

ISSN 1600-5368

OPEN access

Crystal structure of ethyl 6-(chloromethyl)-4-(4-chlorophenyl)-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate

S. Bharanidharan,^a H. Saleem,^a B. Gunasekaran,^b* M. Sved Ali Padusha^c and M. Suresh^d

^aDepartment of Physics, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India, ^bDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram District, Chennai 603 203, Tamil Nadu, India, ^cPG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu 620 020, India, and ^dPG and Research Dept of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu 620 020. India. *Correspondence e-mail: phdguna@gmail.com

Received 16 October 2014; accepted 20 October 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{14}H_{14}Cl_2N_2O_3$, the chlorophenyl ring makes a dihedral angle of $87.08 (9)^{\circ}$ with the tetrahydropyrimidine ring. There is a short intramolecular $C-H \cdots O$ contact present. In the crystal, molecules are linked via pairs of N-H···O hydrogen bonds, forming inversion dimers with an $R_2^2(8)$ ring motif. The dimers are linked via a second pair of N-H···O hydrogen bonds, this time enclosing an $R_4^4(20)$ ring motif, forming ribbons along [100]. The ribbons are linked via $C-H \cdots O$ hydrogen bonds, forming sheets lying parallel to (001). The terminal ethyl group is disordered over two positions with an occupancy ratio of 0.654 (17):0.346 (17).

Keywords: crystal structure; tetrahydropyrimidine; inversion dimers; anticarcinogenic; antihypertensive; calcium channel modulators..

CCDC reference: 1030125

1. Related literature

For the many biological activities of dihydropyrimidinone derivatives, see: Atwal et al. (1991); Jauk et al. (2000); Kato (1984); Wipf & Cunningham (1995); Bedia et al. (2006); For related structures, see: Nayak et al. (2009); Yuvaraj et al. (2010);

2. Experimental

2.1. Crystal data

C14H14Cl2N2O3 $M_{\rm w} = 329.17$ Triclinic, $P\overline{1}$ a = 7.4698 (3) Å b = 9.1436(3) Å c = 12.6085 (4) Å $\alpha = 107.147 \ (2)^{\circ}$ $\beta = 99.941 \ (2)^{\circ}$

2.2. Data collection

S = 1.033945 reflections

211 parameters

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.897, T_{\max} = 0.917
```

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.054$	26 restraints
$wR(F^2) = 0.153$	H-atom par

20 restraint	5
H-atom par	ameters constrained
$\Delta \rho_{\rm max} = 0.6$	$4 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\min} = -0$	$.53 \text{ e} \text{ Å}^{-3}$

 $\nu = 105.331 \ (2)^{\circ}$

Z = 2

V = 763.71 (5) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

20157 measured reflections

3945 independent reflections

2911 reflections with $I > 2\sigma(I)$

 $\mu = 0.44 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int}=0.022$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.86	2.04	2.885 (2)	166
$N1-H1\cdots O2^{n}$ $C11-H11B\cdots O1^{iii}$	0.86 0.97	2.23 2.50	3.070 (2) 3.069 (3)	166 117
$C11-H11A\cdots O2$	0.97	2.14	2.814 (3)	126

Symmetry codes: (i) -x + 1, -y - 1, -z; (ii) x + 1, y, z; (iii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Acknowledgements

SB thanks Professor K. Ramamurthi, Department of Physics and Nanotechnology, SRM University, Chennai, for his guidance and valuable suggestions.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5005).

References

Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O'Reilly, B. C. (1991). J. Med. Chem. 34, 806–811.

- Bedia, K. K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). *Eur. J. Med. Chem.* **41**, 1253–1261.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227-239.
- Kato, T. (1984). Chem. Abstr. 102, 132067.
- Nayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2502.
- Sheldrick, G. M. (1996). SADABS, University of G\\"ottingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wipf, P. & Cunningham, A. (1995). Tetrahedron Lett. 36, 7819-7822.
- Yuvaraj, H., Sundaramoorthy, S., Velmurugan, D. & Kalkhambkar, R. G. (2010). Acta Cryst. E66, 03325.

supporting information

Acta Cryst. (2014). E70, o1185-o1186 [doi:10.1107/S1600536814023046]

Crystal structure of ethyl 6-(chloromethyl)-4-(4-chlorophenyl)-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate

S. Bharanidharan, H. Saleem, B. Gunasekaran, M. Syed Ali Padusha and M. Suresh

S1. Comment

Dihydropyrimidinones (DHPM) and their derivatives are important on account of their wide range of applications in therapeutic and pharmacology, namely because of their anticarcinogenic (Kato, 1984), antihypertensive (Atwal *et al.*, 1991) and calcium channel modulators (Jauk *et al.*, 2000) activities. These derivatives have also been screened for antibacterial (Wipf & Cunningham, 1995), and anti-tuberculosis activity (Bedia *et al.*, 2006).

The geometric parameters of the title molecule (Fig. 1) agree well with those reported fro similar structures (Nayak *et al.*, 2009; Yuvaraj *et al.*, 2010). The chlorophenyl ring makes a dihedral angles of 87.08 (9) $^{\circ}$ with the tetrahydro-pyrimidine ring. There is a short intramolecular C—H…O contact (Table 1).

In the crystal, molecules are linked via a pair of N—H···O hydrogen bonds forming inversion dimers with an $R^2_2(8)$ ring motif. The dimers are linked via a second pair of N—H···O hydrogen bonds, this time enclosing an $R^4_4(20)$ ring motif, forming ribbons along [100]. The ribbons are linked via C—H···O hydrogen bonds forming sheets lying parallel to (001); see Table 1 and Fig. 2 for details.

S2. Experimental

A mixture of ethyl-4-chloro acetoacetate (4.1 ml, 0.025 mol), 4-chlorobenzaldehyde (3.6 g, 0.025 mol), and urea (4.5 g, 0.075 mol) in ethanol (5 ml) was heated under reflux in the presence of concentrated HCl (1 mL) for 5 h (monitored by TLC). The reaction mixture, after being cooled to room temperature, was poured onto crushed ice and stirred for 5–10 min. The solid was separated and filtered under suction, washed with ice-cold water (50 ml), and then recrystallized from hot ethanol to afford pure product [m.p. 437 K; yield 76%].

S3. Refinement

The terminal ethyl group is disordered over two position. The refined site occupancies of the disordered C atoms are C13/C14 = 0.654 (17) and C13A/C14A = 0.346 (17). The O3—C13A and C13A—C14A bond distances was restrained to be 1.400 (1) Å. In the refinement, ISOR was used for atoms C13, C14, C13A and C14A. The H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C—H = 0.93 - 0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(N,C)$ for other H atoms.

Figure 1

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Ethyl 6-(chloromethyl)-4-(4-chlorophenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Crystal data	
$C_{14}H_{14}Cl_2N_2O_3$ $M_r = 329.17$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 7.4698 (3) Å b = 9.1436 (3) Å c = 12.6085 (4) Å a = 107.147 (2)° $\beta = 99.941$ (2)° $\gamma = 105.331$ (2)° V = 763.71 (5) Å ³	Z = 2 F(000) = 340 $D_x = 1.431 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4865 reflections $\theta = 2.5-30.1^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$ T = 295 K Block, colourless $0.30 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm ⁻¹ ω and φ scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.897$, $T_{max} = 0.917$ 20157 measured reflections 3945 independent reflections 2911 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$

$\theta_{\rm max} = 31.0^\circ, \theta_{\rm min} = 2.5^\circ$	$k = -12 \rightarrow 12$
$h = -10 \rightarrow 10$	$l = -18 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.153$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
3945 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0628P)^2 + 0.6453P]$
211 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
26 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.8422 (5)	0.1384 (4)	0.5387 (2)	0.0651 (8)	
C2	0.7145 (5)	-0.0099 (4)	0.4712 (3)	0.0725 (9)	
H2	0.6712	-0.0878	0.5031	0.087*	
C3	0.6488 (4)	-0.0442 (3)	0.3538 (2)	0.0598 (7)	
Н3	0.5588	-0.1453	0.3073	0.072*	
C4	0.7137 (3)	0.0674 (3)	0.30506 (18)	0.0361 (4)	
C5	0.8424 (5)	0.2165 (4)	0.3761 (3)	0.0699 (9)	
Н5	0.8876	0.2950	0.3452	0.084*	
C6	0.9060 (6)	0.2518 (4)	0.4938 (3)	0.0895 (12)	
H6	0.9925	0.3537	0.5414	0.107*	
C7	0.6508 (3)	0.0279 (2)	0.17587 (17)	0.0306 (4)	
H7	0.7032	0.1280	0.1613	0.037*	
C8	0.6382 (3)	-0.2509 (2)	0.06968 (18)	0.0342 (4)	
C9	0.3408 (3)	-0.1913 (2)	0.06544 (17)	0.0315 (4)	
C10	0.4341 (3)	-0.0329 (2)	0.12644 (16)	0.0300 (4)	
C11	0.1275 (3)	-0.2650 (3)	0.0111 (2)	0.0454 (5)	
H11A	0.0752	-0.1799	0.0068	0.055*	
H11B	0.0673	-0.3162	0.0593	0.055*	
C12	0.3328 (3)	0.0848 (3)	0.15276 (18)	0.0360 (4)	
N1	0.7306 (2)	-0.0910 (2)	0.11509 (15)	0.0338 (4)	
H1	0.8450	-0.0555	0.1081	0.041*	
N2	0.4415 (2)	-0.2989 (2)	0.05067 (17)	0.0375 (4)	
H2A	0.3781	-0.4009	0.0285	0.045*	
01	0.7187 (2)	-0.35121 (19)	0.04214 (16)	0.0488 (4)	
O2	0.1610(2)	0.0561 (2)	0.13615 (16)	0.0508 (4)	
03	0.4586 (2)	0.23490 (19)	0.20251 (17)	0.0554 (5)	
C13	0.374 (3)	0.3618 (16)	0.2478 (12)	0.086 (4)	0.654 (17)
H13A	0.2924	0.3745	0.1847	0.103*	0.654 (17)
H13B	0.2959	0.3318	0.2971	0.103*	0.654 (17)
C14	0.5303 (12)	0.5098 (7)	0.3121 (11)	0.116 (4)	0.654 (17)
H14A	0.6081	0.4964	0.3752	0.174*	0.654 (17)
H14B	0.4803	0.5955	0.3415	0.174*	0.654 (17)

supporting information

H14C	0.6076	0.5371	0.2627	0.174*	0.654 (17)
C13A	0.394 (4)	0.368 (3)	0.2319 (11)	0.070 (7)	0.346 (17)
H13C	0.2598	0.3357	0.1900	0.084*	0.346 (17)
H13D	0.4684	0.4531	0.2098	0.084*	0.346 (17)
C14A	0.414 (4)	0.428 (3)	0.3506 (12)	0.127 (10)	0.346 (17)
H14D	0.3199	0.3533	0.3697	0.190*	0.346 (17)
H14E	0.3937	0.5314	0.3713	0.190*	0.346 (17)
H14F	0.5409	0.4415	0.3920	0.190*	0.346 (17)
Cl1	0.92366 (19)	0.18204 (17)	0.68608 (7)	0.1114 (4)	
C12	0.07043 (8)	-0.41074 (8)	-0.12863 (5)	0.0522 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0719 (18)	0.085 (2)	0.0334 (12)	0.0407 (17)	0.0004 (12)	0.0089 (13)
C2	0.095 (2)	0.079 (2)	0.0475 (16)	0.0299 (19)	0.0186 (15)	0.0296 (15)
C3	0.0751 (18)	0.0529 (15)	0.0402 (13)	0.0083 (13)	0.0088 (12)	0.0163 (11)
C4	0.0315 (10)	0.0396 (11)	0.0348 (10)	0.0151 (8)	0.0040 (8)	0.0098 (8)
C5	0.076 (2)	0.0498 (15)	0.0523 (16)	-0.0029 (14)	-0.0110 (14)	0.0120 (12)
C6	0.099 (3)	0.069 (2)	0.0506 (18)	0.0008 (19)	-0.0216 (17)	-0.0003 (16)
C7	0.0246 (9)	0.0292 (9)	0.0363 (10)	0.0085 (7)	0.0058 (7)	0.0110 (8)
C8	0.0261 (9)	0.0363 (10)	0.0398 (10)	0.0112 (8)	0.0095 (8)	0.0122 (8)
C9	0.0228 (8)	0.0364 (10)	0.0361 (10)	0.0107 (7)	0.0095 (7)	0.0124 (8)
C10	0.0255 (9)	0.0331 (9)	0.0325 (9)	0.0112 (7)	0.0066 (7)	0.0126 (8)
C11	0.0262 (10)	0.0453 (12)	0.0516 (13)	0.0079 (9)	0.0099 (9)	0.0027 (10)
C12	0.0343 (10)	0.0374 (10)	0.0370 (10)	0.0163 (8)	0.0061 (8)	0.0123 (8)
N1	0.0207 (7)	0.0351 (9)	0.0416 (9)	0.0079 (6)	0.0086 (6)	0.0094 (7)
N2	0.0237 (8)	0.0284 (8)	0.0552 (11)	0.0069 (6)	0.0101 (7)	0.0096 (7)
01	0.0303 (8)	0.0385 (8)	0.0734 (12)	0.0151 (6)	0.0150 (7)	0.0103 (8)
O2	0.0333 (8)	0.0521 (10)	0.0681 (11)	0.0229 (7)	0.0135 (7)	0.0155 (8)
03	0.0431 (9)	0.0336 (8)	0.0738 (12)	0.0180 (7)	-0.0026 (8)	0.0034 (8)
C13	0.071 (6)	0.051 (6)	0.116 (9)	0.039 (4)	0.008 (6)	-0.001 (5)
C14	0.100 (5)	0.041 (3)	0.171 (9)	0.017 (3)	0.030 (5)	-0.003 (4)
C13A	0.077 (14)	0.052 (10)	0.063 (8)	0.048 (10)	-0.016 (7)	-0.009 (7)
C14A	0.18 (2)	0.138 (18)	0.075 (9)	0.115 (18)	0.028 (9)	0.000 (9)
Cl1	0.1383 (10)	0.1531 (11)	0.0355 (4)	0.0742 (8)	0.0001 (5)	0.0144 (5)
Cl2	0.0426 (3)	0.0510 (4)	0.0510 (3)	0.0153 (3)	-0.0023 (2)	0.0100 (3)

Geometric parameters (Å, °)

C1—C6	1.342 (5)	C11—Cl2	1.766 (2)
C1—C2	1.352 (5)	C11—H11A	0.9700
C1—Cl1	1.739 (3)	C11—H11B	0.9700
C2—C3	1.388 (4)	C12—O2	1.207 (3)
С2—Н2	0.9300	C12—O3	1.330 (3)
C3—C4	1.366 (3)	N1—H1	0.8600
С3—Н3	0.9300	N2—H2A	0.8600
C4—C5	1.369 (3)	O3—C13A	1.4000 (10)

C4—C7	1.518 (3)	O3—C13	1.482 (8)
C5—C6	1.387 (4)	C13—C14	1.430 (19)
С5—Н5	0.9300	C13—H13A	0.9700
С6—Н6	0.9300	C13—H13B	0.9700
C7—N1	1.461 (2)	C14—H14A	0.9600
C7—C10	1.513 (2)	C14—H14B	0.9600
С7—Н7	0.9800	C14—H14C	0.9600
C8—O1	1.225 (2)	C13A—C14A	1.4000 (10)
C8—N1	1.333 (3)	C13A—H13C	0.9700
C8—N2	1.373 (2)	C13A—H13D	0.9700
C9—C10	1.341 (3)	C14A—H14D	0.9600
C9—N2	1.379 (2)	C14A—H14E	0.9600
C9—C11	1.498 (3)	C14A—H14F	0.9600
C10—C12	1.466 (3)		
C6—C1—C2	121.0 (3)	Cl2—C11—H11A	109.2
C6—C1—Cl1	119.8 (3)	C9—C11—H11B	109.2
C2—C1—C11	119.2 (3)	Cl2—C11—H11B	109.2
C1—C2—C3	119.1 (3)	H11A—C11—H11B	107.9
C1—C2—H2	120.5	O2—C12—O3	122.43 (19)
С3—С2—Н2	120.5	O2—C12—C10	127.3 (2)
C4—C3—C2	121.3 (3)	O3—C12—C10	110.28 (17)
С4—С3—Н3	119.4	C8—N1—C7	124.46 (16)
С2—С3—Н3	119.4	C8—N1—H1	117.8
C3—C4—C5	118.0 (2)	C7—N1—H1	117.8
C3—C4—C7	121.6 (2)	C8—N2—C9	123.10 (17)
C5—C4—C7	120.4 (2)	C8—N2—H2A	118.5
C4—C5—C6	120.8 (3)	C9—N2—H2A	118.4
С4—С5—Н5	119.6	C12—O3—C13A	120.4 (14)
С6—С5—Н5	119.6	C12—O3—C13	114.8 (8)
C1—C6—C5	119.8 (3)	C13A—O3—C13	10.8 (18)
С1—С6—Н6	120.1	C14—C13—O3	107.3 (12)
С5—С6—Н6	120.1	C14—C13—H13A	110.3
N1—C7—C10	109.45 (15)	O3—C13—H13A	110.3
N1—C7—C4	110.73 (15)	C14—C13—H13B	110.3
C10—C7—C4	113.47 (16)	O3—C13—H13B	110.3
N1—C7—H7	107.7	H13A—C13—H13B	108.5
С10—С7—Н7	107.7	O3—C13A—C14A	110.7 (9)
С4—С7—Н7	107.7	O3—C13A—H13C	109.5
O1—C8—N1	123.56 (18)	C14A—C13A—H13C	109.5
O1—C8—N2	120.66 (19)	O3—C13A—H13D	109.5
N1—C8—N2	115.73 (17)	C14A—C13A—H13D	109.5
C10—C9—N2	120.01 (17)	H13C—C13A—H13D	108.1
C10—C9—C11	124.57 (18)	C13A—C14A—H14D	109.5
N2—C9—C11	115.41 (18)	C13A—C14A—H14E	109.5
C9—C10—C12	122.35 (17)	H14D—C14A—H14E	109.5
C9—C10—C7	119.80 (17)	C13A—C14A—H14F	109.5
C12—C10—C7	117.78 (17)	H14D—C14A—H14F	109.5

C9—C11—Cl2 C9—C11—H11A	112.02 (15) 109.2	H14E—C14A—H14F	109.5
C6-C1-C2-C3	-0.1(5)	C10-C9-C11-Cl2	138.10 (19)
C1 - C2 - C3 - C4	1.4 (5)	$C_{2} = C_{1} = C_{12}$	42.8 (<i>3</i>) 8.7 (4)
C2—C3—C4—C5	-1.7 (5)	C7—C10—C12—O2	-168.2 (2)
C2—C3—C4—C7	176.7 (3)	C9—C10—C12—O3	-173.0 (2)
C3—C4—C5—C6	0.7 (5)	C7—C10—C12—O3	10.1 (3)
C7—C4—C5—C6	-177.7 (3)	O1—C8—N1—C7	-163.2 (2)
C2—C1—C6—C5	-0.8 (6)	N2—C8—N1—C7	19.2 (3)
Cl1—C1—C6—C5	179.4 (3)	C10—C7—N1—C8	-31.1 (3)
C4—C5—C6—C1	0.5 (6)	C4—C7—N1—C8	94.8 (2)
C3—C4—C7—N1	-68.6 (3)	O1—C8—N2—C9	-171.1 (2)
C5—C4—C7—N1	109.8 (3)	N1—C8—N2—C9	6.6 (3)
C3—C4—C7—C10	55.0 (3)	C10—C9—N2—C8	-16.8 (3)
C5—C4—C7—C10	-126.6 (3)	C11—C9—N2—C8	164.1 (2)
N2-C9-C10-C12	-174.98 (18)	O2—C12—O3—C13A	-3.8 (9)
C11—C9—C10—C12	4.0 (3)	C10-C12-O3-C13A	177.8 (9)
N2-C9-C10-C7	1.8 (3)	O2—C12—O3—C13	6.6 (7)
C11—C9—C10—C7	-179.16 (19)	C10-C12-O3-C13	-171.8 (7)
N1—C7—C10—C9	19.3 (3)	C12-O3-C13-C14	171.9 (10)
C4—C7—C10—C9	-105.0 (2)	C13A—O3—C13—C14	-65 (9)
N1-C7-C10-C12	-163.80 (17)	C12—O3—C13A—C14A	103 (2)
C4—C7—C10—C12	72.0 (2)	C13—O3—C13A—C14A	42 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>	
N2— $H2A$ ···O1 ⁱ	0.86	2.04	2.885 (2)	166	
N1—H1···O2 ⁱⁱ	0.86	2.23	3.070 (2)	166	
C11—H11 <i>B</i> …O1 ⁱⁱⁱ	0.97	2.50	3.069 (3)	117	
C11—H11A····O2	0.97	2.14	2.814 (3)	126	

Symmetry codes: (i) -*x*+1, -*y*-1, -*z*; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.