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INTRODUCTION 
 

Cancer cells utilized altered cellular metabolism to 

provide energy and biomacromolecules for self-renew 

and survival. Multiple metabolic processes have been 

proved to participate in cancer occurrence and 

progression [1, 2], among which nucleotide 

metabolism and the factors that influence this process 

are receiving increasing attention [3]. An in-depth 

understanding of this field is a prerequisite for the 

effective prevention and treatment of tumors, which is 

of great importance. The tumor incidence, detection 

rate and death rate are constantly increasing, and 

malignant tumors have become a common disease that 

seriously threatens human health [4]. The relationship 

between nucleotide metabolism and tumors has 

become a key studied issue [5, 6], but the specific 

molecular mechanism and function remain unclear. 

This review summarizes and discusses the above 

related research findings. 

 

Nucleotide metabolism 
 

Metabolism of purine nucleotides 

 

The de novo synthesis of purine nucleotides is the main 

source of nucleotides in vivo, and the body mainly 

regulates the nucleotide synthesis rate through negative 

feedback [7]. Moreover, studies have shown that unlike 

nonproliferating cells, proliferating cells, such as 

immune cells and cancer cells, tend to use the de novo 

nucleotide synthesis pathway [3, 8]. Different tumor 

subtypes also differ in their choice of nucleotide 

synthesis pathway. For example, Martin et al. found that 

www.aging-us.com AGING 2021, Vol. 13, No. 9 

Emerging roles of nucleotide metabolism in cancer development: 
progress and prospect 
 

Jingsong Ma1,2, Mengya Zhong1,2, Yubo Xiong1,2, Zhi Gao3, Zhengxin Wu4, Yu Liu5, Xuehui Hong1,2 
 
1Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Fujian, Xiamen 361000, China 
2Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Fujian, Xiamen 361000, China 
3National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory 
of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Guangxi, Nanning 53000, 
China 
4Medical College of Guangxi University, Guangxi, Nanning 530000, China 
5General Surgery Center, Bazhong Central Hospital, Sichuan, Bazhong 636000, China 
 
Correspondence to: Xuehui Hong; email: hongxu@xmu.edu.cn 
Keywords: nucleotide metabolism, tumor immunity, key metabolic enzyme, signaling pathway, oncogene-induced 
senescence 
Received: August 12, 2020  Accepted: March 29, 2021 Published: May 5, 2021 

 
Copyright: © 2021 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Abnormal cancer metabolism occurs throughout the development of tumors. Recent studies have shown that 
abnormal nucleotide metabolism not only accelerates the development of tumors but also inhibits the normal 
immune response in the tumor microenvironment. Although few relevant experiments and reports are 
available, study of the interaction between nucleotide metabolism and cancer development is rapidly 
developing. The intervention, alteration or regulation of molecular mechanisms related to abnormal nucleotide 
metabolism in tumor cells has become a new idea and strategy for the treatment of tumors and prevention of 
recurrence and metastasis. Determining how nucleotide metabolism regulates the occurrence and progression 
of tumors still needs long-term and extensive research and exploration. 

Review 

mailto:hongxu@xmu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 13350 AGING 

papillary breast cancer tends to utilize the de novo 

nucleotide synthesis pathway, while breast cancer with 

epithelial-mesenchymal transition characteristically 

preferentially the use of the salvage nucleotide synthesis 

pathway [9]. 

 

Yamaoka et al. suggested that the formation of 5′-

phosphoribose-1′-pyrophosphate (PRPP) and 5′-

phosphoribosamine (PRA) is the main regulatory 

process in this pathway and that 5′-phosphoribosyl-1′-

pyrophosphate synthetase (PRS) and glutamine 

phosphoribosylpyrophosphate amidotransferase 

(GPRATase), which catalyze the two reactions, are the 

key enzymes that are regulated in the pathway [10, 11]. 

 

In addition, during the synthesis of AMP and CMP from 

IMP, hypoxanthine nucleotide dehydrogenase (IMPDH) 

and adenylosuccinate synthetase (ADSS) are the key 

enzymes in each synthetic route [12, 13]. 

 

The purine nucleotide salvage pathway is simpler and 

less energy-consuming than the de novo synthetic 

approach [14, 15], and its relative importance depends 

on the synthesis conditions and specific tissue type. 

Some tissues and organs in the body, such as the brain 

and bone marrow, lack the enzyme system necessary to 

synthesize purine nucleotides from scratch, so they can 

utilize only the salvage approach to synthesize purines 

[16–18]. 

 

Metabolism of pyrimidine nucleotides 

 

The synthesis of pyrimidine nucleotides, like that of 

purine nucleotides, takes simple substances such as CO2 

and glutamine as raw materials and is also divided into 

de novo synthesis and salvage pathways [19]. PRPP is 

at the intersection of two synthetic pathways and 

involved in both [20]. 

 

In mammalian cells, the key enzymes in the synthesis of 

pyrimidine nucleotides are carbamyl phosphate 

synthetase II (CPSII) and dihydroorotate dehydrogenase 

(DHODH), which are regulated by a UMP negative 

feedback mechanism [21, 22]. 

 

Nucleotides and tumors 
 

As a kind of biological information macromolecule, 

nucleotides mainly function as the raw materials for 

nucleic acid synthesis to support cell proliferation [23, 

24]. With continuous in-depth study of purines and 

pyrimidines, our understanding of nucleotides in tumors 

has revealed their nonproliferative effect beyond their 

effect on cell growth [25, 26]. The role of purine 

molecules as purinergic signaling ligands has been fully 

recognized [27, 28]. Recently, great progress has been 

made in understanding the nonproliferative role of 

pyrimidine molecules. Aarif et al. found in a breast 

cancer model that after the thymidylate synthase (TS) 

gene was knocked out, a gene characteristic of 

epithelial-mesenchymal transition (EMT) in tumors was 

inhibited, and TS-deficient cells showed decreased 

invasion and metastasis in vivo [29]. Many researchers 

are committed to providing pioneering ideas for 

increased understanding and the prevention of tumors. 

 

Nucleotide metabolism and tumor immunity 

 

The immune microenvironment is an important part of 

the tumor microenvironment [30], and the relationship 

between nucleotide metabolism in tumor cells and 

immune cells is emerging [31]. Cancer cells, virus-

infected cells, cells that undergo rapid proliferation and 

other abnormal cell types express the cell-surface 

glycoprotein MHC class I polypeptide-related sequence 

A (MICA), which can be identified by Natural killer 

group 2D (NKG2D), allowing immune identification 

and the removal of potential pathological cells [32]. The 

Michael team found that glucose transport to cells and 

active glycolytic metabolism are necessary to increase 

the expression of MICA, and purine synthesis is 

necessary to support this effect of glucose. An increase 

in purine nucleotide levels is sufficient to induce the 

expression of MICA and acts as the core component of 

MICA induction [33]. 

 

In the pathogenic process of tumors, under metabolic 

stress or hypoxia, tumors and immune cells produce 

adenosine, which decomposes into precursor purine 

nucleotides [34, 35]. Adenosine receptors (A1, A2A, 

A2B and A3) are found on the surface of various 

immune cells [36–39]. Studies have shown that 

adenosine acts as a reporter, reducing inflammatory 

immune signals by binding adenosine receptors [40–

42]. In 1999, Xaus et al. found that macrophages 

express all four adenosine receptors. Adenosine 

prevents monocytes from dividing into macrophages 

and inhibits the proliferation of murine bone marrow-

derived macrophages, which relies on macrophage 

colony stimulating factor (M-CSF) [43]. With further 

exploration, researchers found that adenosine interacts 

to varying degrees with different types of immune cells 

in tumor tissues; in fully mature dendritic cells, 

adenosine strongly inhibits the release of Interleukin-12 

(IL-12) induced by Toll-like receptors (TLRs) by 

binding A2A receptors and inhibits the antitumor 

immune response. IL-12 is a strong antitumor cytokine, 

and the inhibitory effect of adenosine on IL-12 release 

promotes tumor growth [44]. Furthermore, an increase 
in adenosine levels in the tumor environment inhibits 

the lytic activity of natural killer cells by the binding of 

adenosine to A2A receptors [45]. Adenosine also 



 

www.aging-us.com 13351 AGING 

Table 1. Summary of the relationship between nucleotide metabolism and tumor immunity. 

Nucleotide Targets Immune cells 

Purines 

MICA Natural killer cells 

A1, A2A, A2B and A3 Monocytes, Macrophages 

A2A Dendritic cells 

A2A Natural killer cells 

A2A, A2B T cells, Regulatory T cells 

 

inhibits the release of various immunomodulatory 

cytokines in the T cell-mediated adaptive immune 

response by binding the A2A and A2B receptors [46]. 

Recent reports indicate that adenosine also plays an 

equally important role in the immune suppression of 

regulatory T cells [47–49]. The relationship between 

nucleotide metabolism and tumor immunity is shown in 

Table 1. 

 

As mentioned above, nucleosides are decomposed from 

nucleotide acids [50], and nucleotide acids and their 

decomposition products, nucleosides, have diverse 

effects. For example, ATP and ADP have immuno-

stimulatory functions and can stimulate natural killer 

cells in the spleen to absorb antigens [51]. The 

immunosuppressive function of nucleosides, including 

adenosine, is very extensive. All immune cells express 

receptors for extracellular nucleosides and nucleotide 

acids (such as adenosine and ATP) [52]. Pyrimidine 

nucleotides show selective affinity for certain receptor 

subtypes; therefore, blocking extracellular nucleotide 

metabolism to restore tumor immunotherapy inter-

ventions has provided new ideas and insight into the 

development of new antitumor small-molecule drugs 

targeting nucleotide metabolism [53, 54]. 

 

Late potential for the development of new antitumor 

drugs targeting organ-specific nucleotide metabolases 

in tumors 

 

Nucleotide metabolism is the final and most critical link 

in tumor cell replication [55]. Tumor cells synthesize 

DNA and RNA through nucleotide metabolism to 

achieve uncontrolled self-proliferation [2]. 

 

In recent years, although nucleotide synthesis metabolic 

pathways, especially their importance and function, 

have attracted increasing attention, the key molecules 

and regulatory mechanisms involved in nucleotide 

metabolism are not very clear. All classical antitumor 

drugs, such as methotrexate and 5-fluorouracil [56, 57], 

are based on analogs of tumor nucleotide metabolites. 
However, due to their lack of specificity for tumor cell 

nucleotide metabolism, these drugs also inhibit the 

metabolic processes of normal cells, causing serious 

side effects [58–60]. Therefore, more in-depth study of 

the regulatory processes of nucleotide metabolism has 

very important theoretical and clinical significance. 

 

At present, research on the related enzymes that 

regulate nucleotide metabolism in tumor cells is 

relatively scarce [61]. Hong et al. found that the 

nucleotide metabolism of digestive tract tumor cells 

varies in different diseased organs of the digestive 

tract, showing obvious organ specificity. By conducted 

more in-depth research using digestive tract tumors 

from different pathogenic organs as models, a specific 

key kinase that regulates the rate-limiting enzyme 

activity of nucleotide metabolism was discovered; in 

research on nucleotide synthesis and metabolism in 

gastric cancer, the kinase UHMK1 involved in the 

nucleotide anabolism of gastric cancer was found to 

activate the de novo rate-limiting purine anabolism-

related enzymes 5′-aminoimidazole-4′-carboxamide 

ribonucleotide formyltransferase (ATIC) and inosine 

monophosphate dehydrogenase (IMPDH) by 

regulating the NCOA3/ATF4 axis, promoting the 

occurrence and development of gastric cancer [62]. In 

research on nucleotide anabolism in cholangio-

carcinoma, CDC like kinase 3 (CLK3) was found to 

activate the rate-limiting enzyme in de novo purine 

anabolism, ATIC, by regulating the USP13/Fbxl14/c-

Myc signaling axis, thereby promoting the molecular 

progression of cholangiocarcinoma. Furthermore, 

through large-scale small-molecule drug screening, 

tacrine hydrochloride was found to target CLK3 to 

treat cholangiocarcinoma, reducing the cholangio-

carcinoma tumor formation rate by 85% and reducing 

the nucleotide level. Further understanding of tumor 

cell DNA repair is expected to provide a new  

strategy for the combined treatment of clinical 

cholangiocarcinoma [63]. In research on nucleotide 

anabolism in hepatocellular carcinoma, dual-

specificity tyrosine phosphorylation-regulated kinase 3 

(Dyrk3) was found to limit de novo purine anabolism 

by regulating the transcriptional activity of ATF4 and 

inhibiting the rate-limiting de novo purine anabolism-
related enzyme 5′-phosphoribosyl pyrophosphate 

amidotransferase (PPAT), thereby inhibiting  

  the growth and metastasis of hepatocellular  
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Table 2. Organ-specific nucleotide metabolases in tumors. 

Tumor/cell type Kinase Signaling axis Enzymes 

Gastric cancer UHMK1 NCOA3/ATF4 ATIC, IMPDH 

Cholangiocarcinoma CLK3 USP13/Fbxl14/c-Myc ATIC 

Hepatocellular carcinoma Dyrk3 NCOA3/ATF4 PPAT 

Glioblastoma-initiating cells   DHODH 

 

carcinoma [64]. Information on organ-specific 

nucleotide metabolases in tumors are shown in 

Table 2. 

 

Smile et al. recently conducted high-throughput drug 

screening on a Fuji film library containing 10,560 

compounds to identify drugs to eradicate 

glioblastoma-initiating cells (GICs). After screening 

the library layer by layer, seven compounds 

displaying 50% growth inhibition at a concentration 

less than 1 μM were identified, and two compounds 

with similar structures, 9700 and 10607, were 

ultimately identified from the seven compounds. 

Through mass spectrometry and in vitro enzyme 

activity inhibition experiments, the target protein of 

the above compounds was confirmed to be DHODH, 

and the effect of 10607 was obviously stronger than 

that of 9700, but its stability was lower. The 

researchers screened compound 10580, which exhibits 

high stability, based on its chemical type. Both 

compounds 10607 and 10580 contain 2′-amino-5′-

cyclopropyl nicotinic acid and indole structural 

regions, which are not possessed by traditional 

DHODH inhibitors such as leflunomide and 

teriflunomide [65]. 

 

These research results have not only greatly enriched 

understanding of the regulatory mechanism of tumor 

cell nucleotide metabolism but also provided insights 

into the clinical development of new specific 

therapeutic drugs. Large-scale screening of small-

molecule compounds targeting the above kinases, in 

vivo and in vitro antitumor pharmacodynamics 

experiments and in-depth studies of molecular 

mechanism are expected to overcome the deficiencies 

of existing drugs [66, 67]. 

 

Oncogenes and tumor-suppressor genes regulate 

tumor nucleotide metabolism through signaling 

pathways 

 

Based on the impact of an increasing number of new 

ideas, such as information on gene mutations and 

immune escape, the notion that pathological 

metabolism in tumors occurs through the “Warburg 

effect” has been gradually disregarded [68–70]. At 

present, an increasing number of studies have shown 

that oncogenes and tumor-suppressor genes are key 

regulatory molecules in de novo nucleotide synthesis 

and that changes in these genes regulate the growth 

and metabolism of tumor cells through specific 

signaling pathways [71]. 

 

Karina et al. found that the absence of sirtuin 3 (SIRT3) 

could enhance mechanical target of rapamycin complex 

1 (mTOCR1) signal transduction, thus significantly 

upregulating the transfer of glutamine to the nucleotide 

metabolism pathway [72]. Naiara et al. found in an 

experimental model of pancreatic ductal adeno-

carcinoma (PDAC) that the proto-oncogene K-RAS 

could activate mitogen-activated protein kinase 

(MAPK), leading to an increase in the expression of the 

oncogene MYC and finally increasing the 

transcriptional activity of ribose 5′-phosphate isomerase 

A (RPIA), a raw material necessary for nucleotide 

metabolism, in the nonoxidative pentose phosphate 

pathway (PPP) [73]. That is, the proto-oncogene K-

RAS enhanced the new synthesis of purine and 

pyrimidine in PDAC by upregulating the transcriptional 

activation of RPIA mediated by MYC and maintained 

high nucleotide levels in cells [74]. 

 

P53 is an important tumor suppressor gene. Mutant 

P53 (mtP53) has been proven to promote the 

occurrence and development of tumors [75–78]. 

Martinez et al. confirmed that mtP53 is related to the 

promoters of numerous nucleotide metabolism genes 

(NMGs), which promote the biosynthesis of 

nucleotides by upregulating NMGs at the trans-

criptional level. Experiments have shown that an ETS-

binding site is present in the NMG promoter and that 

ETS proto-oncogene 2 (ETS2) can recruit mtP53 to the 

promoter region containing the ETS-binding site [79]; 

furthermore, the synergistic stimulation of both 

increased the expression of NMG, thus exerting 

metabolic activity to drive and maintain tumor 

occurrence and development [80]. 

 

An increasingly deep understanding of how oncogenes 

and tumor-suppressor genes regulate tumor nucleotide 

metabolism through signaling pathways provides hope 

for reasonable, metabolism-oriented cancer therapy, 

which must be based on a comprehensive understanding 

of host and tumor metabolism. 
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Nucleotide metabolism and oncogene-induced 

senescence 

 

The Katherine team proved that senescence is a form of 

stable cell growth arrest. When activated oncogenes 

(RAS, BRAF, etc.) are expressed in normal cells, the cells 

produce abnormal proliferation signals, placing the cells 

in a state of growth arrest and inhibiting proliferation of 

the cells [5, 81]. Senescence induced by oncogenes has 

been recognized as a true anticancer mechanism [82–85]. 

Studies have shown that in the process of oncogene-

induced senescence, nucleotide metabolism pathways are 

generally downregulated. The occurrence of OIS requires 

almost all deoxyribonucleoside triphosphates to be 

exhausted and DNA replication to be activated [86]. 

 

As discussed above, nucleotide metabolism plays an 

important role in tumor formation and progression. 

Moreover, the expression of ribonucleotide reductase 

regulatory subunit M2 (RRM2) is tumorigenic [87], and 

the nucleotide-metabolizing enzyme thymine synthase 

(TS) can independently transform cells in the body and 

cause tumor formation [88]. Thus, we can use 

components of the nucleotide metabolism pathways, 

such as RRM2 or TS, as diagnostic and prognostic 

biomarkers for a variety of tumors [89]. 

 

Summary 
 

With increasingly in-depth research, the relationship 

between nucleotide metabolism, tumor occurrence and 

development and the immune microenvironment has 

become increasingly clear [90]. Accordingly, 

determining how tumor progression can be inhibited by 

interfering with nucleotide metabolism has received 

increasing attention. We need to fully understand that 

nucleotide metabolism is a complex process involving 

multiple catalytic enzymes, and an accurate 

understanding of this process will be beneficial to the 

research and development of tumor-specific drugs, 

improving the survival and prognosis of tumor patients. 

At present, there has been relatively little research in 

this field, and further research is needed to reveal the 

relationship between nucleotide metabolism and tumors. 

Exploring and clarifying this complex mechanism will 

become a hot research direction in the future. 
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