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Abstract 

Background: Alzheimer’s Disease (AD) is a degenerative brain disorder that often 
occurs in people over 65 years old. As advanced AD is difficult to manage, accurate 
diagnosis of the disorder is critical. Previous studies have revealed effective deep learn-
ing methods of classification. However, deep learning methods require a large number 
of image datasets. Moreover, medical images are affected by various environmental 
factors. In the current study, we propose a deep learning-based method for diagnosis 
of Alzheimer’s disease (AD) that is less sensitive to different datasets for external valida-
tion, based upon F-18 fluorodeoxyglucose positron emission tomography/computed 
tomography (FDG-PET/CT).

Results: The accuracy, sensitivity, and specificity of our proposed network were 
86.09%, 80.00%, and 92.96% (respectively) using our dataset, and 91.02%, 87.93%, and 
93.57% (respectively) using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset. We observed that our model classified AD and normal cognitive (NC) cases 
based on the posterior cingulate cortex (PCC), where pathological changes occur in 
AD. The performance of the GAP layer was considered statistically significant compared 
to the fully connected layer in both datasets for accuracy, sensitivity, and specificity 
(p < 0.01). In addition, performance comparison between the ADNI dataset and our 
dataset showed no statistically significant differences in accuracy, sensitivity, and speci-
ficity (p > 0.05).

Conclusions: The proposed model demonstrated the effectiveness of AD classifica-
tion using the GAP layer. Our model learned the AD features from PCC in both the 
ADNI and Severance datasets, which can be seen in the heatmap. Furthermore, we 
showed that there were no significant differences in performance using statistical 
analysis.
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Background
Alzheimer’s Disease (AD), characterized by a decline in cognitive function, is one of 
the most common degenerative brain disorders. Because this disease characteristi-
cally presents in people over 65 years old, the incidence of AD has increased sharply 
in concert with the increase of the elderly population. Given the difficulties in man-
aging the advanced stages of AD, accurate diagnosis of the disorder is important for 
effective treatment [1]. F-18 fluorodeoxyglucose (FDG) positron emission tomogra-
phy/computed tomography (PET/CT) has been widely used to diagnose AD by com-
paring the rate of glucose metabolism throughout the brain [2].

A convolutional neural network (CNN) is a highly effective method of deep learning 
used to analyze and classify visual images of all kinds that cannot be resolved by con-
ventional machine learning algorithms. An error rate of 3.5% has been demonstrated 
with the use of CNN [3], a value less than the error rate of manual classification by 
humans in classification of the CIFAR10 dataset [4]. Krizhevsky et  al. [5] reported 
an error rate of 15.3% at the Image-net Large-Scale Visual Recognition Competition 
(ILSVRC), significantly lower than the 26.2% error rate reported using the conven-
tional machine learning method. Because the CNN-based method extracts appropri-
ate features learned from images, unlike conventional machine learning algorithms, 
it does not require domain knowledge to extract Regions of Interest (ROI) or hand-
crafted features.

Deep learning methods have recently been applied to AD classification. An autoen-
coder was applied to extract high-level features from MRI and PET images [6]. Suk et al. 
[7] built a robust model using a stacked autoencoder to extract and fuse features from 
MRI, PET, and cerebrospinal fluid (CSF) images. CNN also successfully achieved suc-
cessful results in AD classification. Wang et  al. [8] improved performance using leaky 
ReLU and max pooling in a CNN model. Basheera et al. [9] extracted gray matter, which 
changes its texture when affected by AD. The authors then used those segmentations as 
input data. Choi et al. [10] proposed a CNN method using segmented hippocampus ROI 
for anatomical information. Many studies have applied 3D CNN to take advantage of 
whole volume data. Feng et al. [11] used 3D CNN to obtain spatial information in feature 
maps. Huang et al. [12] integrated T1-weighted MR and FDG-PET in hippocampus ROI 
as 3D CNN input. Liu et al. [13] used 3D CNN to extract high-level features from MRI 
and PET, and then cascaded 2D CNN to combine features for AD classification.

Although these studies achieved successful results, limitations still exist. While gather-
ing large amounts of imaging modality and numerical data may enhance performance, it 
is difficult to collect such data owing to limitations of of time, cost, and privacy. More-
over, additional pre-process methods, such as segmentation, require precise profes-
sional knowledge. An advantage of 3D CNN is that the model enables the extraction of 
voxel information. However, the model requires a number of image datasets for train-
ing, which is a significant problem in the medical imaging field. Moreover, the previous 
studies have not compared the results to other test datasets. Medical images are heavily 
affected by the imaging acquisition environment, acquisition instrument, protocols, and 
reconstruction method [14]. Therefore, it is difficult to train models with open datasets 
since the models tend to perform poorly when models are evaluated with external test 
datasets. Advantages and disadvantages for each method are summarized in Table 1.
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Based on the previous considerations, we applied the CNN deep learning method to 
classify AD and normal cognitive (NC) cases in a manner less sensitive to the image 
acquisition environment. Our network showed feasibility in training and testing using 
different FDG-PET/CT datasets. We trained our model with the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset and tested it with the Severance dataset. In 
addition, we applied global averaging pooling (GAP), so that our model can provide a 
heatmap to visualize which region is relatively important for classification.

The study was designed in the following way. The Methods section describes the 
proposed approach in detail, as follows: description of both the training and test data-
sets, pre-processing methods for intensity and spatial normalization, detailed meth-
ods used to classify AD based on CNN, how the model was trained based on loss 
function, and statistical evaluation to analyze the results. In the Results section, we 
demonstrated classification performances. First, we highlighted GAP by comparing 
with the fully connected layer. In addition, we analyzed the generalization perfor-
mance with statistical evaluation. The results indicated that our proposed method did 
not show statistical differences on datasets attained from different image acquisition 
environment. The Discussion section mentions implications from our findings that 

Table 1 Comparison of AD classification methods

Author (year) Image 
modality

Pre-processing Method Advantage Disadvantage

Liu et al. [6] MRI, PET Feature extrac-
tion & selec-
tion

Autoencoder Extracted high-
level features

Difficulties in 
gathering vari-
ous imaging 
modality and 
numerical data

Suk et al. [7] MRI, PET, CSF Gray matter/
white matter 
segmentation, 
feature extrac-
tion

Stacked autoen-
coder

Extracted and 
fused high-
level features

Basheera et al. 
[9]

MRI Gray matter seg-
mentation

CNN Focused on 
gray matter 
features

Require a precise 
professional 
knowledge

Choi et al. [10] MRI Hippocampus 
segmentation

CNN Improved 
performance 
using small 
patches as 
input

Wang et al. [8] MRI Spatial and 
intensity nor-
malization

CNN + RELU + max 
pooling

Improved 
performance 
of CNN

Requires 
evaluation with 
different image 
acquisition 
environment 
dataset

Feng et al. [11] MRI, PET Gray matter seg-
mentation

3D CNN + LSTM Obtained spatial 
information

3D model 
requires a 
number of 
image datasets 
for training

Huang et al. [12] T1-MR, FDG-PET Hippocampus 
segmentation

3D CNN Integrated T1 
weighted MR 
and FDG-PET 
as input

Liu et al. [13] MRI PET Spatial and 
intensity nor-
malization

3D CNN + cascaded 
2D CNN

Extracted multi-
level and 
multi-modal 
features
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our model noticed the anatomical changes as clinicians do in practice. The Conclu-
sion section summarizes our results.

Results
Classification results

Figure 1 illustrates pre-processed FDG-PET/CT scans. As mentioned, the ranges of slice 
numbers were chosen to include those that cover the locations where neuropathologi-
cal changes occur in AD. To compare the performance, accuracy, sensitivity, and speci-
ficity were calculated. The results of single input are shown in Fig. 2. Within the slice 
range, the best results of accuracy, sensitivity, and specificity with the ADNI data were 
88.28%, 85.34%, and 90.17% (respectively), and those with our dataset were 82.78%, 
76.25%, and 90.14%, respectively. The results of double inputs are shown in Fig. 3. The 
results for accuracy, sensitivity, and specificity with the ADNI data were 91.02%, 87.93%, 
and 93.57% (respectively), and those with our dataset were 86.09%, 80.00%, and 92.96%, 
respectively. The proposed network showed improvement in all performance measures. 
Accuracy, sensitivity, and specificity were enhanced by 3.34%, 3.75%, and 2.82% with the 
ADNI dataset and by 2.74%, 2.59%, and 2.86% with our dataset.

Global average pooling performance

To evaluate the performance of the GAP layer in the network, we compared the results 
to a network with and without the GAP layer. This is because our model replaced a fully 
connected layer to the GAP layer at the end of the layer to improve performance. Thus, 
a fully connected network (FCN) represents the architecture published by Krizhevsky 
et al. [5], whereas our model applied and changed based on the architecture. As shown 
in Table 2, the network with the GAP layer showed better performance in all measures. 
Using our dataset, the proposed network showed accuracy, sensitivity, and specificity of 
86.09%, 80.00%, and 92.96%, respectively, representing improvements of 11% and 20% 
in accuracy and sensitivity compared to an FCN. Using the ADNI data, our proposed 
network showed accuracy, sensitivity, and specificity of 91.02%, 87.93%, and 93.57%, 
respectively (improvements of 15%, 5%, and 21%, respectively, compared to FCN). The 
p value was calculated using McNemar’s test. The p value indicates that the difference 
in accuracy between the network with and without GAP layers is considered statistically 
significant in each dataset (p < 0.05).

Generalization performance

Another p value was calculated to validate that our network has consistent performance 
with ADNI data (not used in training) and with our institutional data. For statistical 
comparison of their performance, a p value was obtained using Pearson’s Chi-square 
test. Table 3 summarizes the p values for accuracy, sensitivity, and specificity. All p val-
ues between ADNI and our dataset performance are considered not significant. Accord-
ingly, the p values indicate that our network is less sensitive to test datasets (p > 0.05).

Moreover, we observed that the heatmap showed different highlighted regions depend-
ing on slice inputs. To compare the heatmap of each slice, Fig. 4 illustrates the heatmaps 
with the best and the worst accuracy in the network. The network with the best accuracy 
noticed the posterior cingulate cortex, where the metabolic reduction occurring in the 



Page 5 of 15Kim et al. BioMed Eng OnLine           (2020) 19:70  

Fig. 1 An overview of FDG-PET pre-processing a Co-registered dynamic images of PET images. b Averaged 
PET image. c Intensity normalized PET image d Spatial normalized PET image
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early stages of AD [15] decreased. On the other hand, the network with the worst accu-
racy showed that the network learned inappropriate features outside of the brain.

To compare the generalization capability, we observed the results using other AD 
classification methods, shown in Table 4. We compared the results using slice numbers 
that were closest to our model. The training for each iteration step required 5 s for He 
et al. [16] and 6 s for Huang et al. [17]. The results showed that other AD classification 
methods showed similar performance using the ADNI dataset. However, AD classifica-
tion methods showed lower performance using our dataset, which has a different image 
acquisition environment. This finding demonstrates that our model has improved gener-
alization capability.

Discussion
Recently, deep learning has been applied to achieve state-of-the-art classification results 
in the fields of pattern recognition, human voice, image processing, and medical imag-
ing. In the field of neuroimaging, the prediction accuracy of classification using deep 
learning has improved [18, 19]. In this study, we proposed a deep learning network that 
can diagnose patients with AD, and is less sensitive to institutional FDG-PET/CT data-
sets using different protocols.

We applied the transfer learning method to extract features accurately from 1245 
FDG-PET/CT images. In general, CNN requires more data and more time to train com-
plex models [5]. Transfer learning is a deep learning technique to fine-tune a model that 
is already trained with a large number of data images. This technique may reduce the 
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Fig. 2 Classification results of single-input network depending on the slice numbers a using ADNI dataset 
and b using our dataset
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difficulties in training complex models of setting parameters such as the number of lay-
ers, activation function, and hyperparameters. Transfer learning enabled the network to 
learn with a smaller number of FDG-PET/CT images.

a

b

40

50

60

70

80

90

100

48,51 51,54 54,57 57,60 60,63 63,66 66,69 69,72 72,75 75,78

[%]

Slice number

Sensi�vity

Specificity

Accuracy

40

50

60

70

80

90

100

48,51 51,54 54,57 57,60 60,63 63,66 66,69 69,72 72,75 75,78

[%]

Slice number

Sensi�vity

Specificity

Accuracy

Fig. 3 Classification results of double inputs network depending on the slice numbers a using ADNI dataset 
and b using our dataset

Table 2 Classification results comparison between  FCN and  GAP network (proposed) 
with p value

FCN fully connected network, GAP global average pooling

Dataset Model ACC [%] SENS [%] SPEC [%] p value

Our dataset FCN 75.50 60.00 92.96 p < 0.001

GAP (Proposed) 86.09 80.00 92.96

ADNI FCN 76.95 82.76 72.14 p < 0.01

GAP (Proposed) 91.02 87.93 93.57

Table 3 Classification results comparison between ADNI and our dataset with p value

n.s not significant, ACC  accuracy, SENS sensitivity, SPEC specificity

Performance Our dataset ADNI p value

ACC [%] 86.09 91.02 0.17 (n.s)

SENS [%] 80.00 87.93 0.19 (n.s)

SPEC [%] 92.96 93.57 0.44 (n.s)
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Fig. 4 Selected pre-processed FDG-PET input image of AD patient a heatmap of the corresponding input 
with the best accuracy b and the worst accuracy. c Selected pre-processed FDG-PET input image of NC. d 
Heatmap of the corresponding input with the best accuracy e and the worst accuracy f 
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To enhance general performance, we applied the GAP layer instead of the fully con-
nected layer to our network. One of the advantages of using a GAP layer is object local-
ization. With use of the GAP layer in our CNN, the network provides explanation to 
users by showing a heatmap. These heatmaps indicate that it is significant to choose 
appropriate slice numbers, because the network considers different areas important. It 
appears that the areas of the network identified were also clinically related to AD clas-
sification. Thus, we expected our network to recognize the entorhinal cortex or hip-
pocampus located in the mesial temporal lobe where neuropathological changes occur 
in the beginning stages of AD. However, the mesial temporal lobe is sensitive and con-
tains small amounts of information that may be negatively affected by the partial volume 
effect (PVE) [20] during the pre-processing process. We assume that the PVE made it 
difficult for the network to detect the mesial temporal lobe, since the limited spatial res-
olution of PET scanners caused deteriorated in the quality of PET images.

Moreover, we found that the network identifies different heatmap areas depending on 
the input slice. For more sophisticated classification, our network used two consecutive 
slice inputs. We first trained the single-input network with two subsequent slices indi-
vidually; then, we added a fully connected layer to combine those results. We assumed 
that the network using single input would have insufficient information for diagnosing 
AD. Different indicated areas depending on the input slice number may have contrib-
uted to performance enhancement. Our proposed network performance exceeded all 
measurements of the single-input network by an average of 3%.

The work detailed in this report has been illuminating; however, our findings require 
further study. This research relied on a coronal plane, as neuropathologic changes on 
autopsy are assessed using coronal slices. Experiments in the axial and sagittal planes 
are also required for further research. Also, it is necessary to verify that consistent per-
formance is valid with various institution datasets. Because medical datasets are difficult 
to acquire and are expensive, we used only our own dataset to determine the generaliza-
tion performance of the proposed network. In addition, further study and experiments 
with architectures that could include more inputs are needed to observe the network 
improvements.

For further study, we consider applying our method to other critical diseases that 
show anatomical changes as the disease progresses. Since our model provides clinical 
information through a heatmap, our model is appropriate for application to other clas-
sification problems in cases that are diagnosed with specific scans. Aside from neuro-
logical data, our model may be used for other diseases in further study. For example, 

Table 4 Alzheimer’s disease classification performance using our methods and  other AD 
classification models

ACC  accuracy, SENS sensitivity, SPEC specificity

ADNI Our dataset

ACC [%] SENS [%] SPEC [%] ACC [%] SENS [%] SPEC [%]

He et al. [17] 90.94 85.53 96.18 81.56 71.23 92.65

Huang et al. [18] 91.26 84.21 98.09 82.98 72.60 94.12

Our model 91.02 87.93 93.57 86.09 80.00 92.96
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Lyssek-Boroń et  al. [21] demonstrated that Epiretinal Membrane (ERM) is diagnosed 
with Optical Coherence Tomography (OCT) by Retinal Nerve Fiber Layer (RNFL) thick-
ness. Krysik et al. [22] analyzed the central and peripheral corneal thickness using Pen-
tacam Scheimpflug camera and OCT. In addition, we can yield heatmaps as quantitative 
risk maps using MRI for prostate cancer [23]. We will work to expand the applications of 
our model.

Conclusions
In the present study, we demonstrated that our network performed consistently by train-
ing our model with the ADNI dataset and testing it with our dataset. With insufficient 
datasets, we applied slice selective learning to reduce computational costs. We also sta-
tistically enhanced the generalization performance by applying transfer learning and the 
GAP layer. Our CNN-based method showed the feasibility of robustness to institutional 
datasets when automatically classifying subjects with NC and AD.

Methods
Dataset

For training and validation data, we used FDG-PET/CT data from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI), which includes 141 AD patients and 348 NC par-
ticipants. The demographics of the ADNI dataset are shown in Table 5a. A dose of FDG 
(185 MBq; 5 mCi) was injected into subjects. ADNI FDG-PET/CT images of six 5-min 
frames were obtained 30–60  min after the injection. The FDG-PET/CT images were 
reoriented into standardized 1.5 × 1.5 × 1.5 mm voxel size.

For the tests, our FDG-PET/CT data included 71 NC participants and 80 AD patients 
using our own FDG-PET/CT acquisition process based on a cohort study. Our FDG-
PET/CT data collection was approved by the Institutional Review Board (4-2018-1010). 
The demographics are shown in Table  5b. FDG-PET/CT images were acquired using 
a Discovery 600 (GE Medical Systems, Milwaukee, WI, USA) PET/CT scanner in the 
Nuclear Medicine Department of Severance Hospital (Seoul, South Korea). Approxi-
mately 4.1  MBq of 18F-FDG per kilogram of body weight was administered intra-
venously to the subjects. Forty minutes after 18F-FDG injection, PET images were 
acquired for 15  min. Spiral CT scans were performed for attenuation correction with 
0.8 s rotation time, 60 mA, 120 kVp, 3.75 mm section thickness, 0.625 mm collimation, 
and 9.375 mm table feed per rotation. We reconstructed the FDG-PET/CT images using 
the ordered subset expectation maximization algorithm (4 iterations and 32 subsets).

Table 5 Demographic description of the ADNI dataset

AD Alzheimer’s Disease, NC normal cognitive, avg average, std standard deviation

Diagnosis Number Age (avg ± std) Sex (M/F)

(a) ADNI dataset

 AD 141 75.92 ± 7.9 92/49

 NC 348 76.28 ± 6.4 173/175

(b) Severance dataset

 AD 80 71.05 ± 9.3 50/30

 NC 72 63.33 ± 9.3 33/39
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Pre-processing

First, we processed the raw FDG-PET scans using the method described by Jagust 
et al. [24]. Each FDG-PET scan was co-registered to the first frame of the raw FDG-
PET scan to reduce the effects of subject motion. We generated a single PET scan 
by averaging six dynamic frames, and then reoriented the co-registered and averaged 
scan into a standard voxel image grid with 1.5 mm 3 voxels.

We normalized the voxel intensity of processed FDG-PET scans using an iterative 
method previously described. For the first iteration, the entire image was scaled to a 
mean intensity value of 1.0. Successive iterations masked voxels with intensity values 
lower than 0.5. We rescaled the remaining voxels to a mean of 1.0. Equation 1 illus-
trates the intensity normalization in a step. Mean is the average value of whole vol-
ume, and i describes each pixel. The voxel intensity of the FDG-PET was normalized 
by repeating this process until the number of remaining voxels became constant:

After intensity normalization, each FDG-PET scan displayed the difference between 
a subject’s brain size and shape. Thus, the same brain regions appeared in the same 
position in all the patients’ brain scans. We use a spatial normalization method based 
on the MNI-152 template [25].

Slice selection

Owing to the lack of sufficient data, we reduced the computational cost using slice 
selective learning. Each coronal 2D slice has 1.5  mm thickness and we extracted at 
4.5  mm intervals from the FDG-PET/CT data. Generally, coronal slices are cut at 
5–7.5  mm for metastases, infarcts, etc. in brain autopsies [26]. The extracted slices 
were numbered from the back of the head. The slice range was included in the regions 
where the neuropathological change takes place in AD, such as the posterior cingu-
late cortex, hippocampus, and entorhinal cortex [15, 27]. Our network was trained 
with two coronal slices for additional volume information.

Network architecture

We used the CNN-based method to classify AD and NC without extracting hand-
crafted features and to learn generic features from FDG-PET images. The proposed 
network is based on architecture published by Krizhevsky et al. [5], as shown in Fig. 5. 
The proposed network consists of ten convolutional layers, six max pooling layers, 
two GAP layers, and three fully connected layers. We replaced the last fully connected 
layer with a GAP layer, as illustrated in Fig. 5a. A fully connected layer was used as 
the last layer of our model to combine the double slice input, as illustrated in Fig. 5b.

Conventional CNN generally extracts features from the input image using the con-
volutional layer. Then, the fully connected layer is trained to classify images based 
on the extracted features. However, the fully connected layer is prone to overfitting 

(1)rescaled volume[i] =

{

volume[i]
mean if volume[i] > mean

volume[i]
.
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owing to the large number of parameters that are required to be trained. This factor 
leads to decreased generalization performance of the entire network [28].

Thus, we applied a GAP layer instead of a fully connected layer. The GAP layer takes 
an average of each feature map generated from feature extraction. Because fewer param-
eters are needed for training compared to a network without a GAP layer, it is less likely 
to be overfitted. Moreover, the GAP layer embeds global contextual information [29]. 
We can obtain a heatmap of input that shows which region is relatively important for 
making a classification decision.

Training and evaluation

The model was trained with Adam optimizer with a default learning rate parameter of 
0.001. We reduced the learning rate by a decay factor of 0.25 for every 30 epochs. We 
set an epoch size of 4000 and batch size of 64. In addition, we set a dropout to 0.8 for 

Fig. 5 Overview of the proposed method a The network of one input architecture for classifying mild 
Alzheimer’s Disease, b Our proposed architecture of convolutional neural network for classifying mild 
Alzheimer’s Disease
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overfitting. The training for each iteration step required 4 s. We determined the param-
eters based on the performance through training experiments. For loss function, binary 
cross-entropy function was used as indicated in Eq.  1. In each training step, the loss 
was used to update the parameters, where t is a target label and f(s) is the score at the 
softmax layer of the input data. In the softmax layer, the model predicts the probability 
of AD. If the target value is 0, which is NC, the loss will drastically increase when the 
score becomes close to 1, whereas the loss is 0 when the model predicted 0. If the target 
value is 1, which is AD, the function works vice versa. Thus, the weight parameters are 
updated to minimize the loss:

The proposed network was trained to distinguish AD and NC in FDG-PET images 
using transfer learning. Transfer learning is a training method that updates the weight 
parameters. This enables the trained network of one specific domain to be applied in 
another domain [30]. We applied our model with the ImageNet and ADNI datasets for 
the transfer learning process. We first pretrained the entire network using the ImageNet 
dataset. Then, we fine-tuned the network using the ADNI dataset except at the first, sec-
ond, and third convolution layers. This process enabled us to train a network that could 
classify AD and NC using 1245 PET images.

Statistical analysis

We calculated the accuracy, sensitivity, and specificity of ADNI (which was not used 
for training) and of our dataset. To compare the performance using different datasets 
acquired under different protocols, we performed Pearson’s Chi-square test to show that 
there were no significant differences in performance between the datasets using our pro-
posed method. We rejected the null hypothesis for p value < 0.05, to determine whether 
a difference was statistically significant. Moreover, we compared the model performance 
with and without the GAP layer. We used McNemar’s test to evaluate the presence of a 
statistical improvement using the GAP layer. We also rejected the null hypothesis for p 
value < 0.05. We implemented statistical analysis using Medcalc software.
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