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Abstract: Background: Type 1 Diabetes Mellitus (T1DM) is a widespread chronic disease in indus-
trialized countries. Preventing blood glucose levels from exceeding the euglycaemic range would
reduce the incidence of diabetes-related complications and improve the quality of life of subjects
with T1DM. As a consequence, in the last decade, many Machine Learning algorithms aiming to
forecast future blood glucose levels have been proposed. Despite the excellent performance they
obtained, the prediction of abrupt changes in blood glucose values produced during physical activity
(PA) is still one of the main challenges. Methods: A Jump Neural Network was developed in order
to overcome the issue of predicting blood glucose values during PA. Three learning configurations
were developed and tested: offline training, online training, and online training with reinforcement.
All configurations were tested on six subjects suffering from T1DM that held regular PA (three
aerobic and three anaerobic) and exploited Continuous Glucose Monitoring (CGM). Results: The
forecasting performance was evaluated in terms of the Root-Mean-Squared-Error (RMSE), according
to a paradigm of Precision Medicine. Conclusions: The online learning configurations performed
better than the offline configuration in total days but not on the only CGM associated with the PA;
thus, the results do not justify the increased computational burden because the improvement was
not significant.

Keywords: diabetes; time series forecasting; online learning; physical activity; precision medicine;
neural network

1. Introduction

Type 1 Diabetes Mellitus (T1DM) is an autoimmune condition characterized by dys-
functions in insulin secretion from the islets of Langerhans in the pancreas. The main
consequence of T1DM is the increase of the glucose concentration in blood. In order to
reduce the incidence of diabetes-related complications and improve the quality of life of peo-
ple with diabetes, it is essential to prevent blood glucose levels from going from the normal
physiological range (70–180 mg/dL) to values below 70 mg/dL (hypoglycaemia) or above
180 mg/dL (hyperglycaemia) [1]. Modern therapies for the management of T1DM involve
the use of Continuous Glucose Monitoring (CGM). Such devices exploit micro-invasive
subcutaneous glucose sensors to track the blood glucose levels for 24 h a day.

Although regular physical activity is important for people living with T1DM for
a variety of health reasons [2], most of them are unable to manage the consequences
because the intensity [3], duration, and type of physical activity have a significant impact
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on glucose homeostasis [4,5], which can lead to potential episodes of hypoglycaemia or
hyperglycaemia. The former is mainly observed during aerobic physical activity, whereas
the latter is observed during anaerobic exercise.

In recent years, efforts have been made toward the development of an artificial
pancreas [6], i.e., an automated therapeutic system intended to manage blood glucose
levels and reduce the risks related to diabetes. Several predictive models have been
developed that can identify the glycaemic trends of people with T1DM starting from
the measurements detected by the CGM, most of which resort to artificial intelligence [7].
In particular, these models use Machine Learning algorithms that exploit the CGM structure
and its temporal correlation, treating it with the analysis methodologies used for time
series [8]. The methods present in the literature can be differentiated based on three main
types of approaches:

1. Regression tasks, in which a prediction horizon is fixed and the point value of the
CGM is predicted starting from known values of the features [9], or classification
tasks, in which the model attempts to predict whether or not a hypo/hyperglycaemic
event will occur within a fixed prediction horizon [10];

2. The univariate approach, in which the CGM is the only model input [11], or multivari-
ate approach, in which CGM is considered in correlation with further features [12];

3. Precision Medicine, in which the model aims to adapt to patient-specific data [13],
or k-Fold Cross Validation, which consists of testing one patient’s data after having
trained the model on the data of the other patients in the dataset [14].

In addition, either offline or online training can be used for predictive models. The most
common is offline training [11,13,15], in which the model is trained only once using a subset
of the available data, and then tested on subsequent data without being updated. On the
other hand, during online training, the update of the model takes place at each new sample
or new batch of data: forecasts receive immediate feedback that is used to improve the
accuracy of subsequent predictions.

Despite the excellent performance obtained by predictive models, the prediction of
abrupt changes in blood glucose values produced during sports remains one of the main
challenges in this sector. Physical activity has rarely been addressed in the literature, mainly
due to the difficulties in data collection. In addition, the works addressing this task usually
resort to multivariate approaches that ask the patient to manually supply data concerning
their state or integrate their data from several heterogeneous sensors [16,17], or consider a
dataset composed of virtual patients [18,19].

One of the most notable works was proposed by Hobbs et al. [17], who applied
predictor-based subspace identification to a glucose prediction model. This multivariate
model exploited the physiological variables and CGM data of 32 adolescents with T1DM
collected in two ski and snowboard camps and achieved an average forecasting RMSE
of 29 mg/dL. A different approach was pursued by Reddy et al. [20], who performed a
classification task to predict hypoglycaemia at the start of exercise using a Decision Tree
and a Random Forest model.

Both models were trained using a multivariate meta-dataset based on 154 observations
of in-clinic aerobic exercise in 43 adults with T1DM, and then validated using a validation
dataset with 90 exercise observations collected from 12 different adults with T1DM. The
Decision Tree predicted hypoglycaemia with 79.6% accuracy, whereas the Random Forest
achieved a 86.7% accuracy.

In principle, the online training should make a model able to dynamically adapt to
new data patterns and have an advantage in predicting unexpected changes, such as those
that occur during physical activity. A further benefit in the management of blood glucose
levels forecasting during sports could be derived from Reinforcement Learning, consisting
of algorithms that allow the training of an agent to take actions in a given environment in
order to achieve preferable states [21]. In such a system, for every action taken, the agent
receives positive or negative reinforcement from the environment. Reinforcement Learning
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techniques have been tested for glycaemic prediction and control [22], and their flexibility
of adaptation has been highlighted.

In this work, we exploit the data of six adults suffering from T1DM who regularly
perform physical activity to develop a predictive model capable of effectively forecasting
future glucose levels during sports. The experimental work has seen the application of a
Jump Neural Network [15] to perform a regression task with a univariate approach. This
latter choice was made in order to reduce, as much as possible, the burden of the patient
without requiring them to supply data manually or to wear unnecessary sensors.

A Precision Medicine approach was adopted, which, from the experimental results
proved to be the most effective. With regard to the methods of application of the algorithm,
three different configurations were developed, which include: a model with offline training,
a model with online training, and a model with online training and a loss function that
incorporates a negative reinforcement in cases with great differences between the predicted
and real values. A comparative analysis was finally conducted, with the aim of determining
whether the performance of a model with offline training could be exceeded by models
with online updates, with or without penalty contribution.

2. Materials and Methods

The Division of Endocrinology and Diabetology of Campus Biomedico polyclinic of
Rome supplied anonymized data of six subjects suffering from T1DM aged between 23
and 52 (average 39± 10) that held regular physical activity and exploited CGM. The data
were accompanied by information provided by the patients regarding the days and times
in which physical activity was performed and its type. In detail, three of the participating
subjects performed anaerobic activities (gym, sailing, and home workouts for patients 1, 2,
and 3, respectively), whereas the remaining performed aerobic activities (paddle/bicycle,
belly dance, and eight-a-side football for patients 4, 5, and 6, respectively).

For each patient, several sensor disconnections occurred during the monitoring period,
which made it difficult for an artificial intelligence model to learn the patterns of a time
series [23]. As a consequence, we decided to include in this study only those days for which
the monitoring was continuous for 24 h. After excluding incomplete days, the amount
of data collected ranged from a minimum of 6 days for patient 1 to a maximum of 81
for patient 4 (average 31± 28) and a number of physical activity events ranging from a
minimum of two for patient 2 to a maximum of eight for patient 4 (average 5± 2).

With the purpose to make a prediction to 30 min, in the labelling process, the CGM
value of the time stamp (t + 30) was considered as a target for the training of the CGM
sample at time stamp t. The three configurations developed in this work used a Jump
Neural Network, which is a particular feed-forward neural network whose inputs are
connected not only to the first hidden layer but also to the output layer.

This model was originally proposed by Zecchin et al. [15] for predicting the blood
glucose levels of 10 subjects with T1DM in daily-life conditions through exploiting a
multivariate approach. The network used in this work presents only one hidden layer
composed of four neurons with sigmoidal activation function. In practice, it differs from
the original model of Zecchin because it has a different number of hidden neurons and
exploits a univariate approach. A schematic illustration of the proposed Jump Neural
Network is shown in Figure 1.

The regression task was conducted according to the Precision Medicine paradigm and
with a univariate approach. At each prediction time stamp t, the network input consists of
the most recent 10 min of CGM values. The network output is the future blood glucose
value at time (t + PH). PH is the prediction horizon, i.e., how far forward in time a
prediction is performed, and, in this work, it is set to be equal to 30 min. At each time
stamp t, the Jump Neural Network predicts a signal that can be expressed as

ỹ(t + PH|t) = IOW · I(t)T + HOW · f (IHW · I(t)T) (1)
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where

• I(t) is a row vector with M elements corresponding to the CGM [t − M + 1, t].
We experimentally found the optimal value for M = 10.

• IOW is a row vector with M weight elements directly connecting every input to the
output neuron.

• HOW is a row vector of L weights connecting every hidden neuron to the output neuron.
• IHW is a L×M matrix of weights connecting every input to every hidden neuron.
• f is the tangent-sigmoid activation function, computed element-wise on the results of

IHW · I(t)T .

Figure 1. Schematic illustration of the proposed Jump Neural Network.

The first term models the linear relationship between the target and the inputs,
whereas the second term models the nonlinear relationship.

For each patient, each group of continuous days is considered as a stand-alone group
of data. With regard to the network input, the CGM of each group of continuous days
is used both as a vector of features and as a vector of labels. In detail, if a group of data
is composed of N minutes of CGM, the time stamps ranging from 1 to (N − PH) are
considered as features, and the time stamps ranging from (PH + 1) to N are considered
as labels. The vectors are then reorganized in such a manner that, at each time stamp t,
the network receives as input 10 min of CGM data (i.e., the time window [(t− 9), t]) that
are associated with the label corresponding to the value of CGM at the time stamp (t + 30).

In each of the proposed configurations, and for each patient, at the beginning, an
offline training is carried out on the initial 80% of data of the first 24 h of the first group
of continuous days, and the model is validated on the remaining 20% of the data. The
network performance during the offline training is evaluated in terms of Mean-Squared-
Error (MSE). Defining y(t) as the true CGM value at time stamp t and ỹ(t) as the related
model prediction, we can define the error at a time stamp t as

e(t) = y(t)− ỹ(t) (2)

and the MSE as

MSE =
N

∑
t=1

e(t)2

N
(3)

where N is the number of time stamps of the predicted time series. After the first offline
training, the process diversifies according to the configuration used:

• Offline training configuration: After training on the first available 24 h of data, all the
following days are considered as test sets of the offline model, and the performance is
evaluated. A schematic illustration of the first configuration behaviour is shown in
Figure 2;
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• Online training configuration: After the training of the offline model, the Jump Neural
Network uses the online update mode. The weights obtained from the offline-trained
model are used to initialize the online configuration. At each time stamp, the model
makes a prediction of the blood glucose value at (t + PH). Every five timestamps, the
configuration of the network is updated using the 24 h of CGM immediately preceding
the test instant, and the training and test windows are moved forward by 5 min. The
online training performance is evaluated in terms of the MSE. This process is iterated
until all of the patient’s CGM samples have been considered as test sets, so that every
prediction is performed after training the model with the most recent 24 h of data.
Therefore, this configuration presents a considerably greater computational burden
compared with the previous one;

• Online training configuration with penalty: the model is trained online and works sim-
ilar to the second configuration; however, the performance during the online training
phase is evaluated through the MSE product with a penalty. The latter was generated
starting from the difference between the current value and the predicted value.

Figure 2. Schematic illustration of the first configuration’s behaviour.

A schematic representation of the latter two configurations is illustrated in Figure 3.
As introduced, the third configuration is characterized by a custom loss function built ad
hoc to introduce the characteristics of reinforcement learning into the model. The custom
loss is composed of the product between the squared errors and the penalty variable:

penalized loss =
N

∑
t=1

e(t)2 · penalty(t)
N

(4)

where the latter is defined as follows:

penalty(t) =


0, if e(t) ≤ 5
1, if 5 < e(t) ≤ 10
2, if 10 < e(t) ≤ 20
0.5·e(t), if e(t) > 20

(5)

The construction of the penalty is designed to make the model act more rigidly when
the error is larger, trying to improve the prediction on those time stamps where the error is
great while taking less into account those time stamps where the error is small.
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Figure 3. Schematic illustration of the second and third configurations’ behaviour.

3. Results and Discussion

All the simulations were performed using Google Colab and the open-source libraries
of Keras and TensorFlow. In the offline training phase, a learning rate of 0.1 and a maximum
number of epochs equal to 500 were set for the network training. The early stopping
technique was also used, i.e., the network finished its training if the validation set had no
improvement in terms of accuracy for 10 consecutive validation checks carried out every
four epochs, in order to prevent overfitting. With regard to the configurations involving
online training, gradient clipping was exploited to prevent the gradient explosion observed
during preliminary stages, and its value was set to 0.3 from the experimental results. The
learning rate was set to 0.01.

The final performance of the configurations was evaluated in terms of the Root-Mean-
Squared-Error (RMSE =

√
MSE) in order to provide an immediate comparison with other

works in the literature. Different types of performance were considered for the three
configurations: first, the average RMSE was calculated for each patient considering the
total of days in the test set; second, the RMSE associated only to the time stamps in which
each patient performed physical activity was calculated; finally, the average RMSE of all
patients and for each type of physical activity was computed.

3.1. Offline Training Configuration

In the offline configuration, the model was trained from scratch only once for each
patient, exploiting the first 24 h of data available, and tested on all the following days.
Table 1 reports the results of this test for each patient. The second column reports the
results referred to the total amount of recorded days, whereas the third refers only to the
time stamps during which physical activity was performed. The bottom panel of the table
reports the mean of the RMSEs concerning the total days and the time stamps associated
with physical activity.

In detail, the two bottom lines report the average RMSE referred only the time stamps
in which anaerobic or aerobic exercise was performed. Interestingly, the average RMSEs
related to predictions associated with exercise were better than thsoe on the total of days.
The patients for which the best performance was achieved for predictions during exercise
were not the same as those that provided the best predictions on the total of days, both
concerning aerobic and anaerobic exercise. The average results regarding physical activity
show that the model was better at predicting the anaerobic type of activity over aerobic.

3.2. Online Training Configuration

In the online configuration, the model was trained from scratch only once for each
patient and then updated every time new data were available. Table 2 reports the results of
this test for each patient. The structure and meaning of the elements shown in the table
are the same as in Table 1. Again, the results concerning physical activity were better
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than those concerning the total amount of days. The average results were similar to those
achieved using the offline configuration. The results regarding physical activity show that
this model was also better at predicting anaerobic activity over aerobic.

Table 1. Results of the tests of the offline configuration. The results are reported in terms of average
RMSE (mg/dL). For each patient, we report whether they performed aerobic (AE) or anaerobic
(AN) exercise. The second column reports the results referring to the total amount of recorded days,
whereas the third refers only to the time stamps during which physical activity (PA) was performed.
The average RMSEs are also reported. The bottom panel reports the average RMSE related only to
anaerobic and aerobic exercise.

Patient ID RMSE Total Days RMSE PA PA Type

Patient 1 22.0 23.2 AN
Patient 2 20.7 21.6 AN
Patient 3 25.1 17.8 AN
Patient 4 22.8 29.6 AE
Patient 5 29.0 23.7 AE
Patient 6 29.9 25.6 AE

Average RMSE 24.9 23.5 -

Average RMSE—AN - 20.8 -
Average RMSE—AE - 26.3 -

Table 2. Results of the test of the online configuration. The results of performed tests are reported in
terms of the average RMSE (mg/dL). For each patient, we report whether they performed aerobic
(AE) or anaerobic (AN) exercise. The second column reports the results referred to the total amount
of recorded days, whereas the third refers only to the time stamps during which physical activity
(PA) was performed. The average RMSEs are also reported. The bottom panel reports the average
RMSE related only to anaerobic and aerobic exercise.

Patient ID RMSE Total Days RMSE PA PA Type

Patient 1 22.0 23.3 AN
Patient 2 20.1 21.0 AN
Patient 3 24.2 18.9 AN
Patient 4 22.8 30.2 AE
Patient 5 29.7 24.7 AE
Patient 6 28.3 25.2 AE

Average RMSE 24.5 23.9 -

Average RMSE—AN - 21.1 -
Average RMSE—AE - 26.7 -

3.3. Online Training Configuration with Penalty

In the online configuration with penalty, the model was trained from scratch only
once for each patient and then was updated every time new data were available, while
considering a penalty that was greater as the forecast error increased. Table 3 reports the
results of this test for each patient. The structure and meaning of the elements shown in
the table are the same as in Table 1. The results concerning physical activity were better
than those concerning the total amount of days, and, once again, the model was better at
predicting the anaerobic type of activity over aerobic. The average results were similar to
those achieved using the previous configurations.
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Table 3. Results of the test of the online configuration with penalty. The results of performed tests are
reported in terms of the average RMSE (mg/dL). For each patient, we report whether they performed
aerobic (AE) or anaerobic (AN) exercise. The second column reports the results referred to the total
amount of recorded days, whereas the third refers only to the time stamps during which physical
activity (PA) was performed. The average RMSEs are also reported. The bottom panel reports the
average RMSE related only to anaerobic and aerobic exercise.

Patient ID RMSE Total Days RMSE PA PA Type

Patient 1 23.0 24.2 AN
Patient 2 21.1 22.2 AN
Patient 3 26.0 17.3 AN
Patient 4 21.7 28.7 AE
Patient 5 27.8 22.4 AE
Patient 6 28.5 28.5 AE

Average RMSE 24.6 23.9 -

Average RMSE—AN - 21.2 -
Average RMSE—AE - 26.5 -

3.4. Comparison between the Three Configurations and the State of the Art

Table 4 summarizes the results achieved with the three configurations, together with
the average results on the total days and on aerobic and anaerobic exercise. All the configu-
rations achieved similar results, both concerning the total days and the physical activity.
All the models performed better when predicting glucose levels related to anaerobic exer-
cise rather than aerobic; this may be a sign that the abrupt glycaemia decreases that occur
during aerobic physical activity are particularly difficult to predict accurately.

During aerobic exercise, glycaemic variation can be influenced by the intensity and
duration of exercise, insulin to glucagon ratio, fitness, nutrition, and initial glucose concen-
tration [24]; moreover, most patients consume snacks immediately before aerobic exercise
with the aim of preventing hypoglycaemic events, and this causes an increase in glucose
levels followed by a decrease due to exercise [25]. A multivariate approach taking into
account such heterogeneous features may improve glucose predictions during aerobic
physical activity.

Although the offline configuration achieved better results on the total number of days
for only one out of the six patients compared to the online configuration without penalty,
it remains the best choice for physical activity. Indeed, the offline configuration achieved
better average performance for both aerobic and anaerobic physical activity. On the other
hand, the offline model was outperformed by the other configurations with respect to the
performance on the total days. The fact that better results of the configurations with online
training on the total number of days did not translate into better results concerning only
physical activity could indicate that these configurations have a better long-term adaptation.

However, the performance improvement is not great enough to justify the signifi-
cant increase in the computational burden introduced by the online configurations; thus,
the offline configuration would likely be most appropriate for use in a real-life application.
With regard to the online configurations, the performance of the penalty and non-penalty
configurations were very similar, indicating that the negative reinforcement did not present
an advantage. With regard to the individual performance on the total number of days, we
observed that some individual differences may affect the prediction of the three models.

The configuration with online training achieved the best performance for Patients 2,
3, and 6, whereas the online and offline training configuration equally achieved the best
performance for Patient 1, and the online configuration with penalty achieved the best
performance for Patients 4 and 5. As no clear pattern was observed using one configuration
with respect to another, we must conclude that the small variations of performance may
be due to individual differences between patients. A similar analysis can be applied to
the timestamps related to PA. Figure 4 shows a graphical comparison of the predictions of
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the three configurations on a sample day of Patient 3, who performed anaerobic physical
activity, and Patient 5, who performed aerobic exercise; the time stamps in which physical
activity was performed are also highlighted.

(a) A day of prediction for Patient 3. (b) A day of prediction for Patient 5.

Figure 4. Comparison between the predictions of the three configurations on two sample days. We report the actual
CGM track (red line), the predictions of the online configuration with penalty (blue line), the predictions of the online
configuration trained using the Mean-Squared-Error as a loss function (green line), and the predictions of the offline model
(purple line). All the predictions are almost overlapped and slightly shifted from the original CGM values. The black
dotted lines delimit the period during which physical activity was performed. (a) Predictions on a whole day of Patient 3,
who performed anaerobic exercise (RMSEs between 24.2 and 26.0 mg/dL). (b) Predictions on a whole day of Patient 5,
who performed aerobic exercise (RMSEs between 27.8 and 29.7 mg/dL).

Table 4. Results of the test of all three configurations. The results of the performed tests are reported in terms of the average
RMSE (mg/dL). For each patient, we report whether they performed aerobic (AE) or anaerobic (AN) exercise. The results
were calculated both for the total number of days and only for the CGM forecasts actually associated with physical activity
(PA). For the latter, in addition to the total average, the average of the RMSEs associated only with anaerobic and aerobic PA
is also reported.

Patient ID Total Days Total Days Total Days PA Offline PA Online PA Online
and PA Type Offline Online Online Penalty Penalty

Patient 1—AN 22.0 22.0 23.0 23.2 23.3 24.2
Patient 2—AN 20.7 20.1 21.1 21.6 21.0 22.2
Patient 3—AN 25.1 24.2 26.0 17.8 18.9 17.3
Patient 4—AE 22.8 22.8 21.7 29.6 30.2 28.7
Patient 5—AE 29.0 29.7 27.8 23.7 24.7 22.4
Patient 6—AE 29.9 28.3 28.5 25.6 25.2 28.5

Average RMSE 24.9 24.5 24.6 23.5 23.9 23.9

Average
RMSE—AN - - - 20.8 21.1 21.2

Average RMSE—AE - - - 26.3 26.7 26.5

As mentioned in the Introduction, the forecasting of the blood glucose levels of T1DM
patients that perform physical activity has rarely been addressed in the literature mainly
due to the difficulties in collecting data. Despite the reduced amount of published works,
a partial comparison can be performed with the work of Hobbs et al. [17], which is likely
the most remarkable work resorting to a regression task. They achieved an average RMSE
of 29 mg/dL on 32 T1DM subjects who practised skiing and snowboarding, which are
considered to be mainly anaerobic types of exercise.

All the configurations proposed in this work achieved considerably better performance
on anaerobic physical activity, although the number of patients investigated is exiguous.
Furthermore, differently from other works in the literature, the proposed model exploits
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only the previous knowledge of CGM data without requesting the patients to manually
provide information on their status [16,20] or integrating data from several heterogeneous
sensors [17], making it a promising approach for future developments. However, we
acknowledge that the results achieved cannot be conclusive nor exhaustive because they
were achieved on a small number of patients, and therefore they need to be validated on a
larger dataset in order to be considered definitive.

4. Conclusions

This work aimed to implement a blood glucose level forecasting model and to validate
this model during physical activity on subjects suffering from T1DM. A comparative
analysis was conducted between the different training configurations developed. A Jump
Neural Network was used to forecast the blood glucose levels of six adults with diabetes
during physical activity. Regarding the methods of application of the algorithm, three
different configurations were developed, which included a configuration with offline
training, a configuration with online training, and a configuration with online training and
a loss function that incorporated a negative reinforcement in the case of great differences
between the predicted and real values.

A comparative analysis was then conducted, with the aim of determining whether the
performance of a configuration with offline training could be exceeded by configurations with
online updates, with and without penalty contribution. The online configurations performed
better than the offline configuration in total days but not on the data related only to the CGM
associated with the physical activity, which could indicate that these configurations have a
better long-term adaptation. Even though the average results of the online configurations
outperformed those of the offline configuration in the total days, the results do not justify the
increased computational burden because the improvement was not significant.

Future developments could be addressed regarding the study of negative
reinforcement—this time associated with the offline model—which could be different
and more functional in terms of setting its value with respect to the difference between the
true and predicted values, and of the method of insertion in the loss function. It would be
interesting to collect data from patients who perform both AE and AN exercise, in order to
assess with more confidence whether the better results obtained for AN exercise are due to
the type of physical activity rather than to inter-patient variables. In addition, people with
T1DM who regularly practice sports report that they follow a routine of insulin adjustments
and carbohydrate ingestion before and after the exercise, which may represent additional
features along with heart rate.
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