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The cognitive impairment and neuroanatomical changes that takes place among patients with bipolar disorder (BD) patients has been well 
described. Recent data suggest that changes in neuroplasticity, cell resilience and connectivity are the main neuropathological findings in 
BD. Data from differential lines of research converges to the brain-derived neurotrophic factor (BDNF) as an important contributor to the 
neuroplasticity changes described among BD patients. BDNF serum levels have been shown to be decreased in depressive and manic epi-
sodes, returning to normal levels in euthymia. BDNF has also been shown to decrease as the disorder progresses. Moreover, factors that 
negatively influence the course of BD, such as life stress and trauma have been shown to be associated with a decrease in BDNF serum lev-
els. These findings suggest that BDNF plays a central role in the progression of BD. The present review discusses the role of BDNF as a me-
diator of the neuroplastic changes that occur in portion with mood episodes and the potential use of serum BDNF as a biomarker in BD. 
 Psychiatry Investig 2010;7:243-250
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INTRODUCTION

Bipolar disorder (BD) is a highly disabling chronic mood dis-
order characterized by the presence of manic and depressive 
symptoms and a lifetime prevalence of 3.9%.1,2 Epidemiologi-
cal studies indicate a role for both biological and environmen-
tal factors in the ethiopathogenesis of BD. Due to the high heri-
tability and familial relative risk reported in BD, there is little doubt 
that molecular genetics play an important role. However, the ge-
netic basis for this illness remains elusive.3,4 An emerging body 
of evidence suggests that environmental stressors may trigger 
mood episodes.5 Indeed, it is known that stressors are more likely 
to be involved in the precipitation of the first episodes, but less so 
with subsequent episodes.6,7 In the same vein, cognitive impair-

ment has been also demonstrated in bipolar patients with a his-
tory of multiple mood episodes.8 In terms of neuropathological 
findings, data suggest that changes in neuronal plasticity, partic-
ularly in cell resilience and connectivity, are the main finding in 
BD.9

The brain-derived neurotrophic factor (BDNF) plays an im-
portant role in a variety of neural processes during the develop-
ment of both animals and humans. Initially, BDNF is important 
for neurogenesis, neuronal survival, and normal maturation of 
neural development pathways. In the adult, BDNF is not only im-
portant for synaptic plasticity and dendritic growth, but also for 
long-tem memory consolidation.10

In the present review, we describe the recent findings in the 
gene expression and mechanisms of action of BDNF as well as 
how psychosocial stress and BD mood episodes modulate BD-
NF brain levels. We also discuss the proposal of BDNF as a po-
tential biomarker in BD. 

BDNF GENE EXPRESSION AND 
MECHANISM OF ACTION

BDNF is a member of the growth factor family, which is in-
volved in promoting synaptic efficacy, neuronal connectivity 
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and neuroplasticity.6 It has emerged as a key mediator of synap-
tic plasticity, neuronal connectivity and dendritic arboriza-
tion.11,12 Together with other biological factors, such as neu-
rotransmitters, hormones and other neurotrophins, BDNF or-
chestrates mechanisms of neuronal plasticity and survival.

Transcription
BDNF has an extremely complex genomic structure. The hu-

man gene presents eleven exons and nine functional promoters, 
producing up to seventeen different transcripts which encode 
for the same protein.14 In the rat, for instance, Bdnf gene has nine 
exons with its own promoter, producing nine different transc-
ripts.15 Such a complex set of genomic promoters is thought to 
mediate accurate control of BDNF production. Cumulative evi-
dence indicates that these transcripts are differentially distrib-
uted across brain regions in different cell types and even with-
in different parts of the neuron. For example, in the rat, exon III 
transcripts are detected only in cell bodies, whereas exon IV tran-
scripts are found in cell bodies and dendritic processes of visu-
al cortex neurons.16 These promoters are differentially activat-
ed in response to diverse and varied signaling events, including 
epigenetic regulation. Recent reports have suggested a patho-
physiological role for BDNF in major depression and suicide.17 
Kim et al. 2010 have suggested that the BDNF messenger RNA 
(mRNA) expression is reduced in peripheral blood mononucle-
ar cells of patients with major depression. This alteration of BDNF 
mRNA expression was more pronounced in recent suicide at-
tempters. 

There is evidence showing that chromatin remodeling in-
volving the BDNF gene may be associated with the deleterious 
effects of stress and with antidepressant response. More specifi-
cally, Tsankova et al.18 found that chronic defeat stress, a mouse 
model of depression, induced a 3-fold downregulation of Bdnf 
mRNA expression in the hippocampus, an effect that was me-
diated by repressive histone methylation and consequent de-
crease in the expression of Bdnf transcripts III and IV. More-
over, chronic treatment with imipramine increased histone ace-
tylation at these same promoters, thereby normalizing the ex-
pression of Bdnf transcripts III and IV and total protein. More 
recently, Yasuda et al.19 showed that the mood stabilizers lithi-
um and valproate increased Bdnf transcript III in rat cortical 
neuronal cultured cells. Together, these studies strongly suggest 
that the regulation of BDNF transcription may be a key target 
for the effects of antidepressants and mood stabilizers. 

Translational and post-translational modifications
BDNF transcripts are translated into proBDNF, which binds 

to sortilin in the Golgi to facilistate its appropriate folding, traf-
ficking and secretion (Figure 1).20,21 

It has been demonstrated that a single nucleotide polymor-

phism in the BDNF gene, substitution of a valine for a methi-
onine at the codon 66 (val66met), is involved in altered traffick-
ing of BDNF. Such change seem to take place due to a reduced 
interaction of BDNF and sortilin inducing metBDNF aggre-
gation to the cell body of neurons and thus preventing it to in-
teract with synaptophysin. That would in turn reduce the BDNF 
secretion into the synapse.20 Further, knock-in BDNFmet/met mice 
have abnormal dendritic arborization in the dentate gyrus and 
display anxious-related behaviors that are not normalized by 
antidepressant treatment.22 In BD patients, the val66met substi-
tution in the BDNF gene has been associated with impaired cog-
nitive performance,23 and suicidal behavior.24 It has also been re-
ported a differential response to lithium prophylaxis25 and de-
creased prefrontal cortical volume among patients with BP who 
presented the val66met substitution in the BDNF gene.26 In ad-
dition, val66val genotype showed an association with increased 
risk of rapid cycling27,28 and childhood onset of BD.29,30 Serum 
levels of BDNF have also been evaluated in euthymic patients 
with both val/val and met carriers as compared to controls.31 The 
val66met was not associated with a differential serum level in BD 
patients. 

The BDNF secretion can be either constitutive or, more fre-
quently, regulated by stimuli.32 This activity-dependent secre-
tion, a feature characteristic of BDNF and not of any other neu-
rotrophin or growth factor,33 may be an important factor in mood 

Figure 1. BDNF synthesis and release from neurons. a: BDNF gene: 
promoters, exons and introns. The BDNF gene expression may be 
modulated by epigenetic mechanisms. Trauma can induce methyla-
tion of the promoters of the BDNF gene and therefore inhibit their 
transcription. b: Different mRNA transcripts can be produced depend-
ing on which of the promoters is activated. c: An alternative splicing 
mechanism removes the introns out and leads to the formation of a 
processed mRNA molecule ready to be translated. d: The mRNA 
molecule translocates out of the nucleus into the cytoplasm and 
is translated into proBDNF in the endoplasmic reticulum. e: The new-
ly synthesized proBDNF heads to the Golgi apparatus and is then 
cleaved into mature BDNF by endoproteases. f: BDNF-containing 
vesicles merge to the cell membrane in a Ca2+-dependent way and 
release BDNF to the extracellular space.

Promoter
Intron

Trauma

Methylation

Exon
Intron
Exon

PROTEINS
Enzymatic
 cleavage

pro-BDNF BDNF

a b

d

e

f

c



I Grande et al. 

   www.psychiatryinvestigation.org  245

regulation. Along with slow effects that require protein synthe-
sis, BDNF exerts rapid signaling events that regulate synaptic 
plasticity.34 For example, inducing phosphorylation of synapsin 
and thereby increasing glutamate and GABA release.35 BDNF 
can also increase ion influx through N-methyl-D-aspartate re-
ceptors and then synaptic strength.36 Thus, BDNF is able to reg-
ulate synaptic plasticity and recent findings suggest that mood 
disorders would be associated with alterations in information 
processing within neural networks.37 A large proportion of neu-
ronal BDNF is secreted in the pro-form (proBDNF) which is 
subsequently converted to the mature form (mBDNF) by en-
doproteolytic cleavage.38 Lee et al.39 suggested that the extracel-
lular conversion from premature into mature forms was achi-
eved through serine protease plasmin and by selective matrix 
metalloproteinases. The study of the conversion of proBDNF 
into BDNF is a matter of importance since these structures elicit 
differential biological effects. For instance, proBDNF preferen-
tially binds to pan-neurotrophin receptor p75NTR related to 
apoptosis while mature BDNF acts at tyrosine kinase (Trk) 
type-B receptor. On the contrary to p75NTR, the BDNF binding 
to the Trk B receptor initiates intracellular cascades involved 
with cellular survival, growth and differentiation via mitogen-
activated protein kinase, phosphatidylinositol 3-kinase, and 
phospholipase C-g signal transduction pathways.37 They can 
induce dendritic sprouting by means of cytoskeleton modula-
tion40 (Figure 2). These findings have led to the “ying-yang hy-
pothesis” where pro- and mature neurotrophins draw out op-
posite biological actions by means of differential receptors.21 
The mature BDNF is critical for long-term potentiation, whereas 
proBDNF facilitates long-term depression.41 Depending on the 
localization, these molecules may display opposite effects. In-
trahippocampal infusion of BDNF produces antidepressant 
effects, whereas it may present a pro-depressive role when the 
infusion is carried out in the ventral tegmental area/nucleus ac-
cumbens reward system.42

PSYCHOSOCIAL STRESS, BIPOLAR 
DISORDER AND BDNF

BDNF expression has been shown to be regulated by stress 
responsive corticosteroids.43 The interaction between BDNF and 
corticosteroids appears to play a key role in the environmental-
ly-mediated vulnerability to psychopathology.44 Early exposure 
to traumatic life events and posttraumatic stress disorder, as well 
as depression, has been associated with hypothalamic-pituitary 
adrenal (HPA) axis dysfunction and enduring stress response 
alterations.45 In fact, Schüle and colleagues46 showed that patients 
with BDNF met/met polymorphism had higher HPA axis ac-
tivity during dexametasone/CRH test. Glucocorticoids and me-
diators of stress interact with neurotransmitter systems result-

ing in neuroplastic alterations seen in hippocampus, amygdala 
and prefrontal cortex.47 For instance, chronic stress in animal mo-
dels is related to abnormal neuronal remodeling in the prefron-
tal cortex,48-50 particularly in glial cells,51 and amygdala.52 

Accordingly, decreased BDNF levels have been associated 
with decreased hippocampal volume. Studies have reported 
smaller hippocampal volumes in patients with early life stress 
and child sexual abuse. Depressed women with a history of child 
abuse have an 18% smaller left hippocampal volume than non-
abused women.53 Remarkably, these apparent differences in hip-
pocampal size may be reversible with antidepressant treatment, 
consistent with a function of neurotrophic factors in neural pla-
sticity in the hippocampus.54 Taken together, these data suggest 
that BDNF-related neuronal plasticity may be an important me-
diator of the effects of psychosocial stress on psychopathology.

Stress and bipolar disorder
Chronic stress is known to induce hyperactivation of amyg-

dala, enhancing amygdala-dependent unlearned fear, fear con-
ditioning, and aggression.55 Similarly, many of the symptoms 
experienced by patients with BD appear to be associated with 
abnormalities in emotional processing which involve amygda-
le-related circuitry. In this same vein, an enlargement of the am-
ygdala has been described as the most prominent abnormality 

Figure 2. BDNF-activated transduction pathways induce dendritic 
sprouting. a: BDNF binds to tyrosine kinase receptor type-B and in-
duces the dimerization of the receptor. b: Binding of BDNF induces 
TrkB autophosphorylation at specific tyrosine residues of the re-
ceptor and thus creates binding sites for specific proteins. c: Three 
main intracellular signalling cascades are activated by TrkB: Ras-
mitogen-activated protein kinase (MAPK) pathway, the phosphati-
dylinositol 3-kinase (PI3K)-Akt pathway and the PLCg-Ca2+ path-
way. d: Activation of PLC-g leads to the release of calcium from the 
endoplasmic reticulum and to activation of a calcium-calmodulin-
dependent kinase II (CAMKII), ending in phosphorylation of CREB 
and activation of transcription. Activation of the MAPK pathway can 
also regulate transcription through phosphorylation of CREB. e: Sig-
naling pathways mediate BDNF-promoted modifications of den-
dritic morphology. Simultaneous triggering of the PI3K and MAPK 
pathways concurrently alters both actin and microtubule dynamics 
and changes downstream dendrite branching.
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in BD.56-59 In addition to structural changes in this circuitry, func-
tional neuroimaging studies indicate increased activity in the 
amygdala during acute mood episodes60,61 and impairment in 
amygdala-dependent tasks, such as facial recognition tasks.62 
Emotional memory has also been evaluated as an amygdala-re-
lated cognitive task. Contrary to controls, patients with BP had 
no enhancement of memory for the emotional content of the 
story and the subjective perception of the emotional impact of 
the emotional condition was significantly different from that of 
the neutral condition in controls but not in people with BD.63 
These findings suggest that amygdala and its related circuits 
seem to be overactive and dysfunctional in patients with BD. It 
may be possible that the gate system to code experiences as st-
ressful is overactive and defective in BD patients.64 Such mal-
functioning would render bipolar patients more vulnerable to 
stress. It has been reported that childhood trauma associated to 
BD may lead to more complex psychopathological manifesta-
tions.65,66

It is noteworthy that the same genes associated with BD have 
been also been implicated in decreased resilience to stress. BD-
NF and other neurotrophic factors are believed to counteract 
the negative impact of stress hormones on the hippocampal vol-
ume.67 Together, BDNF and corticosteroids may play a role in 
the environmentally mediated vulnerability to cognitive impair-
ment in BD.68 In a BD sample, those with history of traumatic 
experiences had lower serum BDNF which may be related to an 
incremented load of stress.69

BDNF AS A BIOMARKER IN BIPOLAR 
DISORDER

Diagnostic criteria, as well as other aspects of clinical manage-
ment such as treatment monitoring, are still essentially based 
on clinical symptomatology. There is a clear need for biological 
markers as complements for diagnostic and prognostic assess-
ments in order to improve our management of BD. Recent evi-
dence suggests that BDNF might be a potential marker.85

BDNF as a biomarker of neuronal dysfunction 
BDNF is highly expressed in the cerebral cortex and hippo-

campus, brain areas that are known to regulate complex brain 
functions such as memory and emotion. It has been demonst-
rated that BDNF plays a key role in long-term potentiation, one 
of the most accepted models of learning and memory. For in-
stance, the administration of exogenous BDNF to genetically 
modified mice deficient in BDNF or its receptor TrkB rescue the 
impairment in LTP process.70 In addition, transgenic mice lack-
ing BDNF or TrkB demonstrate poorer performance than their 
wild-type littermates in the Morris water maze, a hippocampal-
dependent spatial learning task.71 These and other studies sug-

gest that abnormalities in the BDNF-signaling system might 
be implicated in the cognitive decline observed in certain neu-
ropsychiatric disorders, such as BD,72 major depression73 and 
schizophrenia.74

There is an emerging body of evidence indicating that BDNF 
is associated with the mechanism of action of antidepressants 
and mood stabilizers.75,76 In the cerebral cortex and hippocam-
pus, it has been reported increased BDNF expression after ch-
ronic antidepressant treatment.73 Moreover, it was demonstrat-
ed that the blockage of BDNF-signaling with either a tyrosine 
receptor kinase inhibitor or a mitogen-activated extracellular re-
gulated kinase (ERK) kinase/ERK inhibitor attenuated the an-
tidepressant effects of BDNF.77 In this same vein, the chronic 
administration of lithium and valproate increased BDNF con-
tent in the rat hippocampus and prefrontal cortex.78,79 In addi-
tion, the depressive behavior induced by social defeat stress in 
rats is prevented by blockage of BDNF in the ventral tegmental 
area.42 

Taken together, these observations suggest that decreased 
BDNF may be a marker of neuronal dysfunction, possibly me-
diating cognitive impairment, which can be reversed by pro-
per treatment. Therefore, a deeper understanding about the mo-
lecular determinants involved in BDNF-signaling cascades may 
provide a means for monitoring treatment response and disease 
progression as well as the development of novel agents for the 
treatment of BD.

BDNF and mood episodes
It has repeatedly been described that cognitive dysfunction 

in patients with BD is not only present during mania and de-
pression but also in euthymia.8,80-82 Such cognitive impairment 
has been construed as a consequence of the cellular strain im-
posed by recurrent mood episodes.83-85 In this sense, the burden 
of repeated mood episodes would translate into episode recur-
rence, cognitive impairment, disability and premature death.83,86

Some growth factors, including BDNF, which are altered by 
stress, have been shown to be modified in BD.10 It has been de-
monstrated that serum BDNF levels decrease during manic 
and depressive episodes in both treated and drug-free subjects 
when compared to normal controls and to unipolar depression 
and that BDNF levels are negatively correlated with severity of 
manic and depressive symptoms.87-90 Moreover, Tramontina et 
al.91 showed that BDNF levels of manic patients were lower 
than those of healthy controls and that the significant differ-
ence vanished after successful treatment. In the light of such 
data, the decrease of BDNF levels may be conceived as a state-
dependent biomarker of BD as reported in the meta-analysis of 
Lin.92 It has also been described that BDNF levels are decreased 
in chronic or late stage individuals with BD compared to early 
stages of the illness.93 Moreover, accelerated age-related decreased 
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of BDNF was described.94 In addition, serum neurotrophin-3,95 
neurotrophin 4/5 and glial cell line-derived neurotrophic factor 
levels96 were showed to be increased during acute mood epi-
sodes.95-97 Taken together, these findings suggest an orchestrat-
ed change in the pattern of neurotrophin expression during mood 
episodes. As the disorder progresses, this pattern seems to be al-
tered even between episodes, suggesting a trait characteristic of 
later stages of illness, characterized by chronic subsyndromic 
symptomatology, cognitive impairment and functional decline.44

Changes in neurotrophins seem to occur in portion with ch-
anges in other biomarkers such as oxidative stress markers and 
molecules related to inflammation.98 Taking this into account, 
we have postulated that such systemic changes related to mood 
episodes would be better measured by a composite assessment 
of peripheral toxicity. Thus we have recent put forward the no-
tion that a systemic toxicity index would be a useful construct 
as a means to assess peripheral changes in mood episodes.99 

CONCLUSION

Recent evidence suggests that BDNF might be a potential 
state marker is BD. The fact that serum BDNF levels are decr-
eased during manic and depressive episodes, strongly suggest 
that the normalization of BDNF levels may be associated with 
clinical stabilization.87-90 However, these assumptions are based 
on case-control studies. Few longitudinal studies have been de-
veloped up to the present day.91,104 Another limitation of this hy-
pothesis is that it is based fundamentally in studies conducted 
with animal models or human peripheral blood, and the pre-
sumption that such findings might be occurring in the human 
brain needs to be confirmed. In this regard, a postmortem study 
showing that individuals under antidepressant medications at 
the time of death had higher hippocampal BDNF expression 
than individuals not on antidepressants105 further support the 
role of BDNF in the treatment of mood disorders. The develop-
ment of specific ligands for TrkB receptors could be extremely 
valuable in future positron emission tomography studies in hu-
mans.

At the same time, it is not appropriate to rely only in episod-
ic alterations to fully explain the pathophysiology of BD. Impair-
ments in neuronal plasticity and resilience could be the neuro-
pathological hallmark of BD, corresponding to more enduring 
changes in the brain of patients. Morphometric studies have 
demonstrated that patients with BD have enlargement of third 
and lateral ventricles and reduced gray matter volumes of or-
bital and medial prefrontal cortices, ventral striatum and me-
sotemporal cortex, as well as an increase of the size of amygda-
le.7 Notably, it was reported that such neuroanatomical changes 
tend to be more pronounced with repeated episodes.100 Apart 
from neuroanatomical changes, impairment in cognitive func-

tion has been also demonstrated in manic, depressed as well as 
euthymic bipolar patients.80,81,101,102 Such impairment seems to 
be related to indicators of the severity of illness, such as the pres-
ence of psychotic symptoms, longer duration of illness and 
higher number of manic episodes.103 

Several transversal and longitudinal brain imaging studies 
demonstrated that lithium treatment increases cerebral corti-
cal gray matter content and hippocampal volume in patients 
with BD.106-111 It can be presumed that these findings may be 
related to neurotrophic effects of lithium, especially by increas-
ing cerebral BDNF.108,109 This hypothesis is largely supported by 
studies in rodents showing that lithium, valproate and antide-
pressants increase BDNF levels in the hippocampus and pre-
frontal cortex, brain regions known to be involved with mood 
regulation.78,79 Thus, we believe that substances that are able to 
increase cerebral BDNF expression have the potential to affect 
human affective responses and exert mood stabilizing effects, 
and that this rationale should be included in the investigation 
of new treatment approaches. In this regard, recent new prom-
ising drugs in the field of BD such as protein kinase C inhibitors112 
and glutamate modulators113 may regulate the expression of BDNF 
through downstream effects on transcriptional factors and 
gene expression.

Finally, genetics is another promising field of research with 
a potential to unravel individual differences in treatment re-
sponse related to distinct genetic predisposition. For instance, 
while a recent study showed that the BDNF val66met polymor-
phism is not associated with antidepressant-induced mania,114 
another study found that individuals val/met for this polymor-
phism may be better responders to lithium prophylaxis.25 Ob-
viously, longitudinal studies are necessary to better determine 
the role of the val66met polymorphism in treatment response. 
In addition, studies addressing the involvement of other single 
nucleotide polymorphisms of the BDNF gene, as well as the in-
teraction between BDNF and other functional genes are war-
ranted.
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