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Abstract

An increasing number of protein structures have been solved by cryo-electron microscopy (cryo-

EM). Although structures determined at near-atomic resolution are now routinely reported, many 

density maps are still determined at an intermediate resolution, where extracting structure 

information is still a challenge. We have developed a computational method, Emap2sec, which 

identifies the secondary structures of proteins (α helices, β sheets, and other structures) in an EM 

map of 5 to 10 Å resolution. Emap2sec uses a 3D deep convolutional neural network to assign 

secondary structure to each grid point in an EM map. We tested Emap2sec on 6.0 and 10.0 Å 

resolution EM maps simulated from 34 structures, as well as on 43 maps determined 

experimentally at 5.0 to 9.5 Å resolution. Emap2sec was able to clearly identify the secondary 

structures in many maps tested, and showed substantially better performance than existing 

methods.

Introduction

Cryo-electron microscopy (cryo-EM) has established its position in structural biology as an 

indispensable method for determining macromolecular structures due to recent technological 

breakthroughs1,2. Recent years have seen a steep increase in the number of biomolecular 

structures solved by cryo-EM, including those which were determined at a high, near-atomic 

resolution. On the other hand, there are still many structures being solved at intermediate 

resolutions, 5 to 10 Å, or even at lower resolutions. Of those deposited to Electron 

Microscopy Data Bank3 (EMDB) in 2016 through 2018, over 50% were solved at 

intermediate resolution. Although the number of maps determined at near-atomic resolutions 

will undoubtedly increase, it is expected that a substantial number of maps will be still 

determined at intermediate resolutions over the coming decade, since the achievable map 
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resolution is determined by various factors, including structural flexibility of protein chains, 

multiple functional states as well as noise from density images4, implying that not all 

proteins may be solvable at high resolutions.

As the resolution of an EM map drops, structural interpretation of the map becomes 

apparently more difficult5. This is especially true in cases of de novo modeling, which is 

employed when the structure of the proteins have not been solved before or cannot be built 

by template-based modeling6–10. When a map is at a high resolution of around 2 Å, software 

originally designed for X-ray crystallography11,12 can be used to build an atomic-resolution 

structure model. At around 4 Å resolution, a main-chain tracing method13,14, such as 

MAINMAST15,16, can be applied for modeling. For maps around 5 to 8 Å, some fragments 

of the secondary structure of proteins are typically visible, but a full trace of the main-chain 

is very difficult. To aid structural interpretation of maps in this resolution range, several 

protein secondary structure detection methods have been developed. One type of such 

methods identifies density regions that are typical of helices17,18 or β sheets19–21, and then 

builds protein models22 or finds known structures in PDB23 that match the identified 

secondary structures24. Another approach used machine learning methods to detect 

characteristic density patterns of secondary structures25.

Here, we developed a new method, Emap2sec, for detecting protein secondary structures in 

EM maps of intermediate resolution. Emap2sec uses a deep convolutional neural network 

(CNN)26,27 at the core of its algorithm. CNN is very suitable for protein local structure 

identification in 3D EM maps because the method “convolves” local map density features to 

images of a larger region so that the local structure detection is made in the context of a 

large region of the map. The performance of Emap2sec was tested on two datasets of EM 

maps: a dataset of 6.0 and 10.0 Å resolution EM maps simulated from each of 34 structures 

and a dataset of 43 experimental EM maps with resolution ranging from 5.0 to 9.5 Å. The 

overall accuracy at each amino acid level was 83.1 % and 79.8 % on average for the 

simulated maps at 6.0 Å and 10.0 Å, respectively. On the experimental map dataset, the 

accuracy was 64.4 % on average with the highest recording 91.6 %.

Results

The network architecture of Emap2sec

Emap2sec scans a given EM map with a voxel of 113 Å3 volume. The voxel reads the 

density values, which are processed through the deep CNN, and outputs a detected 

secondary structure, α helix, β sheet, or other structures for the structure at the center of the 

voxel (Fig. 1a). We adopt a two-phase stacked neural network architecture where densities 

from local protein structures captured in the first phase are fine-tuned in the subsequent 

second phase by incorporating the context of neighboring voxels.

Fig. 1b and 1c illustrate the two-phase architecture of Emap2sec. The first phase of the 

network (Fig. 1b) contains five back-to-back convolutional layers, to which the input voxels 

of 113 Å3 (i.e. 1331 density values) are fed. The convolutional layers capture local density 

patterns in an EM map as represented by pattern filters in the context of larger regions of the 

map. 32, 64, or 128 filters were used at each convolutional layer. Then, the output from the 

Subramaniya et al. Page 2

Nat Methods. Author manuscript; available in PMC 2020 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



convolutional layers is processed through a max pooling layer and fully connected layers. 

Finally, a softmax layer outputs a probability value for each of α helix, β strand, or other 

structures. A stride of 1 was used uniformly in all the filters whereas a stride of 2 was used 

for the max pooling layer.

The second phase of the network (Fig. 1c) takes the predicted probability values from the 

first phase. An input of the second phase is the probability values for α helix, β strand, and 

other structures each in a voxel of 33 Å3 size. Thus, there are 33 * 3 = 81 values. This input 

is fed to a network of five fully connected layers followed by a softmax layer, which finally 

gives a prediction of the secondary structure with a probability value for the center of target 

voxel. The purpose of the second phase network is to smooth predictions by considering 

predictions made to the neighboring voxels. For experimental maps, we set the phase 2 

network to only change between α helix and β strand or from other structures to α helix/β 
strand, because there are more other structures in the experimental maps than in simulated 

maps. The two-phase network architecture is inspired by a sequence-based protein 

secondary structure prediction, PSIPRED28.

Secondary structure detection on simulated maps

We first evaluated the performance of Emap2sec on simulated EM maps computed from 

atomic-detailed protein structures. Parameters of the network were trained on a 

representative protein structure dataset obtained from the SCOPe protein domain structure 

database29. We tested Emap2sec on 34 simulated maps at two resolutions, 6.0 Å and 10.0 Å, 

which do not have overlap with data used for training (see Methods).

Table 1 summarizes the accuracy of the secondary structure identification for three levels, 

the voxel-, residue-, and segment-levels. For each voxel to which Emap2sec makes 

individual structure identification, the correct secondary structure is defined as the one from 

the closest Cα atom within 3.0 Å to the center of the voxel. Emap2sec made fairly accurate 

structure detections overall. For the 6.0 Å maps, Emap2sec achieved an average overall 

accuracy of 0.798. Among the three secondary structure classes, α helices were detected 

with the highest accuracy (0.848), followed by β strands with an accuracy of 0.828. At the 

residue-level (Q3), accuracy higher than the voxel-level was recorded. At the segment-level, 

the accuracy values reached even higher, 0.872 overall. Since the residue- and the segment-

level assignments were made by the majority vote from the one-step more detailed-level (i.e. 

the voxel- and the residue-level, respectively), the results indicate that our method was very 

successful in capturing overall main-chain level protein structures in the maps.

We now compare the accuracy between maps simulated at 6.0 Å and at 10.0 Å (Table 1, Fig. 

2a). Looking at the Q3 accuracy in Table 1, naturally the accuracy dropped for 10.0 Å maps; 

however, the margin of the drop was surprisingly small. The average Q3 values of 6.0 Å and 

10.0 Å maps were 0.831 and 0.798, respectively, thus the decrease was only 0.033 (3.97% 

relative to the 6.0 Å maps). This result is consistent with Fig. 2a, where the Q3 values of 

individual maps are shown. Among the three secondary structure types, the smallest 

decrease of 0.023 (2.66%) was observed for α helices, indicating helices are the most 

tolerant to noise and visible in lower resolution maps.
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In Fig. 2b, we show Q3 accuracy for individual fold classes for both 6.0 Å and 10.0 Å maps. 

Emap2sec performed best for the α class proteins while the accuracy for β class proteins 

was relatively low. We noticed that proteins in the α+β class had a higher accuracy than α/β 
class. This is partly because proteins in the α/β class had more residues in β strands than α
+β proteins in this dataset. The average number of residues in β strands was 47.0 and 40.2 

for the α/β and α+β class, respectively. Also, α+β proteins have helices and strands in 

spatially distinct regions by definition, which probably made identification easier for 

Emap2sec. The Q3 accuracy of α helices was on par, 0.854 and 0.848 for α/β and α+β 
while the β strand accuracy showed some gap, 0.788 and 0.840 for α/β and α+β, 

respectively.

The last panel in Fig. 2 illustrates the effect of the two-phase network architecture of 

Emap2sec (Fig. 2c). The results for maps at the two resolutions have the same trend: the 

phase 2 network improved the accuracy for α helices (red circles) and β strands (green 

downward triangles), and so did the overall accuracy (black circles). On average, the Q3 

accuracies of overall, α helices, and β strands were improved by the phase 2 network by 

0.011/0.011, 0.093/0.089, and 0.062/0.021, for 6.0/10.0 Å maps, respectively. Instead, the 

accuracy of other structures (yellow upward triangles) decreased for many maps, which 

indicates that the phase 2 network mainly changed assignments of other structures to either 

helices or strands. Supplementary Table 1 provides all accuracy values from the phase 1 and 

phase 2 networks for all the simulated maps.

The results shown so far are computed using the networks trained on 63 EM maps. We have 

also trained the networks on a larger dataset of 1963 maps (Supplementary Figure 1 and 

Supplementary Table 2) but only observed marginal improvement. Changes in the accuracies 

of individual maps is shown in Supplementary Figure 1.

Figure 3 shows examples of the structure identification by Emap2sec. The first four panels 

(a-d) are successful examples, one each for four fold classes, α, β, α/β, and α+β, 

respectively. Fig. 3a and 3c are maps simulated at 6.0 Å while 3b and 3d are at 10.0 Å. As 

visualized, the identified secondary structures shown in colored spheres agree with the true 

structure very well. In the structure of Fig. 3b, even small helices were correctly identified. 

In the α/β and α+β structures (Fig. 3c, 3d), helices and strands are clearly distinguished.

On the other hand, the two subsequent panels (Fig. 3e, 3f) show examples where a part of 

the identification was apparently wrong. For these two cases, extended loop regions that 

have a somewhat wriggled conformation were misidentified as α helices. Fig. 3g illustrates 

how the phase 2 network modifies the output from phase 1. The phase 1 output has more 

other structure assignments (green) even in helix regions, which were correctly changed to 

helix assignments in phase 2. Due to this modification by phase 2, the overall voxel-based 

accuracy improved from 0.705 to 0.810. The last panel (Fig. 3h) shows an example of results 

for 6.0 Å and 10.0 Å maps of the same protein. The overall F1-score for the 6.0 Å map was 

0.848, which deteriorated to 0.779 for the 10.0 Å map. Noticeable differences were circled 

on the figure of the 10.0 Å map results: some parts of β sheets were not correctly 

recognized, and some over-detections of α helices were observed.
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Structure detection in experimental maps

Next, we tested Emap2sec on a dataset of 43 experimental maps with resolutions ranging 

from 5.0 Å to 9.5 Å. The number of residues of the proteins in these maps ranges from 664 

to 11,475 and the number of chains ranges from 1 to 62. Fig. 4a and 4b show the residue-

based and the segment-based accuracy of α helices and β strands relative to the map 

resolution. At the residue-level (Fig. 4a), the accuracy did not show a strong dependency on 

the map resolution. High accuracies of over 0.8 (0.808 to 0.916) were observed for all the 

maps within the resolution range of 5.0 Å to 5.7 Å. On the other hand, it is noteworthy that 

high accuracy was also observed for maps at around 9.0 Å resolution, 0.802 (EMD-1655, 

determined at a map resolution of 9.0 Å) and 0.757 (EMD-1263, map resolution: 9.1 Å).

Compared with the simulated map cases, detecting structures in experimental maps is more 

difficult. For the simulated map dataset, the average residue-based accuracy was 0.831 and 

0.798 for the resolution of 6.0 Å and 10.0 Å (Table 1), respectively. On the other hand, the 

average accuracy for experimental maps of 5.5 to 6.5 Å and those over 9.0 Å was 0.723 and 

0.563, respectively, which is a decrease by 13 % and 29% from the simulated map 

counterpart.

Fig. 4b shows the accuracy change by the phase 2 network over the phase 1. Similar to 

results for the simulated map dataset (Fig. 2c), the accuracy for α helices and β strands were 

improved consistently for almost all the maps by phase 2. With the phase 2 network, the 

residue-based accuracy of α helices and β strands improved on average from 0.454 and 

0.401 to 0.565 (24.4%) and 0.473 (17.80%), respectively.

The results shown for the experimental maps were obtained by using Emap2sec trained on 

experimental maps. Adding simulated maps in the training set to increase the training data 

size did not make consistent improvement of detection results. Adding the simulated maps 

improved the voxel-based F1-score for 14 maps (32.6%) but deteriorated for 22 maps 

(51.2%) (no change for 7 maps). As a consequence the overall average voxel-based F1-score 

slightly deteriorated (Supplementary Figure 2). Thus, probably because of different nature of 

two types of maps, adding simulated maps in training did not help much for structure 

detection in experimental maps.

We discuss several illustrative examples in Fig. 5. The first four panels (5a – 5d) are cases 

where Emap2sec performed well. Fig. 5a and 5b are α helix-rich and β strand-rich complex 

structures, respectively. The dominance of α helices in Fig. 5a and β strands in Fig. 5b was 

vividly captured, which yielded high accuracy values (see the figure caption). In addition, β 
sheets in Fig. 5a and α helices in fig. 5b, which share a small portion in the maps, were 

accurately detected. The next example (Fig. 5c), archaeal 20S proteasome, is a more difficult 

case where α helices and β strands exist in almost the same amounts in the structure, 38.4% 

and 29.9% of all the residues, respectively. Despite the more complex structure, Emap2sec 

was able to detect the secondary structures distinctively as highlighted in the zoomed 

window and successfully captured the overall architecture of the structure that has layers of 

α helices and β sheet domains. Fig. 5d is another example of structures with a similar 

amount of α helices (39.8%) and β strands (22.7%) except that the map resolution is lower, 

at 8.34 Å. Although the overall accuracy was lower than the previous example (Fig. 5c), β 
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strand-rich domain on the left in the figure and α helix-rich domain and structural details 

were well captured, including locations of β sheets in the α helix-rich domain and a single 

helix that bridges the two large domains (the zoomed window). The next one is an example 

where the detection did not work very well (Fig. 5e). For this map determined at 9.1 Å, the 

overall Q3 accuracy was relatively low, 0.565, partly because many α helices on the left side 

of the structure were misrecognized as β strands. It turned out that it was because, as shown 

in the zoomed window, many such helices have lower density than β stands, often even 

almost outside the contour level, which is opposite to the usual case where α helices have 

higher density than β strands.

In Fig. 5f applied Emap2sec to an EM map determined at 7.94 Å that has no structural 

assignment (EMD-4361, mLRRC8A/C volume-gated anion channel30). Although this map 

does not have associated PDB files in EMDB, it turned out that the authors also deposited 

two additional higher resolution EM maps (EMD-4366 determined at 5.01 Å and 

EMD-4367 at 4.25 Å) that have associated PDB entries. When compared with those PDB 

structures, Emap2sec’s detection was quite correct, including β propeller structures on the 

top (two right panels) and β sheets at the bottom (the LRRC8A subunits) in the side-view 

(two left panels. α helices surrounding the β sheets are outside the author-recommended 

contour level hence not analyzed by Emap2sec). Thus, Emap2sec was able to perform 

structural assignment even with the map at 7.94 Å resolution.

Detected secondary structure information will be useful for assigning subunit structures in 

an EM map. Supplementary Figure 3 shows two such examples. In the first map, HIV capsid 

proteins in complex with antibodies (EMD-8693), the detected secondary structures would 

help assigning β-sandwich structures of Fab proteins as well as three other α-helical chains 

that are distinctively and accurately detected in the map. Similarly, in the second example, a 

map of Tor2 in complex with Lst8 (EMD-3229), the locations of two chains of Lst8, which 

has a round-shaped β-class structure, are clearly visible in the detected structure.

Comparison with related works

Emap2sec showed substantially better performance than two widely used protein structure 

modeling methods, Phenix12 and ARP/wARP (ver. 8.0)31 on the dataset of simulated maps 

at 6.0 Å and 10.0 Å (Supplementary Table 4 and Supplementary Figure 4).

Emap2sec was also compared with two similar methods, HelixHunter17, which uses a probe 

helix to identify helices in a map, and a more recent method by the Jing He group25, which 

uses CNN. Overall Emap2sec showed better performance than these two existing methods 

on the simulated maps used in their original papers (Supplementary Table 5 and 6).

Discussion

We developed Emap2sec, a novel approach that can detect protein secondary structures in an 

EM density map of intermediate resolution. This work shows that structure information of 

proteins can be obtained from an intermediate resolution EM maps more vividly and 

accurately than conventional methods partly owing to a recent advanced image processing 

algorithm. Expanding the approach to handle other molecules, such as DNAs, RNAs, lipids 
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as well as large posttranslational modifications, is left for future work. Emap2sec will be 

able to push the limit of extracting structure information and aid for structural modeling and 

will be an indispensable tool for interpreting density maps in the era of cryo-EM structural 

biology.

Methods

Training the deep neural network of Emap2sec

We used two datasets, simulated EM maps and experimental EM maps for training and 

testing Emap2sec. We explain the training procedure on the simulated EM map dataset as 

the process for the experimental EM map dataset is essentially the same.

For the dataset of simulated maps, we downloaded one representative structure each from a 

superfamily level classification in the SCOPe database29 (ver. 2.06), then structures were 

removed if they have over 25% sequence identity with another structure in the dataset. This 

remained 2000 structures. Next, we used the e2pdb2mrc program from EMAN2 package32 

(version 2.11) to generate simulated EM maps at 6.0 Å and 10.0 Å for each structure. 

Density values were normalized in each map to the range of 0.0 to 1.0 by subtracting the 

minimum density value in the map and then divide by the density difference between the 

maximum and the minimum density values. If there are negative density values, they were 

set to 0.0 before the normalization.

The input density data of Emap2sec is a voxel of a size 11 Å *11 Å *11 Å. We have also 

tried a smaller size, 5 Å *5 Å *5 Å, but it performed substantially worse than the current 

setting. The data were obtained from a map by traversing each map along the three 

dimensions with the voxels with a stride of 2.0 Å. Each voxel was assigned with a closest 

Cα atom that is within 3.0 Å to the center of the voxels, to which a secondary structure type 

was assigned using STRIDE33. Residues that have structure codes of H, G, or I by STRIDE 

were labeled as α helix, while those with codes of B/b or E were labeled as β strand.

The training dataset for the phase 1 network consisted of 31,951 voxels each for α helix, β 
strand, and other structures, thus in total of 95,853 voxels. To select these voxels, the 2000 

maps were sorted by the abundance of voxels of each secondary structure, and voxels of the 

secondary structure were extracted from the top 8, 15, and 8 maps with the largest number of 

voxels of the secondary structure. Since the number of voxels was sufficient and helices and 

strands appear in various orientations in the voxels, we did not perform data augmentation 

by rotating maps. This training dataset was constructed at both 6.0 Å and 10.0 Å resolutions. 

The training was performed independently for 6.0 Å and 10.0 Å resolutions.

The phase 1 network consists of five layers of convolutional neural network (CNN) followed 

by a fully connected network (Fig. 1). With this training dataset, we performed a ten-fold 

cross-validation to determine hyper-parameters, which were regularization parameters for 

the CNN and the fully connected network, and the learning rate. L2 and L1 regularization 

were used for the CNN and the fully connected network, respectively. The regularization 

parameter values tested were [0.001, 0.005, 0.01, 0.05. 0.1, 0.5, 1, 10, 100] and the learning 

rate values tested were [0.0001, 0.001, 0.01, 0.1, 1, 10]. For the first fully connected layer 
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(the connection between the layer with 1024 nodes and 256 nodes) we used the drop-out 

technique with a probability of 0.5. In the cross-validation, the dataset was split into ten 

subsets, nine among which were used for training under all the possible hyper-parameter 

combinations for 100–150 epochs using the Adam Optimizer to minimize the cross-entropy 

for the voxel-level accuracy in the softmax layer. Then, the best parameter combination was 

determined by the average performance on the ten testing subsets. The determined L2 

regularization parameter λ1 of the CNN was 10, the L1 regularization parameter λ2 of the 

fully connected layer was 0.01, and the learning rate was determined to 0.001 by this 

procedure for both 6.0 Å and 10.0 Å resolutions.

For training the phase 2 network, which is a five-layer fully connected network, we used a 

different dataset of 32 simulated EM maps (each for 6.0 Å and 10.0 Å). After the first phase 

network was fully trained, we input the 32 maps to the phase 1 network and obtained 

probability values for α helix, β strand, and other structures, which are input for the phase 2 

network. We trained the phase 2 network for the L1 regularization parameter in the same 

way with a fixed learning rate of 0.001. The obtained parameter was 0.1 for both 6.0 Å and 

10.0 Å resolutions.

We have also trained the phase 1 and 2 networks using all the maps except for the 34 test 

maps. They were 982 maps for training the phase 1 and other 981 maps for the phase 2 

network. 3 maps were discarded because they caused errors when voxel data were generated. 

The results are shown in Supplementary Figure 1 and Supplementary Table 2.

The dataset of experimental EM maps

We also trained Emap2sec using actual EM maps retrieved from EMDB3. Density maps that 

were determined at a resolution between 5.0 Å to 10.0 Å and have an associated atomic 

structure in PDB were selected. Then, to ensure that a map and its associated structure have 

sufficient structural agreement, the cross-correlation between the experimental map and the 

simulated map density at the resolution of the experimental map computed from the 

structure was examined34 and only maps with a cross-correlation of over 0.65 were kept. 

Finally, we computed the sequence identity between underlined proteins in pairs of EM 

maps, and a map was removed from the dataset if its underlined protein has over 25% 

identity to a protein of another map in the dataset. If a map has multiple protein chains, the 

map was removed if at least one of the chains has over 25% identity to any chains in another 

map. This procedure remained 43 experimental EM maps. The grid size of the maps was 

unified to 1.0 Å by applying tri-linear interpolation of the electron density in the maps. 

Secondary structure detection by Emap2sec was evaluated only for voxels that have 

associated protein structures (and thus correct secondary structure of that position was 

known).

The training and testing were performed using experimental maps of 6.0 to 10.0 Å 

resolution using the four-fold cross-validation. The same hyper-parameter values established 

for the simulated maps were used for experimental maps. The trained model was further 

applied to experimental maps of 5.0 to 6.0 Å resolution.
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Evaluation measures

Secondary structure detection by Emap2sec was evaluated in three levels, i.e. the voxel, the 

amino acid residue, and the secondary structure fragment levels. Emap2sec assigns a 

secondary structure to each voxel in an EM map. For each voxel in the map, the “correct” 

secondary structure defined by STRIDE was assigned, which was taken from the closest 

atom that is within 3.0 Å to the center of the voxel, as discussed in the previous section. In 

Table 1, we also showed results with a relaxed measure, where a voxel is assigned with the 

secondary structure of all Cα atoms within 3.0 Å, thus potentially have multiple correct 

secondary structures. For the voxel-level evaluation, we used the F1-score, which is the 

harmonic mean of the precision and the recall of the assignments given to the entire map or 

to each secondary structure class:

F1 − score = 2 * precision × recall
precision + recall , (Eq. 1)

where precision is the fraction of voxels with correct secondary structure detection over all 

the voxels with the secondary structure assignment by Emap2sec and recall is the fraction of 

the voxels with correct secondary structure detection over all the voxels that belong to the 

secondary structure class. The overall F1-score was computed as the weighted F1-score of 

the three secondary structure classes. For the residue-level evaluation, we reported the Q3 

accuracy, which is the fraction of the number of residues with a correct secondary structure 

assignment for the entire protein and for each of the three secondary structure classes. The 

secondary structure of a Cα atom was considered as correctly predicted if a majority of 

neighboring voxels that are within 3.0 Å to the atom agreed to its secondary structure. We 

also reported the segment-level accuracy. A secondary structure segment is defined as a 

stretch of amino acids with the same secondary structure type, at least six amino acids for α 
helix and three residues for a β strand. A segment was considered as correctly detected if at 

least 50% of the voxels in that segment have the correctly assigned class label.

Software used

Software used in this work with the version and the download site information is provided in 

the Life Sciences Reporting Summary.

Data Availability

The raw data of accuracies are provided in Supplementary Information, Supplementary 

Table 1, 3, and 4. The experimental EM maps can be downloaded from EMDB. The data 

that support the findings of this study are available from the corresponding author upon 

request.

Code Availability

The Emap2sec program is freely available for academic use through http://kiharalab.org/

emap2sec/index.html and https://github.com/kiharalab/Emap2sec
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors acknowledge Charles Christoffer for his help in finalizing the manuscript. This work was partly 
supported by the National Institutes of Health (R01GM123055), the National Science Foundation (DMS1614777, 
CMMI1825941), and the Purdue Institute of Drug Discovery.

References

1. Kuhlbrandt W Cryo-EM enters a new era. Elife 3, e03678, (2014). [PubMed: 25122623] 

2. Cheng Y Single-particle cryo-EM-How did it get here and where will it go. Science 361, 876–880, 
(2018). [PubMed: 30166484] 

3. Patwardhan A Trends in the Electron Microscopy Data Bank (EMDB). Acta Crystallogr D Struct 
Biol 73, 503–508, (2017). [PubMed: 28580912] 

4. Nogales E The development of cryo-EM into a mainstream structural biology technique. Nat 
Methods 13, 24–27, (2016). [PubMed: 27110629] 

5. Esquivel-Rodriguez J & Kihara D Computational methods for constructing protein structure models 
from 3D electron microscopy maps. J Struct Biol 184, 93–102, (2013). [PubMed: 23796504] 

6. Kirmizialtin S, Loerke J, Behrmann E, Spahn CM & Sanbonmatsu KY Using Molecular Simulation 
to Model High-Resolution Cryo-EM Reconstructions. Methods Enzymol 558, 497–514, (2015). 
[PubMed: 26068751] 

7. Miyashita O, Kobayashi C, Mori T, Sugita Y & Tama F Flexible fitting to cryo-EM density map 
using ensemble molecular dynamics simulations. J Comput Chem 38, 1447–1461, (2017). 
[PubMed: 28370077] 

8. Esquivel-Rodriguez J & Kihara D Fitting Multimeric Protein Complexes into Electron Microscopy 
Maps Using 3D Zernike Descriptors. J Phys Chem B 116, 6854–6861, (2012). [PubMed: 22417139] 

9. Saha M & Morais MC FOLD-EM: automated fold recognition in medium- and low-resolution (4–15 
A) electron density maps. Bioinformatics 28, 3265–3273, (2012). [PubMed: 23131460] 

10. Zheng W Accurate flexible fitting of high-resolution protein structures into cryo-electron 
microscopy maps using coarse-grained pseudo-energy minimization. Biophys J 100, 478–488, 
(2011). [PubMed: 21244844] 

11. Brown A et al. Tools for macromolecular model building and refinement into electron cryo-
microscopy reconstructions. Acta Crystallogr D Biol Crystallogr 71, 136–153, (2015). [PubMed: 
25615868] 

12. Terwilliger TC et al. Iterative model building, structure refinement and density modification with 
the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64, 61–69, (2008). [PubMed: 
18094468] 

13. DiMaio F et al. Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-
guided iterative local refinement. Nat Methods 12, 361–365, (2015). [PubMed: 25707030] 

14. Chen M, Baldwin PR, Ludtke SJ & Baker ML De Novo modeling in cryo-EM density maps with 
Pathwalking. J Struct Biol 196, 289–298, (2016). [PubMed: 27436409] 

15. Terashi G & Kihara D De novo main-chain modeling for EM maps using MAINMAST. Nat 
Commun 9, 1618, (2018). [PubMed: 29691408] 

16. Terashi G & Kihara D De novo main-chain modeling with MAINMAST in 2015/2016 EM Model 
Challenge. J Struct Biol 204, 351–359, (2018). [PubMed: 30075190] 

17. Jiang W, Baker ML, Ludtke SJ & Chiu W Bridging the information gap: computational tools for 
intermediate resolution structure interpretation. J Mol Biol 308, 1033–1044, (2001). [PubMed: 
11352589] 

Subramaniya et al. Page 10

Nat Methods. Author manuscript; available in PMC 2020 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Dou H, Burrows DW, Baker ML & Ju T Flexible Fitting of Atomic Models into Cryo-EM Density 
Maps Guided by Helix Correspondences. Biophys J 112, 2479–2493, (2017). [PubMed: 
28636906] 

19. Kong Y, Zhang X, Baker TS & Ma J A Structural-informatics approach for tracing beta-sheets: 
building pseudo-C(alpha) traces for beta-strands in intermediate-resolution density maps. J Mol 
Biol 339, 117–130, (2004). [PubMed: 15123425] 

20. Si D & He J Modeling Beta-Traces for Beta-Barrels from Cryo-EM Density Maps. Biomed Res Int 
2017, 1793213, (2017). [PubMed: 28164115] 

21. Si D & He J Tracing beta strands using StrandTwister from cryo-EM density maps at medium 
resolutions. Structure 22, 1665–1676, (2014). [PubMed: 25308866] 

22. Lindert S et al. EM-fold: de novo atomic-detail protein structure determination from medium-
resolution density maps. Structure 20, 464–478, (2012). [PubMed: 22405005] 

23. Berman HM et al. The Protein Data Bank. Nucleic Acids Res 28, 235–242, (2000). [PubMed: 
10592235] 

24. Biswas A et al. An Effective Computational Method Incorporating Multiple Secondary Structure 
Predictions in Topology Determination for Cryo-EM Images. IEEE/ACM Trans Comput Biol 
Bioinform 14, 578–586, (2017). [PubMed: 27008671] 

25. Li RJ, Si D, Zeng T, Ji SW & He J Deep Convolutional Neural Networks for Detecting Secondary 
Structures in Protein Density Maps from Cryo-Electron Microscopy. 2016 IEEE International 
Conference on Bioinformatics and Biomedicine (BIBM), 41–46, (2016).

26. Russakovsky O et al. ImageNet large scale visual recognition challenge. International Journal of 
Computer Vision 115, 1–42, (2015).

27. Maturana D & Scherer S VoxNet: A 3D convolutional neural network for real-time object 
recognition. IEEE/RSJ International Conference on Intelligent Robots and Systems, 922–928, 
(2015).

28. Jones DT Protein secondary structure prediction based on position-specific scoring matrices. J Mol 
Biol 292, 195, (1999). [PubMed: 10493868] 

29. Fox NK, Brenner SE & Chandonia JM SCOPe: Structural Classification of Proteins--extended, 
integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42, 
D304–309, (2014). [PubMed: 24304899] 

30. Deneka D, Sawicka M, Lam AKM, Paulino C & Dutzler R Structure of a volume-regulated anion 
channel of the LRRC8 family. Nature 558, 254–259, (2018). [PubMed: 29769723] 

31. Langer G, Cohen SX, Lamzin VS & Perrakis A Automated macromolecular model building for X-
ray crystallography using ARP/wARP version 7. Nat Protoc 3, 1171–1179, (2008). [PubMed: 
18600222] 

32. Tang G et al. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 
157, 38–46, (2007). [PubMed: 16859925] 

33. Frishman D & Argos P Knowledge-based protein secondary structure assignment. Proteins 23, 
566–579, (1995). [PubMed: 8749853] 

34. Monroe L, Terashi G & Kihara D Variability of Protein Structure Models from Electron 
Microscopy. Structure 25, 592–602 e592, (2017). [PubMed: 28262392] 

Subramaniya et al. Page 11

Nat Methods. Author manuscript; available in PMC 2020 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The architecture of Emap2sec. a, the flowchart. Emap2sec takes a 3D EM density map as 

input, and scans it with a voxel of a size of 113Å3. There are two phases in Emap2sec. The 

phase 1 network takes the normalized density values of a voxel and outputs the probability 

values of the three secondary structure classes. The phase 2 network takes the output from 

the phase 1 network and refines the assignment by considering assignments made to 

neighboring voxels. The input is a voxel of 33 Å3 where each prediction (shown in a sphere) 

originates from a voxel of 113Å3 in the phase 1 network. Finally, each voxel is assigned with 
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a secondary structure class, which is the one with the largest probability among the three 

structure types. b, the architecture of the phase 1 deep neural networks. It has five CNN 

layers followed by one max pooling layer. The first CNN has 32 filters of a 43 Å3 size, the 

second and the third ones are with 64 filters of a 33 Å3 size, and the fourth and the fifth ones 

with 128 filters of a 33 Å3 size. The last layers of the network are two fully connected (FC) 

layers, which have 1024 and 256 nodes each. The FC layers are connected to the output 

layer, which uses the softmax function to compute the probabilities for the three secondary 

structure classes. c, the phase 2 network. It consists of five FC layers followed by an output 

layer.
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Figure 2. 
The secondary structure assignment performance on the simulated map dataset. The dataset 

consists of maps of 34 protein structures computed at 6.0 Å and at 10.0 Å. a, Q3 residue-

based accuracy by map resolution. b, the Q3 accuracy for four-fold classes defined in the 

SCOPe database shown in box plots. The number of structures in each class is α, 9; β, 4; α/

β, 6; and α+β, 14. One protein from the small protein class in the dataset is not included in 

this plot. The box plots show the median (M), the first (1Q) and the third quartile (3Q), and 

the minimum (Mi) and the maximum (Mx) values. For α class, 6.0 Å: M: 0.912, 1Q: 0.889, 

3Q: 0.934, Mi: 0.873, Mx: 0.948. 10.0 Å: M: 0.844, 1Q: 0.818, 3Q: 0.864, Mi: 0.757, Mx: 

0.890. For β class, 6.0 Å: M: 0.792, 1Q: 0.771, 3Q: 0.799, Mi: 0.771, Mx: 0.804. 10.0 Å: M: 

0.792, 1Q: 0.745, 3Q: 0.825, Mi: 0.677, Mx: 0.850. For α/β class, 6.0 Å: M: 0.801, 1Q: 

0.768, 3Q: 0.806, Mi: 0.758, Mx: 0.821. 10.0 Å: M: 0.766, 1Q: 0.735, 3Q: 0.791, Mi: 0.709, 

Mx: 0.800. For α+β class, M: 0.835, 1Q: 0.816, 3Q: 0.852, Mi: 0.776, Mx: 0.890. 10.0 Å: 

M: 0.802, 1Q: 0.762, 3Q: 0.836, Mi: 0.696, Mx: 0.899. c, The Q3 accuracy before after 
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applying the phase 2 network. The results for the 6.0 Å maps are shown on the top, and the 

bottom panel is for the 10.0 Å maps. Raw data of all the maps are provided in 

Supplementary Table 1.
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Figure 3. 
Examples of the secondary structure assignment for simulated maps at 6.0 and 10.0 Å. For 

each panel, the main-chain structure of the protein in the simulated EM map is shown on the 

left while the right figure with small spheres shows the final structure assignments from the 

phase 2 network. Spheres in magenta are assignments of α helices; yellow, β strands; and 

green, other structures. See Supplementary Table 1 for all accuracy values of the examples. 

a, an α class protein of 114 residue-long (SCOPe code: d1azta1). The map was simulated at 

6.0 Å. The overall F1 score, voxel-based accuracy (Acc), Q3 accuracy, and the segment-

based accuracy of α helices and β strands (Segab) were 0.908, 0.908, 0.948, and 1.0, 

respectively. b, a β class protein (d1a12a_), 401 residues. Resolution: 10.0 Å. F1: 0.642; 

Acc: 0.641; Q3: 0.677; Segab: 0.862. The segment-based accuracy for β strands was 0.862. 

c, an α/β class protein (d1acoa2), 527 residues. Resolution: 6.0 Å. F1: 0.750; Acc: 0.748; 

Q3: 0.799; Segab: 0.865. d, an α+β class protein (d1b25a2), 210 residues. Resolution: 10.0 

Å. F1: 0.661; Acc: 0.665; Q3: 0.730; Segab: 0.941. e, a structure with a region of a low 

accuracy for other structures. A 138 residue-long α/β class protein (d1a9×a2). Resolution: 
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6.0 Å. F1: 0.633; Acc: 0.670; Q3: 0.676; Segab: 1.0. Accuracies for other structures: F1: 

0.396; Acc: 0.283; Q3, 0.275. f, another structure with a low accuracy for other structures. 

An α/β class protein (d1atia1), 111 residues. Resolution: 10.0 Å. F1: 0.698; Acc: 0.711; Q3: 

0.768; Segab: 1.0. Accuracies for other structures: F1: 0.581; Acc: 0.48; Q3, 0.533. g, an 

example of assignment changes from the phase 1 to phase 2 network. An α class protein 

(d1abva_), 105 residues. Resolution: 10.0 Å. Phase 1, F1: 0.752 (overall), 0.807 (α), and 

0.469 (other structures). Phase 2, F1: 0.834 (overall), 0.889 (α), and 0.546 (other structures). 

h, an example of structure detection for 6.0 Å and 10.0 Å maps. db133n_, 67 residues. The 

map on the left is simulated at 6.0 Å. F1 scores of 6.0 Å /10.0 Å maps: 0.848/0.779 

(overall), 0.788/0.756 (α), 0.893/0.820 (β), 0.851/0.764 (other structures).
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Figure 4. 
The secondary structure detection accuracy on the 43 experimental maps. See 

Supplementary Table 3 for details of the accuracy of each map. a, the Q3 accuracy relative 

to the map resolution. b, Q3 accuracy before after applying the phase 2 network. 

Supplementary Table 3 provides raw data of all the maps.
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Figure 5. 
Examples for experimental maps. The density map and the protein structures (associated 

PDB structure for the map listed in EMDB) are shown on the left and the secondary 

structure detection by Emap2sec is shown on the right. Spheres in magenta, yellow, and 

green show detected α helices, β strands, and other structures, respectively, by Emap2sec. 

The author-recommended contour level was used to visualize EM maps with a darker color 

than in Fig. 3. Supplementary Table 3 provides all evaluation values of these maps. a, 

Katanin hexamer, (EMD-8796). Resolution: 6.0 Å. This protein complex has six chains, 

1662 residues in total, among which 47.7% are in α helices. The overall (α helices) F1: 

0.434 (0.675); Acc: 0.495 (0.825); Q3: 0.622 (0.839); and Segab 0.957 (0.941). In the 

parentheses show are values for α helices. b, BG505 SOSIP.664 in complex with antibodies 

BG1 and 8ANC195 (EMD-8693). Resolution: 6.2 Å. 16 chains and 3940 residues, among 

which 42.0% are in β strands. The overall (β strands) F1: 0.505 (0.662); Acc: 0.529 (0.728); 

Q3: 0.676 (0.767); Segab: 0.797 (0.788). c, Archaeal 20S proteasome (EMD-1733). 

Resolution: 6.8 Å. 28 chains with 6020 residues. The overall (α helices/β strands) F1: 0.520 

(0.677/0.593); Acc: 0.554 (0.797/0.619); Q3: 0.746 (0.8/0.632); Segab: 0.757 (0.923/0.740). 

In the parentheses shown are values for α helices and β strands. d, E. coli replicative DNA 
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polymerase complex (EMD-3201). Resolution: 8.34 Å. 5 chains with 2219 residues. The 

overall (α helices/β strands) F1: 0.406 (0.587/0.381); Acc: 0.447 (0.735/0.398); Q3: 0.611 

(0.756/0.413); Segab 0.560 (0.781/0.441). e, bacteriophage phi6 packaging hexamer P4 

(EMD-3572). Resolution: 9.1 Å. F1: 0.398; Q3: 0.565. The domain on the right does not 

have structure assignment by the authors. f, mLRRC8A/C volume-gated anion channel 

(EMD-4361). Resolution: 7.94 Å. The PDB structure shown is from another EM map 

(EMD-4366) of the same protein (6g9l). F1: 0.571; Q3: 0.862. Two left panels, a side-view; 

right panels, a top-view. This map was not included in the dataset of 43 experimental maps 

because it does not have associated PDB structure.
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Table 1.

Summary of the secondary structure identification for simulated maps.

Measure
a) Resolution α helices β strands Others All

Voxel-based F1 score 6.0 Å 0.844 (0.852) 0.755 (0.771) 0.713 (0.730) -

10.0 Å 0.791 (0.799) 0.729 (0.743) 0.664 (0.680) -

Voxel-based Accuracy 6.0 Å 0.848 (0.853) 0.828 (0.839) 0.672 (0.693) 0.798 (0.811)

10.0 Å 0.824 (0.828) 0.753 (0.763) 0.637 (0.657) 0.756 (0.769)

Residue Q3 6.0 Å 0.866 (0.866) 0.866 (0.866) 0.718 (0.718) 0.831 (0.831)

10.0 Å 0.843 (0.843) 0.839 (0.839) 0.681 (0.681) 0.798 (0.798)

Segments 6.0 Å 0.993 0.942 -
0.971

b)

10.0 Å 0.960 0.905 -
0.938

b)

In parentheses for the F1 score, the accuracy and the residue Q3, values are shown for the relaxed measure, where multiple secondary structures 
may be considered as correct for a voxel if there are multiple Cα atoms within 3.0 Å that have different secondary structure assignments.

a)
the F1 score and the accuracy are cube-level evaluations. The F1 score is the harmonic mean of precision and recall while the accuracy is the 

recall. The residue Q3 is the accuracy is the residue-level accuracy (thus recall); and the segment considers the fraction of segments that are 
correctly identified. See Method for further details of the evaluation measures.

b)
only α helices and β strands were considered.
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