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Exocytotic secretion of digestive enzymes from pancreatic acinar cells is

elicited by physiological cytosolic Ca2þ signals, occurring as repetitive

short-lasting spikes largely confined to the secretory granule region, that

stimulate mitochondrial adenosine triphosphate (ATP) production. By con-

trast, sustained global cytosolic Ca2þ elevations decrease ATP levels and

cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2þ sig-

nals can be evoked by products of alcohol and fatty acids as well as bile

acids. Here, we have investigated the mechanism by which L-asparaginase

evokes AP. Asparaginase is an essential element in the successful treatment

of acute lymphoblastic leukaemia, the most common type of cancer affecting

children, but AP is a side-effect occurring in about 5–10% of cases. Like

other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2þ

release followed by Ca2þ entry and also substantially reduced Ca2þ extru-

sion because of decreased intracellular ATP levels. The toxic Ca2þ signals

caused extensive necrosis. The asparaginase-induced pathology depended

on protease-activated receptor 2 and its inhibition prevented the toxic

Ca2þ signals and necrosis. We tested the effects of inhibiting the Ca2þ

release-activated Ca2þ entry by the Ca2þ channel inhibitor GSK-7975A.

This markedly reduced asparaginase-induced Ca2þ entry and also protected

effectively against the development of necrosis.

This article is part of the themed issue ‘Evolution brings Ca2þ and ATP

together to control life and death’.
1. Background
The importance of Ca2þ for the control of secretion has been known for a long

time [1]. However, it was only through a detailed analysis—using permeabilized

adrenal chromaffin cells—that the intracellular requirements for exocytotic

secretion were clarified [2]. This work established that secretion occurs when

the intracellular free Ca2þ concentration ([Ca2þ]i) increases from the basic level

(around 100 nM) to the low mM range if, and only if, Mg-adenosine triphosphate

(ATP; 0.5–5 mM) is present [2]. Under physiological conditions, the rise in [Ca2þ]i

that initiates secretion from intact chromaffin cells, as well as nerve endings, is

owing to Ca2þ entering the cells through voltage-gated Ca2þ channels [2–4].

This is, however, fundamentally different from what happens in the electrically
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non-excitable exocrine gland cells [5,6], where neurotrans-

mitter- or hormone-evoked enzyme and fluid secretion are

initiated by release of Ca2þ from the endoplasmic reticulum

(ER) [7], mediated by the intracellular messenger inositol

1,4,5-trisphosphate (IP3) [8]. The primary intracellular Ca2þ

release is followed by secondary Ca2þ entry from the extra-

cellular solution, and this Ca2þ influx does not occur through

voltage-gated Ca2þ channels, but via Ca2þ release-activated

Ca2þ (CRAC) channels [9].

The physiologically relevant Ca2þ signals that control

secretion in the pancreatic acinar cells occur as repetitive

local [Ca2þ]i spikes in the apical secretory granule region

[10,11], owing to primary Ca2þ release from thin strands of

ER penetrating into this region [12,13], which is dominated

by zymogen granules (ZG). These ER strands are fully func-

tionally connected (ER tunnels) to the principal ER store

dominating the basal region [12,13]. The IP3 receptors

(IP3Rs) are concentrated in the apical area [11,14,15] and the

functional ER tunnels effectively allow Ca2þ to be mobilized

from the main basal store into the apical secretory granule

area [12]. Plasma membrane Ca2þ pumps, concentrated in

the apical (secretory) membrane [16], extrude Ca2þ from the

cell during each Ca2þ spike, and compensatory Ca2þ entry

and uptake into the ER are therefore necessary. This occurs

through conventional [17] CRAC channels [9] localized in

the baso-lateral membrane [12,18], and Ca2þ entering

through these channels is immediately taken up into the ER

by powerful Ca2þ pumps in the ER membrane [12]. The

physiological apical Ca2þ release via IP3Rs in that region

results in apically confined [Ca2þ]i spikes owing to the mito-

chondrial firewall separating the ZG-containing part of the

cell from the ER-dominated baso-lateral part [19]. During

each apical Ca2þ spike, Ca2þ is taken up into the peri-granu-

lar mitochondria and then slowly released [13,20]. This

mitochondrial Ca2þ uptake, activating several Ca2þ-sensitive

dehydrogenases in the Krebs cycle [21], results in an

increased cytosolic ATP level, despite the increased ATP util-

ization [22]. This is helpful for powering the exocytotic

secretory process.

Whereas the Ca2þ release evoked by the neurotransmitter

acetylcholine (ACh) is primarily mediated by IP3 acting on

IP3Rs [23,24], the Ca2þ release elicited by physiological concen-

trations of the hormone cholecystokinin (CCK) is primarily

mediated by the Ca2þ-releasing messenger nicotinic acid ade-

nine dinucleotide phosphate (NAADP) [25–27]. The action of

NAADP depends on functional ryanodine receptors (RyRs)

and two-pore channels (TPCs) and also involves acid Ca2þ

stores [27]. Physiological Ca2þ spiking, irrespective of whether

it is evoked by ACh or CCK, depends on both functional IP3Rs

and RyRs [13,25].

Although the acinar cells in the pancreas are quantitatively

dominant and perform the most crucial physiological role in

the exocrine pancreas, by synthesizing and secreting the diges-

tive (pro-) enzymes that are essential for the digestion of food

in the intestine, there are other cells that need to be considered.

The acinar cells secrete fluid together with the enzymes [5], but

most of the fluid carrying the enzymes into the gut is produced

by the duct cells, principally regulated by secretin-evoked

cyclic AMP formation rather than by Ca2þ signals [28,29].

The acinar–ductal system is functionally integrated and

regulation of one cell type has influence on the other [30].

The physiological role of the more recently discovered peri-

acinar stellate cells has not yet been fully clarified, but they
generate substantial Ca2þ signals in response to concentrations

of bradykinin that have been measured in plasma during

exercise and pancreatitis [31,32]. They do not respond to the

principal controllers of acinar cell function, namely ACh or

CCK [31,32].

In the normal digestion process, the inactive acinar pan-

creatic pro-enzymes, which are secreted by exocytosis into

the acinar lumen, are carried into the gut by acinar and

ductal fluid secretion and then activated in the gut [33]. In

acute pancreatitis (AP), a potentially fatal human disease, the

inactive pancreatic pro-enzymes become active enzymes

inside the acinar cells, digesting the pancreas and its surround-

ings. The main causes of AP are biliary disease (gallstone

complications) and alcohol abuse [33]. More than 20 years

ago, it was proposed that AP is essentially a disease brought

about by excessive cytosolic Ca2þ signals [34] and since then

a substantial amount of evidence in favour of this hypothesis

has accumulated [35–38]. Pathological stimuli—for example,

combinations of alcohol and fatty acids or bile acids—can

evoke excessive release of Ca2þ from internal stores followed

by excessive Ca2þ entry through store-operated CRAC chan-

nels, resulting in sustained global elevations of [Ca2þ]i [38].

This causes intracellular protease activation [38] and excessive

mitochondrial Ca2þ uptake, leading to opening of the mito-

chondrial permeability transition pore (MPTP) [20,39]. The

MPTP opening causes depolarization of the inner mitochon-

drial membrane, resulting in failure of the normal

mitochondrial ATP production [20,39]. The lack of ATP pre-

vents the acinar cells from disposing of the excess Ca2þ in the

cytosol and, in combination with the abnormal intracellular

protease activity, this leads to necrosis. It is the acinar necrosis

that generates the damaging inflammatory response [39–42].

Since the primary pathological event in AP is the excessive

and sustained [Ca2þ]i elevation and as this depends on exces-

sive Ca2þ entry through CRAC channels, it would be logical,

as a therapy, to target these Ca2þ entry channels. Gerasimenko

et al. [9,38] demonstrated, in experiments on isolated mouse

acinar cell clusters, that the intracellular protease activation

and necrosis evoked by fatty acid ethyl esters—non-oxidative

combinations of ethanol and fatty acids, which are important

mediators of alcohol-related pancreatitis [33]—could be effec-

tively inhibited by specific pharmacological blockade of

CRAC channels. These results have recently been confirmed

in vivo, in three different mouse models of AP [43], giving

hope that CRAC channel blockade may become the first

rational and effective therapy against AP [44].

As both alcohol-related and bile-induced AP are owing to

toxic Ca2þ signal generation, it seems possible that all types of

AP are Ca2þ toxicity diseases. We were therefore interested in

exploring the mechanism underlying pancreatitis caused by a

side-effect of L-asparaginase, which is used for the treatment

of acute lymphoblastic leukaemia (ALL). L-asparaginase is a

well-known anticancer agent effective against lymphoid malig-

nancies. Since 1971, it has been an essential element in the

successful treatment of ALL, the most common type of cancer

affecting children [45,46]. However, asparaginase treatment

can result in AP (asparaginase-associated pancreatitis (AAP).

This occurs in about 5–10% of cases and AAP is the most

frequent cause of discontinuing the asparaginase treatment

[47–50]. The mechanism underlying the development of AAP

has so far not been explored [48].

The aim of the present study was to define the mechanism

underlying AAP and then to identify potential steps for
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therapeutic intervention. As outlined above, the history of

our path to the current understanding of AP shows that

studies on isolated cells or cell clusters have been enormously

helpful and our approach has therefore been to study, for the

first time, the effects of asparaginase on isolated mouse acinar

cells or cell clusters. As in vitro results concerning the effects

of, for example, fatty acid ethyl esters or bile acids [9,38,43]

have turned out to be excellent predictors of the outcome of

studies of real AP in vivo [39,43,51], acute studies on isolated

cells are a natural starting point for investigations of the

mechanism of AAP.

Our results show that asparaginase acts on protease-

activated receptor 2 (PAR2) to evoke sustained elevations of

[Ca2þ]i owing to release of Ca2þ from internal stores, fol-

lowed by Ca2þ entry from the extracellular solution. The

sustained [Ca2þ]i elevation reduces ATP formation. These

effects can be markedly reduced by specific pharmacological

blockade of CRAC channels, which also markedly reduces

the extent of necrosis.
0150423
2. Results
(a) Asparaginase increases [Ca2þ]i in pancreatic acinar

cells
Pancreatitis-inducing agents, combinations of ethanol and

fatty acids or bile acids, are able to elevate [Ca2þ]i in isolated

acinar cell clusters causing intracellular Ca2þ overload. This is

owing to Ca2þ release from internal stores triggering exces-

sive store-operated Ca2þ entry [9,38]. To identify the

mechanism of action of asparaginase, we therefore started

out by testing the effects of asparaginase on [Ca2þ]i over a

wide concentration range. One of the challenges inherent in

this approach is that the time course needed for a study on

normal freshly isolated cells is quite different from that of

the development of AAP in the clinical situation. AAP typi-

cally develops several days after several injections (over

many weeks) of asparaginase [49], whereas studies on

isolated cells in the laboratory require observations of the

effects of asparaginase within hours. In the present study,

we have worked with the lowest concentration of asparagi-

nase that reliably evoked cellular changes that are similar to

those previously found to be associated with AP initiated

by alcohol metabolites or bile acids.

We found that only in some cells did a low concentration

of asparaginase (20 IU ml21) induce [Ca2þ]i oscillations (9

out of 42 cells). Figure 1a shows a representative positive

trace with repetitive Ca2þ spikes induced by 20 IU ml21,

whereas figure 1b represents the more typical negative

response (33 out of 42 cells), in which the same concentration

of asparaginase failed to cause any change in [Ca2þ]i. A higher

concentration of asparaginase (200 IU ml21) elicited repetitive

[Ca2þ]i oscillations, mostly on top of a sustained elevated

[Ca2þ]i (43 out of 55 cells; figure 1c). The development of a sus-

tained [Ca2þ]i elevation has previously been shown to be a

distinctive characteristic of [Ca2þ]i changes induced by patho-

logical concentrations of alcohol metabolites or bile acids

[9,38], and we found that an elevated [Ca2þ]i plateau, although

often small, was seen in the vast majority of cells (52 out of 55)

stimulated by asparaginase (200 IU ml21). In some cases (12

out of 55), there were no, or very few, spikes superimposed

on the elevated [Ca2þ]i plateau (figure 1d).
(b) The asparaginase-elicited sustained increase in
[Ca2þ]i depends on the presence of external Ca2þ

Removal of external Ca2þ always terminated the elevated [Ca2þ]i

plateau (figure 1c,d), but did not significantly ( p . 0.27) change

the amplitudes of the asparaginase-induced Ca2þ spikes (n ¼
28) within the time frame of our experiments (figure 1e). Ca2þ

entry clearly plays an important role in the formation of the

asparaginase-induced elevated [Ca2þ]i plateau and the role of

Ca2þ entry was further demonstrated by increasing the external

Ca2þ concentration to 2 mM during asparaginase stimulation,

which caused a marked and sustained increase in [Ca2þ]i, (n ¼
18; figure 1f ). Subsequent removal of external Ca2þ and addition

of the Ca2þ chelator EGTA (200 mM) abolished the elevated

[Ca2þ]i plateau, whereas the Ca2þ oscillations continued for

some time (figure 1f).
It has previously been shown that the excessive Ca2þ

entry into pancreatic acinar cells induced by alcohol metab-

olites or bile acids, as well as their pathological effects, can

be markedly inhibited by the CRAC channel blockers GSK-

7975A and CM-128 [9,43,52]. We have therefore tested the

effect of CRAC blockade (GSK-7975A, 10 mM) on the aspara-

ginase-induced sustained [Ca2þ]i elevation and found that it

was abolished in the presence of the inhibitor, although

repetitive Ca2þ spiking was still observed within the time

frame of our experiments (figure 1g, n ¼ 32). Figure 1h sum-

marizes the degree of inhibition, caused by removal of

external Ca2þ or by GSK-7975A, of the integrated Ca2þ

signal evoked by asparaginase.

(c) Asparaginase-elicited Ca2þ release involves inositol
1,4,5-trisphosphate receptors and ryanodine
receptors as well as nicotinic acid adenine
dinucleotide phosphate signalling

To investigate the involvement of intracellular Ca2þ release

channels in asparaginase-induced [Ca2þ]i elevations, we

have used caffeine, a substance known to reliably inhibit

IP3-mediated intracellular Ca2þ release in pancreatic acinar

cells [23]. Caffeine (20 mM) substantially reduced the

asparaginase-induced [Ca2þ]i elevations in a Ca2þ-free

solution (n ¼ 8; figure 2a; compare with figure 1e as the

appropriate control). The phospholipase C (PLC) inhibitor

U73122 (10 mM) also significantly blocked the asparaginase-

induced Ca2þ release as well as the response to 1 mM ACh

(n ¼ 11; figure 2b). Ryanodine (100 mM), inhibiting RyRs,

also substantially reduced the asparaginase-induced [Ca2þ]i

elevations (n ¼ 13; figure 2c).

It has previously been shown that NAADP signalling in

pancreatic acinar cells can be inactivated by the cell-permeable

NAADP analogue, and selective antagonist, Ned-19 [27]. After

pre-treatment of cells with 100 mM Ned-19, the asparaginase

(200 IU ml21)-induced [Ca2þ]i elevations were profoundly

inhibited (virtually abolished; figure 2d, n ¼ 8), whereas ACh

(1 mM), eliciting Ca2þ release via IP3Rs independently of

NAADP [25], was still able to evoke a typical [Ca2þ]i rise

(n ¼ 8; figure 2d).

(d) Protease-activated receptor 2 is involved
PAR2 is widely expressed in human and animal tissues,

including the pancreas, and has previously been implicated
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Figure 1. Asparaginase (ASNase) induces cytosolic Ca2þ signals in pancreatic acinar cells. A low concentration of asparaginase (20 IU ml21) induces repetitive Ca2þ

spikes in a minority (9 out of 42) of experiments (a), but elicits no response in the majority (33 out of 42) of cases (b). A higher concentration of asparaginase
(200 IU ml21) elicits an elevated [Ca2þ]i plateau in practically all cases (52 out of 55), often with repetitive Ca2þ transients on top of the plateau (43 out of 55) as
shown in the representative trace (c). An elevated [Ca2þ]i plateau is the main type of response to asparaginase (200 IU ml21; 52 out of 55), but in some cases (12
out of 55) with no or very few spikes (d ). The sustained [Ca2þ]i elevation depends on the continued presence of Ca2þ in the external solution (c,d ). In the absence
of external Ca2þ, there is no elevated [Ca2þ]i plateau (e, n ¼ 28). When the external Ca2þ concentration is increased from 1 to 2 mM, there is a marked transient
[Ca2þ]i rise and a continuing elevated [Ca2þ]i plateau ( f ). When external Ca2þ is subsequently removed and a Ca2þ chelator (EGTA) added, the plateau gradually
disappears ( f; n ¼ 18). In the presence of the CRAC channel blocker GSK-7975A (10 mM), asparaginase (200 IU ml21) evokes repetitive Ca2þ spikes without an
elevated [Ca2þ]i plateau (g, n ¼ 32). Comparison of the integrated Ca2þ signals (‘area under the curve’ from start of the Ca2þ signal until 1800 s later), in the
presence of 1 mM external Ca2þ, in the absence of external Ca2þ and in the presence of 1 mM external Ca2þ with the addition of 10 mM GSK-7975A, shows that
the absence of external Ca2þ (n ¼ 28) or the addition of the CRAC blocker GSK-7975A (n ¼ 32) significantly ( p , 0.0001 in both cases) reduced the responses to
asparaginase (200 IU ml21; h). Bars represent mean+ s.e.m. (Online version in colour.)
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in the pathology of AP [53,54]. The activation of PAR family

members is coupled to multiple heteromeric G proteins that

lead to PLC activation and production of IP3 and diacyl-

glycerol [55]. Therefore, we tested the possibility that

asparaginase could activate PAR2 by pre-treating the cells
with the PAR2 blocker FSLLRY-NH2 (10 mM) before the

addition of asparaginase (200 IU ml21). The PAR2 blocker

reduced significantly (virtually abolished) the asparaginase-

induced [Ca2þ]i oscillations as well as the sustained [Ca2þ]i

elevation (figure 2e; n ¼ 32).
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(e) Ca2þ extrusion mechanisms are affected by
asparaginase

To study Ca2þ movements in more detail, we have applied

a specific protocol routinely used to assess Ca2þ entry and

extrusion [9,38]. In these experiments, Ca2þ stores were emp-

tied using the ER Ca2þ pump inhibitor cyclopiazonic acid

(CPA) in a nominally Ca2þ-free solution. Thereafter, 2 mM

of Ca2þ was added to the external solution for a short

period and then removed (figure 3a). In the presence of

asparaginase, the Ca2þ entry following external Ca2þ admis-

sion was significantly increased (figure 3a), assessed by

both amplitude of the [Ca2þ]i change (figure 3b) and the

rate of [Ca2þ]i increase (half-time of the increase, figure 3c).

However, the quantitatively most important effect of aspara-

ginase was to slow down the rate of Ca2þ extrusion after

removal of external Ca2þ (figure 3a). The half-time of

[Ca2þ]i recovery was more than three times longer than in

the control cells (figure 3d ).
( f ) Asparaginase depletes intracellular adenosine
triphosphate

Ca2þ extrusion is an energy-demanding process and has pre-

viously been found to be abnormal in pancreatic acinar cell

pathologies owing to disruption of mitochondrial metabolism

and, therefore, reduction of ATP levels [42]. We have con-

ducted indirect assessments of intracellular changes in ATP

concentration, using Magnesium Green (MgGreen) fluor-

escence measurements. As most of the intracellular ATP will

be in the form of Mg-ATP, a reduction of the ATP concentration

will increase the fluorescence intensity of MgGreen owing to

the inevitable increase of [Mg2þ]i [56–58]. By this measure,

asparaginase induced a substantial reduction of intracellular

ATP levels (figure 4a) superseded only by the full ATP

depletion caused by a mixture of the protonophore CCCP,

oligomycin and iodoacetate [42].

Because the presence of external Ca2þ was important

for the cytoplasmic and mitochondrial effects induced by
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asparaginase, we decided to check if inhibition of Ca2þ

entry channels [9,43] could affect the ATP loss evoked by

asparaginase. Blocking Ca2þ entry by GSK-7975A (10 mM) sub-

stantially reduced the ATP loss evoked by asparaginase

(figure 4b).

(g) The effect of pyruvate
It has been shown previously that ethyl pyruvate (aliphatic

ester derived from pyruvic acid [59]) attenuates the severe

AP induced by sodium taurocholate in rats [59]. When we

included 1 mM pyruvate in the external solution, we found

that the asparaginase-induced ATP loss was substantially

reduced compared with control experiments (figure 4c,d ).

The protective effect was significant and similar to what

was achieved by GSK-7975A (figure 4b,d ), although it did

not give complete protection.

(h) Necrosis
We have previously shown that the cytosolic Ca2þ overload and

ATP deprivation induced by fatty acid ethyl esters and bile

acids lead to necrosis [38], and we have therefore now tested

whether asparaginase can also induce necrosis, the hallmark

of AP [33,38]. The extent of necrosis induced by asparaginase

(200 IU ml21) treatment (17.4+0.4% of the cells; figure 5a)

was comparable to, but somewhat smaller than, the level

of necrosis induced by pamitoleic acid ethyl ester (POAEE;

29+3.1%) or the bile acid taurocholic acid sulphate (TLC-S;

27.6+1.9%; figure 5a), whereas a lower concentration of aspar-

aginase (20 IU ml21) did not increase the level of necrosis above

that seen in control experiments (figure 5b). The CRAC channel
inhibitor GSK-7975A (10 mM) [9,43] reduced the asparaginase-

induced necrosis to the control level (4.5+0.7%; figure 5b).

Pyrazole compounds have generally been thought to inhibit

other types of cation channels, namely the relatively non-

selective TRP (transient receptor potential) channels, which

have significant Ca2þ permeability [60,61], but pyrazole6

(Pyr6) has been shown to have more of an effect on the very

Ca2þ-selective CRAC channels [61], which are the ones specifi-

cally inhibited by GSK-7975A and CM-128 [9,43]. In our

experiments, Pyr6 partially inhibited asparaginase-induced

necrosis to 8.4+0.9%. Both caffeine and Ned-19 inhibited

asparaginase-induced necrosis to control levels (4.2+0.5 and

6.6+1.2%, respectively). A PAR2 inhibitor (FSLLRY-NH2) sig-

nificantly blocked asparaginase-induced necrosis (figure 5b).

We also tested the effect of pyruvate on asparaginase-induced

necrosis. As seen in figure 5b, this gave significant protection

against necrosis. Figure 5c shows representative images of

some of the cells under the treatment protocols, together with

the results of staining for propidium iodide (PI). It is seen that

asparaginase (200 IU ml21) elicited strong intracellular PI

staining and that GSK-7975A provided protection against this.

Asparaginase kills lymphoblastic cells by depriving them

of asparagine, which they—unlike normal cells—cannot pro-

duce themselves [62]. The effects of asparaginase on normal

pancreatic acinar cells described in this study are therefore unli-

kely to be owing to asparagine deprivation. We tested whether

there was any difference between the ability of asparaginase to

induce necrosis in the absence or presence of asparagine. As

seen in figure 5d, there was no difference in the necrosis

levels evoked by asparaginase in the presence or absence

of asparagine.
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3. Discussion
The results presented here, on the asparaginase-elicited

injury to pancreatic acinar cells, provide fresh evidence for the

hypothesis that all types of AP are owing to toxic Ca2þ signal

generation and explain how asparaginase could cause AP

(figure 6). Asparaginase, like fatty acid ethyl esters and bile

acids, can evoke sustained [Ca2þ]i elevation owing to release

of Ca2þ from intracellular stores followed by store-operated

Ca2þ entry through CRAC channels. Qualitatively, the effects
of asparaginase fit well with those induced by fatty acid ethyl

esters and bile acids, which we have described previously

[33,38]. However, the sustained [Ca2þ]i elevations evoked by

asparaginase are somewhat smaller than those evoked by bile

acids or fatty acid ethyl esters. Nevertheless asparaginase

evokes significant reductions in the intracellular ATP levels

and extensive necrosis. Further studies on mitochondrial Ca2þ

handling during the action of asparaginase are warranted

because the regulation of mitochondrial Ca2þ uptake under

different conditions may be a critical issue [63,64].
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The findings presented in this study provide the first

mechanistic insights into the process by which asparaginase

treatment of ALL may cause AAP (figure 6). These insights

also provide the first pointers to rational therapies (figure 6)

that may prevent the currently necessary cessation of
asparaginase treatment of ALL in cases of severe pancreatitis.

The most accessible therapeutic target is the Ca2þ entry

route, namely the previously characterized CRAC channels

[9,43,44,65]. We have now shown that the asparaginase-

induced Ca2þ elevations depend on CRAC-mediated Ca2þ
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entry and, therefore, are strongly inhibited by the CRAC chan-

nel inhibitor GSK-7975A and also that, consequently,

asparaginase-induced necrosis is dramatically reduced to

near control levels by GSK-7975A (figure 5b). On the basis of

the previously documented protective effects of Ca2þ entry

channel inhibition against alcohol-related pancreatic pathology

in isolated cell clusters [9,38], the recent confirmation of its

effectiveness in vivo in three different mouse pancreatitis

models [43] and the very recently demonstrated inhibition of

prolonged Ca2þ signal generation in pancreatic stellate cells

[31,32], our new data indicate that this therapeutic approach

is also likely to be successful against asparaginase-induced

pancreatitis. Clearly, the next—but challenging—step would

be to test the effectiveness of CRAC channel blockade against

AAP in an in vivo mouse model.

The mechanism by which asparaginase induces pancreati-

tis is fundamentally different from its therapeutic action on

the lymphoblastic cells in ALL. The asparaginase effect

on cancer cells relies on depletion of asparagine, which the

malignant cells cannot produce themselves, in contrast to

normal cells [62], whereas the side-effect of asparaginase, indu-

cing pancreatitis, is owing to activation of a signal transduction

mechanism involving PAR2, the intracellular messengers IP3

and NAADP, and the intracellular receptors IP3Rs, RYRs and

possibly TPCs (figure 6). The asparaginase effect on the pan-

creas is therefore independent of the presence or absence of

asparagine (figure 5d ). This means that there are several poten-

tial intervention points available for treating the side-effect of

asparaginase (figure 6), without interfering with its primary

effect on the cancer cells. The primary site of action of
asparaginase on pancreatic acinar cells seems to be PAR2.

This receptor has previously been implicated in AP, although

its exact role is still debated [53,54]. Blocking PAR2 in our

experiments inhibited both the pathological [Ca2þ]i elevations

(figure 2e) and the asparaginase-induced necrosis (figure 5b),

suggesting that PAR2 inhibitors in addition to, or in combi-

nation with, CRAC channel inhibitors could be a useful tool

to supplement asparaginase ALL treatment in AAP cases.

Both Ca2þ entry and extrusion are significantly affected by

asparaginase, leading to formation of the pathological elevated

[Ca2þ]i plateau, and this sustained elevation of [Ca2þ]i would

appear to be responsible for the necrosis. The demonstrated

reduction of the intensity of Ca2þ extrusion (figure 3a) is clearly

a key element, and the simplest explanation for this is the

reduction in the intracellular ATP level (figure 4a) limiting

the energy supply to the Ca2þ ATPase in the plasma mem-

brane. When energy supply is partially restored by the

addition of pyruvate (figure 4d ), it provides a similar degree

of protection against pancreatic necrosis to PAR2 inhibition

or GSK-7975A (figure 5b). Clearly, both Ca2þ and ATP play

key roles in pancreatic pathology, as indeed they do in physio-

logical regulation of secretion, and therapeutic strategies must

take both into account.
4. Material and methods
(a) Materials
All fluorescent dyes were purchased from ThermoFisher Scientific

(Invitrogen, UK), and CPA was from Merck Millipore (Calbiochem,
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UK). Collagenase was obtained from Worthington (USA), asparagi-

nase was from Abcam (UK), the PAR2 inhibitor FSLLRY-NH2 from

TOCRIS (UK) and GSK-7975A from GlaxsoSmithKline (UK). All

other chemicals were purchased from Sigma. C57BL/6 J mice

were from Charles River UK Ltd.

(b) Isolation of pancreatic acinar cells
Pancreatic acinar cells were isolated as previously described [9].

Briefly, animals were sacrificed according to the Animal Scientific

Procedures Act, 1986 and approved by the Ethical Review

Committee of Cardiff University. After dissection, the pancreas

was digested using collagenase-containing solution (200 U ml21,

Worthington, UK) and incubated in a 378C water bath for

14–15 min. The extracellular solution contained: 140 mM NaCl,

4.7 mM KCl, 10 mM Hepes, 1 mM MgCl2, 10 mM glucose, pH

7.2, and CaCl2 (0–2 mM as described in the text).

(c) Fluorescence measurements
For measurements of [Ca2þ]i, isolated pancreatic acinar cells

were loaded with Fluo-4-AM (5 mM; excitation 488 nm) or

Fura-2-AM (2.5 mM; excitation 365 and 385 nm) following the

manufacturer’s instruction. The cells were then washed and

re-suspended in extracellular solution containing 1 mM CaCl2.

Measurement of intracellular ATP was performed with

MgGreen, which senses changes in [Mg2þ]i at concentrations

around the resting [Mg2þ]i (approx. 0.9 mM). This was used as

an indirect approach to detect cytosolic ATP depletion [58]. Pan-

creatic acinar cells were incubated with 4 mM MgGreen for

30 min at room temperature (excitation 488 nm). ATP depletion

mixture (4 mM CCCP, 10 mM oligomycin and 2 mM iodoacetate)

was applied for a final 10 min to induce maximum ATP depletion

[42].
Necrotic cell death was assessed with PI uptake as previously

described [9].

All experiments were performed at room temperature using

freshly isolated cells attached to coverslips of the perfusion

chamber. Fluorescence was imaged over time using an Leica

TCS SPE confocal microscope.

(d) Statistical analysis
Data are presented as mean+SEM. Statistical significance and

p-values were calculated using t-test or ANOVA, with p , 0.05

considered significant.
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Scientific Procedures Act, 1986 and approved by the Ethical Review
Committee of Cardiff University.
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