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Abstract: COVID-19 containment measures hampered population cardiorespiratory fitness (which
can be quantified as peak oxygen consumption (

.
VO2peak)) and the possibility to assess it using

laboratory-based techniques. Although it is useful to ascertain the
.

VO2peak recovery after lockdowns,
the community and most scientific institutions were unable to evaluate it. Wearable devices may pro-
vide the opportunity to estimate cardiorespiratory fitness outside of the laboratory, without breaking
self-isolation; herein, we explore the feasibility of this approach. Fifteen healthy participants were
tested every 2 weeks for 10 weeks during a reduction of containment measures after a strict lockdown.
Physical activity levels were measured using the International Physical Activity Questionnaire-Short
Form (IPAQ-SF).

.
VO2peak was estimated through a previously validated test based on the speed of a

60 m sprint run, the baseline-to-peak heart rate (HR) variation, and the velocity of HR decay after
the sprint, and measured through a wearable HR monitor. Participants increased physical activity
from the end of lockdown (1833 [917–2594] MET-min/week; median [1st quartile–3rd quartile])
until the end of follow-up (2730 [1325–3380] MET-min/week). The estimated

.
VO2peak increased

by 0.24 ± 0.19 mL/(min*kg*week) (regression coefficient ± standard error). Based on previous
knowledge on the impact of inactivity on

.
VO2peak, our study indicates that a 10-week period of

reducing the stringency of containment measures may not be sufficient to counteract the detrimental
effects of the preceding lockdown.

Keywords: VO2max; VO2peak; containment stringency; SARS-CoV-2; epidemic; lockdown

1. Introduction

Epidemiology shows that physical activity reduces the risk of non-communicable
diseases and premature mortality with a dose–response relation [1]. Physiology unveils
the mechanisms underlying this association and the time they require to occur [2]. Both
disciplines can benefit from the recent spread of mobile and wearable sensors, which allow
the study of the impact of physical activity on populations and individuals. Smartphones
and smartwatches equipped with GPS, accelerometers, pedometers, altimeters, and heart
rate monitors provide constantly growing datasets on population-level physical activity [3].
Although they do not substitute laboratory studies in gold-standard conditions, wearable
sensors favour research “from lab to real life” and vice versa, allowing everyday physi-
ological functions to be measured, while actively encouraging a healthy lifestyle [4]. As
such, they have become a precious source of information during the COVID-19 pandemic,
which led many countries to implement containment measures in order to reduce the
spread of the virus, but at the risk of impeding physical activity and increasing the risk of
non-communicable diseases and overall mortality [2,5–8].

Physical inactivity has detrimental effects on many physiological systems; among oth-
ers, it greatly curbs cardiorespiratory fitness, which can be measured as the maximal oxygen
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consumption during exercise (
.

VO2max) [2,9–11]. Considerable data on this topic come from
extreme models of inactivity such as bed rest [2,10,11]. These experimental designs provide
numerous advantages, such as being able to strictly control for confounding factors such as
dietary requirements and countermeasures; however, they do not represent the nuanced
real-life situations that occur during pandemic containment measures. Moreover, the direct
measurement of

.
VO2max is based on respirometry during incremental exercise tests, the

use of which is limited in the present context. Indeed, this technique requires a laboratory,
is time-demanding and implies a risk of SARS-CoV-2 transmission unless strict and costly
hygiene protocols are employed [12]. In addition, the testing protocol is per se a strong
training stimulus for most people, which makes it unsuitable for frequent and repeated
testing when the goal is to assess the effect of reduced physical activity on

.
VO2max. In

this regard, wearable devices could overcome the drawbacks of traditional experimental
settings to assess cardiorespiratory fitness. If

.
VO2max could be estimated with a short test

that was accessible for most people without breaking self-isolation, cardiorespiratory fitness
at the individual level could be easily and frequently monitored in real-life situations. This
would be crucial to guide public health policies, countermeasures for inactivity, and the
return to physical activity [13,14]. Storniolo and colleagues [15] developed a cardiorespi-
ratory function test based on the heart rate (HR) off-kinetics measured immediately after
a maximal 60 m sprint run using a low-cost wearable device that continuously recorded
the HR. The test was validated against incremental

.
VO2max running tests performed on

a treadmill [15] and satisfied all of the above-mentioned criteria: it was short, it could be
performed autonomously by the participants, and it used low-cost and widely available
wearable devices.

The aims of this investigation were (i) to evaluate the feasibility of a 60 m sprint
test in an exploratory longitudinal study conducted immediately after a lockdown, main-
taining participants’ self-isolation and (ii) to quantify how reducing the stringency of
the containment impacted on cardiorespiratory fitness through time. We hypothesised
that the progressive lowering of the stringency of containment measures would lead to
increased physical activity and higher cardiorespiratory fitness; the available literature did
not provide information regarding the expected magnitude of this effect.

2. Materials and Methods
2.1. Study Design and Participants

An exploratory longitudinal study design was conducted on a cohort of fifteen healthy
participants (4 females, 11 males; 24 ± 4 years, mean ± SD). The study was held in Italy
after 2 months of strict lockdown. Participants were recruited in May 2020 and observed
for 10 weeks, during a reduction of COVID-19 containment measures, until the end of
July 2020 (Figure 1a). Every two weeks, physical activity was evaluated through a
smartphone-delivered International Physical Activity Questionnaire-Short Form (IPAQ-SF).
The decision to use this questionnaire was based on its well-documented reliability and
validity [16,17]. The wearable devices could have been used to estimate physical activity,
but their results would have been less interpretable due to the use of proprietary algorithms
and the fact that participants may not have worn them during the entire day. This risk was
assumed as especially high during home-confinement periods, during which IPAQ-SF was
deemed more reliable. In addition, participants also performed a 60 m running sprint test
to estimate peak oxygen consumption (

.
VO2peak) [15].
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Figure 1. (a) Exploratory longitudinal study design. Every two weeks, physical activity and 
cardiorespiratory fitness (V̇O2peak) were assessed through the International Physical Activity Level 
Questionnaire-Short Form (IPAQ-SF) and the 60 m sprint test, respectively. (b) Schematic 
representation of the protocol used to estimate V̇O2peak [15]. A wearable device recorded the HR 
before, during, and after a 60-metre sprint run. The baseline-to-peak HR difference (ΔHR), the 
velocity of HR decay after the sprint (voff), and the mean 60 m sprint speed (vtest) were used as 
predictors. 

Healthy, physically active participants aged between 18 and 40 years were 
considered eligible. Participants were excluded if they had had COVID-19 at any moment 
during the previous lockdown, if they had any disease or clinical condition that was 
incompatible with sprinting and V̇O2peak testing, if their body mass index was above 30 
kg/m2, or if they were living outside Italy during the study period. All the participants 
gave written informed consent after becoming aware of the potential risks involved in the 
experimental sessions. In order to address a potential source of bias, each participant 
performed all of the V̇O2peak tests at the same hour of the day on the same straight, flat 
asphalt track. The environmental temperature was expected to rise during the follow-up 
period as this study was conducted from May to August in the northern hemisphere. 
Despite this, the decision to perform all of the tests at a fixed hour of the day was made in 
order to minimise the possible confounding impacts of circadian variations on the 
variables analysed to assess cardiorespiratory fitness. The reporting of this research study 
was also performed in compliance with the STROBE checklist [18], which is included in 
the Supplementary Materials. 

2.2. Measurement Instruments 
Throughout the study period, the varying stringency of the COVID-19 containment 

measures was quantified by using the publicly available data on the stringency index [18]. 
This composite measure is based on many indicators including school closures, workplace 
closures, cancelled public events, restrictions on gatherings, closed public transport, 
public information campaigns, stay-at-home recommendations or requirements, 
restrictions on internal movement, and face coverings. It ranges from 0 (minimal 
stringency) to 100 (maximal stringency) [19]. 
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Figure 1. (a) Exploratory longitudinal study design. Every two weeks, physical activity and car-
diorespiratory fitness (

.
VO2peak) were assessed through the International Physical Activity Level

Questionnaire-Short Form (IPAQ-SF) and the 60 m sprint test, respectively. (b) Schematic representa-
tion of the protocol used to estimate

.
VO2peak [15]. A wearable device recorded the HR before, during,

and after a 60-metre sprint run. The baseline-to-peak HR difference (∆HR), the velocity of HR decay
after the sprint (voff), and the mean 60 m sprint speed (vtest) were used as predictors.

Healthy, physically active participants aged between 18 and 40 years were considered
eligible. Participants were excluded if they had had COVID-19 at any moment during the
previous lockdown, if they had any disease or clinical condition that was incompatible with
sprinting and

.
VO2peak testing, if their body mass index was above 30 kg/m2, or if they were

living outside Italy during the study period. All the participants gave written informed
consent after becoming aware of the potential risks involved in the experimental sessions.
In order to address a potential source of bias, each participant performed all of the

.
VO2peak

tests at the same hour of the day on the same straight, flat asphalt track. The environmental
temperature was expected to rise during the follow-up period as this study was conducted
from May to August in the northern hemisphere. Despite this, the decision to perform all of
the tests at a fixed hour of the day was made in order to minimise the possible confounding
impacts of circadian variations on the variables analysed to assess cardiorespiratory fitness.
The reporting of this research study was also performed in compliance with the STROBE
checklist [18], which is included in the Supplementary Materials.

2.2. Measurement Instruments

Throughout the study period, the varying stringency of the COVID-19 containment
measures was quantified by using the publicly available data on the stringency index [18].
This composite measure is based on many indicators including school closures, workplace
closures, cancelled public events, restrictions on gatherings, closed public transport, public
information campaigns, stay-at-home recommendations or requirements, restrictions on
internal movement, and face coverings. It ranges from 0 (minimal stringency) to 100
(maximal stringency) [19].

Physical activity was evaluated using the IPAQ-SF, which referred to the previous
14 days and assessed walking, moderate-intensity activities, vigorous-intensity activities,
and sedentary behaviour. Data were analysed according to the IPAQ scoring guidelines [20].
Physical activity was estimated by multiplying the total amount of minutes spent per week
by the metabolic equivalent score of each activity (MET) and expressed as MET-min/week.
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Cardiorespiratory fitness was estimated as
.

VO2peak through the method published
by Storniolo and colleagues [15]. Briefly, the participants performed a 5 min resting mea-
surement in a standing position followed by a maximal 60 m sprint run and an additional
5 min resting measurement; a personal wearable device (Garmin Fenix 5 plus, Garmin
Edge 305 or Polar m430) continuously recorded the HR every second during the rest and
test periods (Figure 1b). Participants were familiarised with the test protocol in a separate
session prior to the first acquisition; then, they performed the sprint task autonomously
and the data were analysed remotely. The data were visually reviewed and if gaps in the
HR data were detected, participants were asked to repeat the measurement. In the case of
any errors, the participants had to wait 24 h before repeating the sprint test.

.
VO2peak was

then estimated as:
.

VO2peak = 7.46 ∗ vtest + 261.4 ∗ voff − 0.19 ∗ ∆HR (1)

where vtest (m s−1) is the mean velocity over 60 metres calculated using the built-in stop-
watch feature, voff (s−1) is the velocity of heart rate (HR) decay after the sprint, and ∆HR
is the difference between the HR at the start of the sprint and at the beginning of the
off-kinetics (Figure 1b). voff was calculated from an exponential fit of the HR off-kinetics
after maximal sprint as:

voff =
1
τ

(2)

where τ is the time from the end of the sprint to reach 37% of the maximum excursion of
the HR. The analysis of the HR kinetics was performed with R 3.6.2 and R Studio [21,22].

2.3. Statistical Analysis

A linear mixed model was implemented in order to assess the variation of estimated
.

VO2peak during time in a within-subject design, by controlling for IPAQ level. Assumptions
for this model were checked and reported in the model diagnostics plots as Supplementary
Figure S1. The regression analysis was performed with R 3.6.2 and R Studio [21,22], using
the libraries lme4 for the mixed-effect model and DHARMa for the diagnostic plots [23,24].
As indicated in lme4 documentation and due to the limited interpretability of p-values,
especially in exploratory observational studies [23,25], results of the regression model were
reported as regression coefficients, standard errors, and t-statistics in addition to their
p-value.

3. Results

One participant completed only three
.

VO2peak tests, so her data were excluded from
analysis. The remaining participants completely concluded their follow-up, taking part in
six

.
VO2peak tests and six IPAQ-SF measurements each. The demographic and anthropo-

metric characteristics of the 14 analysed participants are summarised in Supplementary
Table S1 [18]. During the 10 weeks of follow-up, containment measures became progres-
sively less stringent (Figure 2a). The participants reduced their sitting time and increased
their physical activity from end of lockdown (10.5 [10–12] hours/day sitting and 1833
[917–2594] MET-min/week of physical activity; median [1st quartile–3rd quartile]) until
the end of follow-up (8 [7–11] hours/day sitting and 2730 [1325–3380] MET-min/week).
This increase was mainly due to greater time spent walking, with smaller variations in
moderate and vigorous physical activity (Figure 2a). The estimated

.
VO2peak increased by

0.24 ± 0.19 mL/(kg*min) (regression coefficient ± standard error; t-statistic: 1.3; p-value:
0.21) per week, with a weekly average increase of 0.7% from the values recorded imme-
diately post-lockdown. Figure 2b shows the individual and mean variations in cardiores-
piratory fitness during the follow-up period and the extended summary statistics for the
outcome variables are provided in Supplementary Tables S2–S4.
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Figure 2. (a) Physical activity and stringency of containment measures. During the study period,
the stringency of the COVID-19 containment measures fell (black line), while participants increased
their total physical activity levels (bars: average time doing walking, moderate, or vigorous activity).
(b) Estimated

.
VO2peak throughout the follow-up. The estimated

.
VO2peak increased by ∼0.7%/week

(t-statistic: 1.3); individual data points, individual and mean regression lines (thin and thick, respec-
tively), and probability density functions (violin contours) are reported.

4. Discussion

In this 10-week longitudinal study, fifteen healthy participants performed a test to
estimate cardiorespiratory fitness through a wearable HR device. Since the measurements
from one participant were excluded, only fourteen subjects were included in the analysis.
When resuming physical activity after a lockdown, their estimated

.
VO2peak increased by

0.24 ± 0.19 mL/(kg*min) per week, or 0.7% per week from the values recorded immediately
post-lockdown.

Containment measures can make people lose their cardiorespiratory fitness as a
consequence of physical inactivity; no data are available about how fast

.
VO2peak is lost in

this condition, but an estimate can be drawn from some experimental models of physical
inactivity. When under forced bed rest, people can lose

.
VO2peak by up to ∼3.5% per

week [2,10,11]; when daily step numbers are reduced to 1500 per day,
.

VO2peak decreases by
∼2.5% per week [26,27], hinting that a minimum dose of activity is required to maintain
cardiorespiratory fitness. In the present investigation, participants increased their

.
VO2peak

by ∼0.7% per week indicating that simply returning to an active lifestyle may not be
sufficient to counteract the detrimental effect of previous containment measures. The
observed increment of 0.24 ± 0.19 mL/(kg*min) per week is lower than the increments up
to ∼0.4 mL/(kg*min) per week reported with high-intensity programmes [28]—possibly
because the latter were structured exercise interventions—but still higher than observed
when structured exercise interventions were unsupervised [29]. The participants of this
study already performed on average ∼200 min of moderate and vigorous physical activity
during lockdown (a similar amount to that suggested by the World Health Organization
guidelines for physical activity [30]) and mainly incremented their walking time during the
study period.

The sample size is the main limitation affecting the findings presented above. However,
the results from this exploratory longitudinal study can be used to plan research with larger
cohorts assessing the resumption of physical activity and cardiorespiratory fitness after a
pandemic—or any prolonged period of inactivity—using wearable devices. The observed
effect is small in this exploratory study; studies with larger cohorts and gold-standard
examinations are needed to further test the findings in this study. Moreover, this study
focused only on young healthy participants. In order to increase the generalizability of
results, further investigations could also include other population groups.

Not only did the current pandemic impact on physical activity, but the use of tradi-
tional laboratory-based methods to gather information on these impacts was also hampered.
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Direct
.

VO2max quantification presents considerable limitations when the aim is to assess
cardiorespiratory fitness between intermittent lockdowns or periods of inactivity. Estimat-
ing cardiorespiratory fitness through wearable devices can fill the gap between wide-scale
epidemiological evidence and laboratory-based physiological experiments, as a low-cost
and COVID-safe alternative. This can be combined with the population-level tracking of
physical activity to examine trends in cardiorespiratory fitness, tailor the stringency of
containment measures and guide the return to physical activity for patients, athletes, and
the general population.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/healthcare10040634/s1, Figure S1: Model diagnostics for the mixed linear model, Table S1:
Demographic and anthropometric characteristics of the participants, Table S2: Descriptive statistics
for physical activity, Table S3: Descriptive statistics for sedentary behaviour, Table S4: Descriptive
statistics for

.
VO2peak, STROBE (STrengthening the Reporting of OBservational studies in Epidemiol-

ogy) checklist.
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