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Abstract The mechanical characteristics of endothelial cells
reveal four distinct compartments, namely glycocalyx, cell
cortex, cytoplasm and nucleus. There is accumulating evi-
dence that endothelial nanomechanics of these individual
compartments control vascular physiology. Depending on
protein composition, filament formation and interaction with
cross-linker proteins, these four compartments determine en-
dothelial stiffness. Structural organization and mechanical
properties directly influence physiological processes such as
endothelial barrier function, nitric oxide release and gene
expression. This review will focus on endothelial
nanomechanics and its impact on vascular function.
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Introduction

Endothelial physiology is influenced by numerous biochem-
ical factors. Hormones, paracrines, autocrines and other me-
diators define the permeability of the endothelial barrier, the
anti-thrombotic nature of the endothelial cell surface and
endothelium-dependent blood pressure regulation (reviewed
in current special issue; and in Libby 2002; Luscher 1990;
Landmesser and Drexler 2007; Vierhapper et al. 1990;
Wojciak-Stothard and Ridley 2002; Palmer et al. 1987).

Endothelial mechanobiology is a young field of research and
little is known about mechanics-dependent signaling pathways.
This is mainly due to the lack of proper techniques to quantify
mechanics in living cells. Over the last decade, however, con-
siderable progress has beenmade in various techniques, such as
atomic force microscopy, laser tweezers, optical trap, pipette
aspiration and microrheology. Experimental science is now
equipped with a full tool kit facilitating the investigation of
cellular mechanics and its physiological relevance (Lee and
Lim 2007; Van Vliet et al. 2003). This review will highlight
recent advances in the field of endothelial nanomechanics and
its impact in endothelial physiology.

What is meant by “endothelial nanomechanics”?

Mechanobiology of the vascular system can be separated into
cell mechanics and mechanical stimuli. On the one hand,
external forces like fluid shear stress (FSS), vessel wall ten-
sion, vascular hydrostatic pressure and cell–cell contacts
determine the mechanical stimuli in the cardiovascular
system. These stresses affect endothelial function via
mechanotransduction, i.e., activation of mechanosensitive
pathways (Tzima 2006; Ando and Yamamoto 2009;
Shyu 2009; Johnson et al. 2011). The corresponding
mechanosensors exhibit various elements, including
mechanosensitive ion channels, adhesion proteins, tyrosine
kinase receptors, or caveolae (Liu et al. 2013). Cell mechanics,
on the other hand, describes the dynamics of cell (and tissue)
elasticity, measured as mechanical stiffness and its impact on
endothelial physiology. In more detail, nanomechanics focus-
es on the mechanical properties of single subcellular compart-
ments (Roduit et al. 2009; Gaboriaud and Dufrene 2007;
Kasas and Dietler 2008). The four most prominent and me-
chanically distinct compartments in the endothelium are (1)
the glycocalyx, (2) the cell cortex, (3) the cytoplasm and (4)
the nucleus (Kasas et al. 2005; Dahl et al. 2008; Oberleithner
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et al. 2009, 2011; Martins et al. 2012; Weinbaum et al. 2007).
Recently, nanomechanics has come into the focus of research
as it turned out that the stiffness of the single cellular com-
partments has a crucial impact on endothelial cell function. To
understand the exact meaning of cell mechanics and its impact
upon physiological mechanisms, it is important to define the
molecular basis of the nanomechanical properties and to char-
acterize their influence on cellular signaling processes.

Mechanics of glycocalyx in endothelial function

The endothelial glycocalyx (eGC) is a thick carbohydrate-rich
layer, lining the luminal side of the endothelial surface that
consists of proteoglycans and glycoproteins. The proteogly-
cans are decorated with long carbohydrate side chains, the
glycosaminoglycans, amongwhich heparan sulfate is themost
prominent in the eGC. This mesh serves as a host for specific
plasma proteins, soluble proteoglycans and hyaluronic acid.
Together, they form a dynamic and complex interface between
blood and tissue (Fig. 1). The total volume of the eGC in the
human body is about 1.7 l and its thickness varies from a few
hundreds of nanometers in capillaries to a few micrometers in
arteries (van den Berg et al. 2003; van Haaren et al. 2003;
Nieuwdorp et al. 2006, 2008). Due to its high water content
and the loose network, the eGC is several times softer than the
underlying subcellular structures (Oberleithner et al. 2011;
Peters et al. 2012).

One hallmark function of the eGC is the transmission of
biochemical and biomechanical signals from the blood into
endothelial cells. Changes in eGC nanomechanics can alter
this function (=barrier function). Different processes are
known that alter the nanomechanical properties of the eGC.
As a polyanionic bio-gel, its volume and mechanics are reg-
ulated by the respective electrolyte concentration (Wolf and
Gingell 1983; Peters et al. 2012). It has been shown that an
extracellular sodium concentration in the upper physiological
range leads to a compact eGC (=collapse; Oberleithner et al.
2011). In contrast, treatment of endothelial cells with the
polyphenol-rich compound WS1442 induces an increase in
volume (=swelling) of the eGC (Peters et al. 2012). The
specific mechanisms of collapse and swelling depend on

dominant interactions in the system (hydrogen bondings, ionic
interactions, hydrophobic/hydrophilic properties, etc.)
(Quesada-Perez et al. 2011). Other processes, which modulate
the nanomechanics of the eGC, are shedding and biosynthesis.
Both can be induced by biochemical factors like hormones
and enzymes (Reitsma et al. 2007) or by FSS (Gouverneur
et al. 2006; Zeng and Tarbell 2014). Enzymatic digestion of
heparan sulfate as well as treatment of endothelial cells with
thrombin, lipopolysaccharides, or tumor necrosis factor α
compromises the structural integrity of the eGC leading to
reduced eGC volume and stiffness (Peters et al. 2012;
Wiesinger et al. 2013). In contrast, the biosynthesis of the
eGC after enzymatic degradation leads to an increase in vol-
ume and a decrease in stiffness, as has been shown in vitro
(Bai and Wang 2012).

The eGC is the very first layer of the endothelium that
comes into contact with blood. Thus, alterations of eGC
nanomechanics lead to a change in the mechanical interaction
between blood cells and the eGC constituents. Some theoret-
ical models have been developed that describe such interac-
tions (Weinbaum et al. 2003; Han et al. 2006; Pontrelli et al.
2013). The eGC could serve as a mechanosensor. It is likely
that a collapsed eGC can be less deformed by FSS and thereby
becomes unable to transmit signals into the cell adequately, a
condition that can promote cardiovascular disease. Additional
to their function as FSS transmitters, the proteoglycan-
associated heparin sulfate residues serve as attachment points
for sodium ions and substances like albumin and other blood-
borne proteins, hormones and enzymes (Siegel et al. 1996;
Reitsma et al. 2007; Quinsey et al. 2004; Kato 2002; Li et al.
1998; Ballinger et al. 2004; Allen et al. 2001; Wilsie and
Orlando 2003). Binding of these substrates modifies the
nanomechanics of the eGC (Oberleithner et al. 2011; Peters
et al. 2012; Job et al. 2012). For instance, increased plasma
sodium concentration leads to a stiffening of the glycocalyx
and simultaneously increases cellular sodium uptake (Korte
et al. 2012; Peters et al. 2012).

A soft and expanded eGC (Fig. 2a) is supposed to stand for
a fully-functional endothelium, whereas a shedded or col-
lapsed eGC most likely exerts adverse effects on the vascular
system. Shedding, leading to a reduced eGC with compro-
mised nanomechanics (Fig. 2b), facilitates edema formation

Fig. 1 Cellular nanomechanics.
Glycocalyx and cytoskeletal
organization of endothelial cells
determine the mechanical
characteristics of the endothelium
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(Salmon and Satchell 2012; Strunden et al. 2012; Becker et al.
2010), cell vessel wall interactions (Constantinescu et al.
2003; Henry and Duling 2000; Mulivor and Lipowsky
2004), loss of FSS perception (Thi et al. 2004; Mochizuki
et al. 2003) and endothelial dysfunction (Nieuwdorp et al.
2005, 2006; Drake-Holland and Noble 2012). A collapsed
(shrunk) eGC (Fig. 2c) has been discussed as being a promoter
of vascular diseases (Peters et al. 2012).

Cortical stiffness in endothelial function

Crossing the cell membrane, the first significant mechanical
compartment inside the cell is, directly underneath the plasma
membrane, the cell cortex. The biophysical properties of
intracellular compartments are mainly determined by cyto-
skeletal components. Due to the three-dimensional cytoskele-
tal organization, the cell cortex as well as the cytoplasm and
the nucleus, can be characterized by their distinct
cytoskeleton-dependent nanomechanical properties
(Oberleithner et al. 2009; Kasas et al. 2005; Dahl et al.
2008; Martins et al. 2012). Directly beneath the plasma mem-
brane (50–200 nm), actin is organized in form of a dynamic
network (Fig. 1) (Miranda et al. 1974; Koning et al. 2008).
The cortical web, also known as peripheral actin, is made of
cross-linked actin filaments (F-actin) that provide a supportive

structure to the plasma membrane and its embedded proteins
(Pollard and Cooper 2009). The organization of the cortical
cytoskeleton is highly dynamic as the actin filaments are
regulated by a variety of actin binding proteins (dos
Remedios et al. 2003). The Arp2/3 complex, activated among
others by cortactin, initiates filament formation. Additionally,
actin polymerization is stimulated by Cdc42 and Rac1, both
members of the Rho GTPase family. Cortactin and other
proteins, such as filamin or fascin, stabilize the actin web by
cross-linking filaments. Destabilization of the cortical actin
network due to filament disassembly is induced by Cofilin,
Gelsolin, or RhoA. Finally, motor proteins are able to cross-
link actin filaments and simultaneously facilitate the force
administration to the cortical web (dos Remedios et al. 2003).

Cortical stiffness is mainly determined by the physiological
status of the dynamic submembranous actin web. A high rate
of actin polymerization and a dense filament organization go
along with a relatively stiff cortex, whereas a depolymeriza-
tion of F-actin results in cortical softening (Kasas et al. 2005).
Filamin A and/or α-actinin cross-link actin filaments and
subsequently lead to an increased stiffness of the actin web
(Esue et al. 2009; Kasza et al. 2009). Furthermore, motor
proteins (e.g., non-muscle myosin II) contribute to cortical
stiffness as they generate contractile forces within the filament
network. By this, motor proteins induce a lateral tension
within the cortical network leading to an inward directed

Fig. 2 eGC stiffness in endothelial function. a Awell-hydrated eGC guarantees a functional endothelium. b Shedding damages the eGC, which results
in decreased barrier function. c Acute collapse leads to similar functional changes as described in B but eGC nanomechanics are different
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tension (Paluch et al. 2005; Schillers et al. 2010; Stewart et al.
2011; Trepat et al. 2007; Mierke 2011; Gorfinkiel and
Blanchard 2011).

There is evidence that nanomechanics of the cell cortex has
significant influence on endothelial physiology (Hoffman and
Crocker 2009; Paluch et al. 2005; Stewart et al. 2011; Sokolov
et al. 2006). In particular, nitric oxide (NO) release and barrier
function, both hallmarks of endothelial function, appear to be
influenced by cortical nanomechanics.

In the vascular endothelium, a softening of the cell cortex
induces NO synthesis and thereby is likely to facilitate vaso-
dilation followed by an increase in tissue perfusion and de-
crease of blood pressure (Oberleithner et al. 2007, 2009;
Szczygiel et al. 2011). Under certain physiological conditions,
plasma potassium concentration can increase locally up to
12 mM, e.g., due to muscle or neuronal activity (Nordsborg
et al. 2003; Kofuji and Newman 2004), which induces a rapid
decrease in cortical stiffness (Oberleithner et al. 2009). This
softening of the cell cortex is driven by a membrane potential-
dependent depolymerization of the submembranous actin web
(Callies et al. 2011). A decrease in cortical stiffness is gener-
ally caused by a destabilization of the cortical actin web,
which verifies the physiological link of elasticity, actin orga-
nization and endothelial function (Fels et al. 2012).
Simultaneously, the activity of the endothelial NO synthase
(eNOS) increases (Fig. 3a). Up to now, there are two mecha-
nisms under discussion by which cortical softening induces
eNOS activity. Firstly, it has been shown that eNOS activity is
stimulated by an association with G-actin while it is inhibited
by an association with F-actin (Kondrikov et al. 2010). A
decrease in cortical stiffness due to F-actin depolymerization
may increase the association of eNOS with G-actin and there-
fore directly stimulates NO release (Fels et al. 2012).
Secondly, a soft cortex may render the cell more susceptible
to shear stress. Mechanosensitive calcium channels in a “flex-
ible” membrane are supposed to be readily activated by shear
stress and subsequently increase intracellular calcium levels
(Knudsen and Frangos 1997; Kuchan and Frangos 1994;
Galan et al. 2011). As eNOS is activated by the calcium-

binding protein calmodulin, a soft cortex is likely to promote
NO release. Since NO is a vasodilating gas, softening-induced
eNOS activity will lead to increased tissue perfusion.
Furthermore, blood pressure may decrease in case of systemic
softening of the endothelial cortex.

Interestingly, these modulations of cortical stiffness and
eNOS activity are independent of the bulk nanomechanics of
the endothelial cells (Oberleithner et al. 2009; Fels et al.
2012). While, under physiological conditions, potassium con-
centrations may rise to a larger extent only locally, other
mediators potentially act more systemically, i.e., on the whole
vasculature. The mineralocorticoid hormone aldosterone, as
well as the cytokine tumor necrosis factor alpha (TNFα),
induce transient cortical softening associated with an increase
in NO release (Fels et al. 2010; Szczygiel et al. 2011).
Interestingly, sustained exposure to aldosterone or TNFα
results in an opposite effect, described in detail in the subse-
quent section. In addition to the regulation of eNOS activity,
other vascular mechanisms such as endothelial permeability
are influenced by cortical nanomechanics.

Since the link between NO synthesis and cortical stiffness
is the dynamic reorganization of the cortical actin cytoskele-
ton, it was hypothesized that the stiffness-dependent barrier
function is again based on cortical actin dynamics.

This hypothesis is verified by the finding that exposure to
sphingosine-1-phosphate increases peripheral (cortical) stiff-
ness in pulmonary endothelial cells and thereby increases
barrier function. The barrier-enhancing effect is most likely
mediated via a signaling cascade including cortactin activation
and subsequent actin filament formation in the cell cortex
(Arce et al. 2008). In contrast, thrombin acts as the counterpart
in regulation of endothelial permeability as it decreases
cortactin in the cortex and at the same time increases perme-
ability (Arce et al. 2008). Stimulation of myosin activity, as a
second important determinant of cortical stiffness, leads to an
increase in barrier function (Dudek et al. 2010). These findings
indicate that a decrease in cortical stiffness reduces endothelial
barrier function. Hence, it may be concluded that a soft cell
cortex indicates a physiological function of the endothelium.

Fig. 3 Cortical stiffness influences endothelial function. Softening of the cell cortex, induced by cortical actin depolymerization, decreases membrane
abundance of ENaC and endothelial sodium uptake and increases eNOS activity and increases endothelial barrier function
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In analogy to cortical softening, increased polymerization of
cortical actin and concomitant stiffening of the endothelial cell
cortex has (patho-)physiological consequences in the control
of endothelial permeability and the response to hormone action
(Hall 1984; Birukova et al. 2009). Endothelial stiffening by the
C-reactive protein and the cathelicidin LL-37 peptide is found
to have anti-inflammatory effects, possibly due to a decrease in
endothelial permeability (Kusche-Vihrog et al. 2011; Byfield
et al. 2011). These effects contribute to maintaining tissue fluid
homeostasis and hence counteract the increased NO produc-
tion and subsequent drop in blood pressure often accompany-
ing acute inflammatory processes and septic shock.
Endothelial cortical stiffening indeed controls endothelial NO
release (Fig. 3b), as a cell with a stiff cortex produces reduced
amounts of NO (Oberleithner et al. 2007, 2009; Kidoaki and
Matsuda 2007; Fels et al. 2010). The phenomenon “increased
endothelial cortical stiffness/reduced NO release”was recently
termed “stiff endothelial cell syndrome (SECS)” (Lang 2011).
Diminished NO release and thus a shift of endothelial action
towards increased vasoconstriction, is also the hallmark of
endothelial dysfunction, a clinical predictor for expecting car-
diovascular diseases later in life (Endemann and Schiffrin
2004; Schachinger et al. 2000). One of the crucial prerequisites
leading to an increase in endothelial stiffness and a reducedNO
production is a rather high plasma aldosterone level, a major
risk factor for vasculopathies. Upon prolonged treatment
(>20 min) with aldosterone, endothelial cells swell
(Oberleithner et al. 2003; Schneider et al. 2004) and stiffen
(Oberleithner et al. 2006). Both of these effects are blocked
either by the specific epithelial sodium channel (ENaC)
blocker amiloride or by the aldosterone antagonist
spironolactone. Both prevent a (further) augmentation in en-
dothelial stiffness upon raising extracellular sodium concentra-
tions from 135 to 145 mM in the presence of aldosterone
(Oberleithner et al. 2007). Incidentally, these two factors, al-
dosterone and high sodium, also cause an increase in ENaC
surface expression (Kusche-Vihrog et al. 2008; Korte et al.
2012), indicating a key role of aldosterone in controlling ENaC
activity by increasing the channel’s abundance at the endothe-
lial cell surface (Alvarez et al. 2002; Snyder 2002). ENaC is
widely abundant in various tissues throughout the human
body, including epithelia tissues where this sodium channel
mediates the rate-limiting step of sodium transport (Garty and
Palmer 1997; Golestaneh et al. 2001). In vascular endothelium,
ENaC is different, as the major portion of sodium exits the
blood capillary system through a more or less “leaky”
paracellular pathway (Mehta and Malik 2006). Also, the
ENaC expression level is clearly lower as compared to epithe-
lial tissues (Kusche-Vihrog et al. 2009). Recently, a direct link
between ENaC expression and NO release has been
established, suggesting the functional role of ENaC in the
vascular endothelium (Jeggle et al. 2013). Cells with elevated
ENaC expression exhibit an increase in mechanical cortical

stiffness in vitro and ex vivo. Taken together, ENaC determines
cortical endothelial stiffness and plays a major role in endo-
thelial (dys)function contributing to the control of vascular
tone. The mechanistic basis of the link between ENaC and
endothelial stiffness most likely relies on the direct interaction
of ENaC with F-actin located in the subapical pool underneath
the plasma membrane (Mazzochi et al. 2006a, 2006b).
Alterations in cortex formation upon changes in the ENaC
surface expression could thus also be ascribed to this interac-
tion, as it might increase actin polymerization in this compart-
ment and hence increase cortical stiffness. The sequence of
events, whether ENaC membrane insertion promotes actin
polymerization or vice versa, has not yet been elucidated.

In addition to chemical mediators, mechanical stimuli af-
fect actin organization (most likely influencing cortical stiff-
ness) and endothelial function. An in vitro increase in hydro-
static pressure, mimicking blood pressure in vivo, induces
actin reorganization and affects endothelial permeability
(Shin et al. 2003). Fluid shear stress influences actin reorga-
nization (Seebach et al. 2007) and alters the endothelial barrier
(Tarbell 2010; Katoh et al. 2008; Ando and Yamamoto 2009;
Shyu 2009; Johnson et al. 2011). Finally, substrate stiffness
was shown to induce actin polymerization, modulating barrier
function in a dose-dependent manner; substrate stiffness sim-
ulating “physiological conditions” improves barrier function
while stiffer and softer substrates disrupt barrier function
(Birukova et al. 2013).

Besides the direct link between cortical stiffness and endo-
thelial function, the elasticity of the cell cortex can be seen as a
parameter that determines endothelial physiology in a more
general way. For instance, aging cells lose their elasticity due
to an increased cytoskeletal organization (Sokolov et al. 2006;
Schulze et al. 2010; Kelly et al. 2011; Druppel et al. 2013;
Kliche et al. 2011; Qiu et al. 2010). Even basic processes that
usually occur in cellular life, such as mitosis, differentiation
and development, can be related to changes in cortical stiff-
ness (Stewart et al. 2011; Patel et al. 2012; Kidoaki and
Matsuda 2007; Hoffman and Crocker 2009).

One may now assume that a soft cortex is a “fountain of
youth” and guarantees a reasonably low blood pressure and a
healthy organism. This is, however, not the case. Apparently,
the physiological impact of cortical stiffness on physiological
mechanisms is highly tissue-specific. In contrast to the endo-
thelium, a soft cortex can even indicate a pathophysiological
state of a cell. In ventricular myocytes, for instance, the
relationship between elasticity and NO release appears to be
different. There, an inhibition of myosin by blebbistatin de-
creases cell stiffness and simultaneous inhibits NOS activity
(Walsh and Cole 2013; Dedkova et al. 2007). Furthermore, it
has been shown that the metastatic behavior of cancer cells
directly correlates with the cell’s elasticity. Cancer cells with a
low elasticity (soft cells) are more likely to spread than stiffer
ones (Ketene et al. 2012). Additionally, breast cancer cells
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induce softening of the endothelium to ease extravasation,
leading to facilitated metastasis formation (Mierke 2011).

Cytoplasm mechanics in endothelial function

While single actin filaments are predominantly found in the
cortex, actin stress fibers (bundles of 10–30 filaments) span
the whole cytoplasm. These fibers determine cell morphology
and stability. They also contribute to focal adhesions and thus
are involved in the mechanisms of cell motility (Pellegrin and
Mellor 2007; Fletcher and Mullins 2010; Prasain and Stevens
2009). Additionally, the cytoplasm is pervaded by microtu-
bules and intermediate filaments. Microtubules are tube-like
polymerized protein (tubulin) filaments facilitating the trans-
port of organelles and vesicles. They are also responsible for
the maintenance of cell shape, preventing compression.

Both microtubules and intermediate filaments determine
cytoplasmic (bulk) stiffness (Wang 1998; Janmey et al.
1991; Kasas et al. 2005; Herrmann et al. 2007) (Fig. 2).

The molecular nature of the contribution of tubulin to cell
nanomechanics has been investigated in detail (Gardel et al.
2008). So far, the microtubule network is supposed to repre-
sent a compressive load-bearing component that counteracts
the tensile forces generated by the cortical actimyosin web
(Ingber 2003).

The physiological relevance in stiffness-dependent signal-
ing pathways in endothelial cells is, however, still unclear.
What is known so far is that microtubule-associated proteins
(e.g., MAP65) directly influence the flexibility of single mi-
crotubules, most likely resulting in a change in cellular elas-
ticity (Portran et al. 2013). Furthermore, in the developing
organ of Corti, the fibroblast growth factor induces a
microtubule-dependent decrease in cell stiffness leading to
hearing loss (Szarama et al. 2012).

Intermediate filaments, of which vimentin is the dominant
network-forming member in the endothelium, support the
three-dimensional organization of the cell and its organelles
(Kamei 1994). Their mechanical properties as well as their
contribution to cell mechanics have been reviewed by

Herrmann et al. (2007). Intermediate filaments play a key role
in mechanotransduction as mutation or deletion of several
intermediate filament proteins leads to cell fragility, heart
failure and muscle dystrophies. Even leucocyte diapedesis
and endothelial nitric oxide release depend on proper inter-
mediate filament formation (Herrmann et al. 2007).

Although the role of intermediate filaments in (endothelial)
physiology is well documented and the molecular contribu-
tions to cell mechanics are known, evidence for a direct link
between intermediate filament-dependent mechanics and en-
dothelial function is still missing. Data on intermediate fila-
ment andmicrotubule mechanics and its impact on endothelial
physiology indicate that several different nanomechanical
signaling pathways exist that await future investigation.

Nuclear stiffness in endothelial function

Each individual component of the cellular cytoskeleton de-
scribed in the previous sections is directly linked to the cell
nucleus. Plectin (nesprin-3) provides a link to the cytoplasmic
network of intermediate filaments (Wilhelmsen et al. 2005),
whereas Nesprin-1/2 mediates binding to microtubules and
the actin network (Padmakumar et al. 2004; Zhang et al.
2005). Nesprins connect cytoskeletal networks with the
intranuclear lamin network via SUN 1/2 proteins (Haque
et al. 2006). It is therefore conceivable that all of the mechan-
ical stimuli perceived by the cell through actin, microtubule,
or intermediate filament networks are integrated on the level
of the nuclear lamina.

Similar to the cortical mechanics, the nucleus of an eukary-
otic cell could also be an important contributor to the overall
mechanics of the cell. Nuclei of several cell types have been
shown to be two- to ten-fold stiffer than the respective cytosol
(Martins et al. 2012; Ofek et al. 2009). In mechanical terms,
the cell nucleus could be envisioned as being a supramolecular
shock absorber capable of withstanding considerable stress
(Dahl et al. 2004). A connection between cytoskeleton and the
nuclear envelope further strengthens the notion of a direct
involvement of the nucleus in mechanosensing and

Fig. 4 Nuclear elasticity in endothelial function. Elasticity of the cell nucleus regulates gene expression and endothelial function
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mechanotransduction (Maniotis et al. 1997). Recently, the
pioneering work from the laboratory of Dennis Discher dem-
onstrated that the nucleus can serve as an intracellular
“mechanostat” (Swift et al. 2013), a structure that is able to
sense and respond to changes in the mechanical properties of
the cellular environment by changing its own stiffness
(Fig. 4a).

In the light of recent advances in the field of “nuclear
mechanics”, it is tempting to speculate that nuclei of endothe-
lial cells could be directly involved in mediating physiological
functions in response to mechanical stimuli. Nuclei of endo-
thelial cells are particularly large in comparison to those of
other cell types. Nuclei bulge into the lumina of blood vessels,
thus being directly exposed to the shear strain exerted by the
blood flow. Consequently, any change in nuclear volume and/
or stiffness could have a strong influence on blood flow, in
particular in vessels of small inner diameters. According to
Hagen-Poisseulle’s law, the flow resistance is related to the 4th
potency of the vessel diameter. Thus, a small change in
nuclear volume, as shown and quantified in vascular endothe-
lium in response to aldosterone (Oberleithner et al. 2003),
could have a considerable impact in arterioles and capillaries.
Bulging nuclei could be a significant hindrance for blood
flow, in particular when the nuclei stiffen at the same time.

There is evidence that endothelial cell nuclei respond to
mechanical stimuli. Nuclei flatten when exposed to physio-
logical shear stress (Deguchi et al. 2005). In addition, nuclei of
the cells exposed to shear stress stiffen (Fig. 4b). Apparently,
flattening and stiffening of the nuclei could be the conse-
quence of a shape change induced by shear forces. However,
the “recovery in shape” and, at the same time, the maintenance
of nuclear stiffness upon release of the shear forces, point
towards a more complex nuclear remodeling mechanism.
The question, whether the expression of the lamin A network
at the nucleoplasmic side—a major determinant in the control
of the nuclear envelope plasticity (Lammerding et al. 2006)—
is responsible for the nuclear ‘mechanostat’ function, remains
open (Swift et al. 2013).

There is another reason indicating a potential role of lamin
A in the regulation of nuclear plasticity. A mutation of lamin
A, which results in an irreversible (permanent) anchoring of
the mutated product in the nuclear envelope, results in a severe
clinical manifestation termed Hutchison-Gilford progeria syn-
drome (HGPS) (Merideth et al. 2008). Affected individuals
undergo drastically accelerated aging and die in their teens of
cardiovascular-related diseases such as stroke or myocardial
infarction (Gerhard-Herman et al. 2012). At tissue level, major
arteries of HGPS patients demonstrate a severe degeneration
of the smooth muscle cell layer (Stehbens et al. 1999). The
role of endothelial cells in the development of the syndrome
has not been fully assessed to date. However, at the level of
individual cell nuclei, the presence of a mutated rigid lamin A
network at the inner side of the nuclear envelope has been

linked to significant stiffening of such nuclei (Philip and Dahl
2008). It is therefore tempting to speculate that “stiff
nuclei” cause an overall stiffening of the endothelial
cell. This could result in a severe form of the stiff
endothelial cell syndrome (Lang 2011). In this case,
the ability of the endothelial cell of sensing and
responding to mechanical stimuli might be disrupted.
As a result, the downstream signaling directed towards
vascular smooth muscle is expected to be impaired,
possibly explaining the degradation of vascular smooth
muscle cell layer in HGPS.

In summary, the question, whether nuclear mechanics fol-
lows mechanical alterations evoked from the exterior environ-
ment as postulated by the “nuclear mechanostat” theory (Swift
et al. 2013) and/or whether any changes in nuclear elasticity
could primarily alter endothelial function, will be an exciting
area of cell research in the near future.

Conclusion and perspectives

In conclusion, the elastic properties of the four compartments,
(1) glycocalyx, (2) cortex, (3) cytoplasm and (4) nucleus, are
mainly determined by the composition of the respective struc-
tural elements. The dynamic interactions between those ele-
ments with cross-linker and motor proteins determine the
mechanical properties of the respective region. Endothelial
nanomechanics has a distinct influence on endothelial func-
tion. Various molecular mechanisms control the mechanical
properties of living cells. In turn, cellular mechanics control
intracellular signaling cascades. Thus, chemical and mechan-
ical signaling pathways are strongly linked to each other.
Nanomechanics provides information on the physiological
state of the endothelial cell in terms of nitric oxide release
and barrier function. A soft cell cortex, combined with a soft,
well-hydrated glycocalyx, increases NO formation, which is a
prerequisite for a functionally intact vasculature. Any changes
in elasticity at the level of the eGC glycocalyx, the cell cortex
and the cell nucleus, can have a significant influence on
endothelial function in terms of local blood flow, tissue per-
fusion and, finally, arterial blood pressure.
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