx, CXCL1-7, CXCR1-7, CCL2,3,5). 
Thus, despite screening against drug cytotoxicity - which 
induces defense systems in many cancer cells (28-30), 
cells still perceived the “differentiating” stimulus by the 
chemical molecules as xenobiotic attack. Biomarkers of 
differentiated epithelial breast cells, such as integrin3 and 
of the ductal cell signatures, were also up-regulated (31, 
32). Consistent with the SAM analysis, the expression 
of immune response genes, notably genes involved in 
interferon signaling and other cytokine pathways, in 
particular, IL12, were down-regulated. Finally, some 
generic stemness cell signatures were up-regulated at 
day 1, which is consistent with cell-stress response (33, 
34). Later, in line with the differentiation of MCF7 cells 
(a luminal type breast cancer), the basal type signatures 
were down-regulated relative to luminal cell signatures 
(Suppl. Table S5) (35). At the terminal time point Day 5 
(Table S6), the stress and detoxification response of day 
1 had subsided but genes of the ductal signatures, steroid 
hormone synthesis and IGF1 pathway, were up-regulated; 
Genes of interferon and cytokine signaling remained low. 
The expression of genes of the milk-secreting prolactin 
pathway further increased at day 5 compared to day 1 
while the activities of various proliferative pathways 
decreased. 

Taken together, GSEA identified the pathway 
changes generically associated with the transition to the 
differentiated state. The transient induction at day 1 of 
detoxification, stress-response and stemness genes by 
these drugs suggested that despite screening for non-
toxic compounds, cells still experienced cellular stress. 
The characteristic down-regulation of immune response 
genes of the IFN pathway was not anticipated and its 
significance requires further studies.

Drug structures, target and CAP-NET analysis

Chemical similarity

The chemical similarity of two chemical compounds 
is computed using Tanimoto Score [29](TS, a value 
between [0, 1]). It is calculated by using the 2D structure 
fingerprints:

TS = XY / ( X + Y - XY )
where X and Y are the count of bits set in fingerprint 

X and Y respectively. XY is the count of bits set after bit-
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wise “AND” operation of fingerprints X and Y. A Tanimoto 
score of 0.9 or greater is assumed to be statistically very 
similar.

Target protein identification

Drug targets are extracted from the drug target 
database STITCH [24] (version 3.1, accessed at February 
2013) online database. This database provides the 
known drug targets, which are curated from different 
online databases. In order to limit false positive target 
assignments, only the high confident drug-target pairs 
(confidence score > = 0.8) were selected to derive the 
known targets. This threshold was selected based on 
the compound-target score distribution in the STITCH 
database, which contains more than 1.2 million drug-target 
interactions and ~150,000 (12.5%) of them have a 0.8 or 
above confidence score. 

The null hypothesis assumes that any randomly 
chosen drug pair shares the same targets with one pair 
of 16 drugs. We randomly choose one drug pair out of 
1,528 drugs for 10,000 times and check if it has the same 
common targets with one pair of 16 drugs. In this way, a 
P-value for sharing the same targets is calculated for each 
pair of 16 drugs.

Efficiency similarity

The Efficiency Similarity, Eff-Sim(a,b) shows the 
efficiency similarity between drug a and b. The individual 
efficiency scores are converted into a similarity metric: 

Eff-Sim(a,b) = 100 - |E(a)-E(b)|
where E(a) and E(b) are individual efficiency 

values of drug a and drug b, respectively. Their absolute 
difference is subtracted from 100 to convert this value into 
a similarity score. If Eff-Sim(a,b) is high, two drugs have 
very similar efficiency scores, or vice versa.

Jaccard index

The common members of two sets, A and B, are 
compared by Jaccard Index, i.e. the size of the intersection 
of A and B sets is divided by the size of their union.

CAP-Net analysis

In order to find out the pathways which cause cancer 
cell differentiation, we extracted the paths that connect 
drug targets and corresponding differentially expressed 
genes (the genes that are 1.5 folds up-/down-regulated 
between drug-treated and control samples). The topology 
is obtained from a protein-protein interaction network 

STRING [25] (version 9.0, accessed at March 2013) 
which is an integrated homospaiens protein interaction 
database. A shortest path algorithm is applied during the 
extraction of the causal paths between drug targets and 
differentially expressed genes. All possible shortest paths 
create a shortest path network (SPNet) for each drug. After 
constructing SPNets of all drugs, the common paths shared 
by these networks are identified using graph intersection 
process. If the nodes A and B are found in both SPNet1 
and SPNet2, and if they are connected via the same edge 
in the two networks, then such a connection is called a 
common path. This operation is performed for all SPNet 
simultaneously (see Figure 4A), which led to the Common 
Affected Pathway-Network (CAP-Net) for all drugs. This 
analysis was applied on various differentially expressed 
gene sets (i.e. Day 1, Day 3 or Day 5 samples).

The statistical significance of the CAP-Net was 
calculated using the null model in which we estimated 
how often any path of CAP-Net can be found in a 
randomly selected shortest path. All paths in the CAP-Net 
are statistically significant with a p-value ≤ 0.015. The 
genes identified by CAP-Net analysis (both Day 1 and Day 
5) as the candidates causing MCF7 cell differentiation are 
listed in Table S7. CAP-Net analysis for drug response 
transcriptomes at Day 1 is shown in Figure S7. We also 
infer the gene regulatory circuit for MCF7 cell state 
transition (Figure 5).
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