
Medical high-entropy alloy:
Outstanding mechanical
properties and superb biological
compatibility

Changxi Liu1,2, Chengliang Yang2,3, Jia Liu2,3*, Yujin Tang2,3*,
Zhengjie Lin4, Long Li5, Hai Liang5, Weijie Lu1,2 and
Liqiang Wang1,2*
1State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China, 2National Center for Translational Medicine, Shanghai
Jiao Tong University, Shanghai, China, 3Department of Orthopaedics, Affiliated Hospital of Youjiang
Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of
Bone and Joint Degenerative Diseases, Baise, China, 43D Printing Clinical Translational and
Regenerative Medicine Center, Shenzhen Shekou People’s Hospital, Shenzhen, China, 5Department of
Stomatology, Shenzhen Shekou People’s Hospital, Shenzhen, China

Medical metal implants are required to have excellent mechanical properties

and high biocompatibility to handle the complex human environment, which is

a challenge that has always existed for traditional medical metal materials.

Compared to traditional medical alloys, high entropy alloys (HEAs) have a higher

design freedom to allow them to carry more medical abilities to suit the human

service environment, such as low elastic modulus, high biocompatible

elements, potential shape memory capability. In recent years, many studies

have pointed out that bio-HEAs, as an emerging medical alloy, has reached or

even surpassed traditional medical alloys in various medical properties. In this

review, we summarized the recent reports on novel bio-HEAs for medical

implants and divide them into two groups according the properties, namely

mechanical properties and biocompatibility. These new bio-HEAs are

considered hallmarks of a historic shift representative of a new medical

revolution.
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Introduction

Currently, numerous biomaterials, including polymer materials, composite materials,

and metal materials, have been developed for disease visualization, drug toxicity

assessment and detection, tissue repair and substitution (Gaharwar et al., 2020; Eliaz,

2019; Fenton et al., 2018; Qu et al., 2019; Mitrousis et al., 2018; Wang et al., 2021a; Liu

et al., 2022). With excellent mechanical properties and good corrosion resistance, metal

medical implants undertake the function of repairing and replacing human diseased

tissues and organs, which are widely used in artificial heart valves, bone implants and
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scaffolds, and tooth repair and replacement (Eivazzadeh-Keihan

et al., 2020; Sharma et al., 2020; Wang et al., 2022a; Guo et al.,

2022; Mao et al., 2022; Qiao et al., 2022) Figure 1A illustrates the

several stages of metal implant development and improvement.

The earliest metal implant material is 304 stainless steel (Verran

and Whitehead, 2005), which is used in artificial joints. Stainless

steel material has high strength but also has a high elastic

modulus (193 GPa), which is much higher than human bones

10–40 GPa). Such mismatched elastic moduli will prevent the

load from smoothly transferring from the implant to the

surrounding bone tissue, resulting in a stress shielding

phenomenon when the implant is implanted into human

bone (Mi et al., 2007). The stress shielding phenomenon can

lead to the degeneration and atrophy of the bone tissue and

eventually cause the implant to loosen and even fail, which does

not meet the requirements of long-term service. Subsequently,

compared with other metal materials, titanium and titanium

alloys have the characteristics of high specific strength, strong

corrosion resistance and good biocompatibility and have become

preferred materials for bone tissue repair and replacement

(Wang et al., 2021b; Wang et al., 2022b; Cui et al., 2022; Lv

et al., 2022; Zhang et al., 2022). For instance, Wang developed a

Ti-35Nb-2Ta-3Zr (wt%) alloy with a low Young’s modulus of

approximately 48 GPa (Wang et al., 2017).

High-entropy alloys have received a great amount of

attention in recent years because of their unique composition

(five or more metal elements) and homogeneous microstructure

(Cantor et al., 2004; Hemphill et al., 2012; Gludovatz et al., 2014;

Yu et al., 2014; Ye et al., 2015a; Xia et al., 2015; Miracle and

Senkov, 2017). Compared to conventional alloys with relatively

simple compositions, HEAs have two significant features: 1)

enormous room for performance optimization and

improvement derives from multielemental combinations,

which ensure that HEAs have a variety of ingredients and

complex microstructures, and 2) the various elements mixed

will exhibit properties that are not possessed by any pure metal

element, which provides HEAs with new properties (Tsai and

Yeh, 2014; Lu et al., 2015; George et al., 2019).

With the excellent performance of HEAs, a good approach is

to put HEAs into the medical field to explore the potential of

HEAs as medical implants. Furthermore, HEAs represented by

Ti, Ta, Nb, Zr, and Hf systems have good application and

development potential in medical implants, as shown in

Figure 1B (Raducanu et al., 2011; Wang and Xu, 2017; Tüten

FIGURE 1
(A) Schematic showing several different medical metal implant development sequences. (B) Mechanical properties and biocompatibility
constitute the performance evaluation criteria formedical metal implants. (C) Schematic diagram showing the elemental arrangementmodel of HEA
(the circles in different colors and varying sizes represent the mixed atoms), in this case, the configurational entropy is determined not only by
chemical composition but also by atomic size (Ye et al., 2016).
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et al., 2019; Yang et al., 2020). For instance, bio-HEAs could be

designed to possess high strength following rational guidance due

to their complex elemental composition and richness of design

(Wang et al., 2020a; Su et al., 2022; Xu et al., 2022). On the other

hand, bio-HEAs are designed to have low toxicity because the

elements in bio-HEAs have excellent biocompatibility (Nagase

et al., 2020). This review aimed to discuss recent advances in bio-

HEA mechanical properties and biocompatibility.

High entropy alloy concept

The current mainstream concept is that the high entropy

alloy should contain 5–13 main elements, and the mole fraction

of each element should be between 5 and 35 at% (Cantor et al.,

2004; Yeh et al., 2004). The term “high-entropy alloy” is defined

because the relationship of individual atoms can be modelled as

an ideal solution, as illustrated in Figure 1C.

The atomic radius difference range (δ) (1) is used to describe

the radius relative radius of each element (‾r is the average

atomic radius and ri is the atomic radius of element i). It claims

that only solid solutions are formed when the δ value is lower

than 4% (Zhang and Lv, 2008).

δ � 100

�����������∑ ci(1 − ri
�r
)√

(1)

Configuration entropy (ΔSam) 2) is used to describe the

mixing entropy of alloys, which high entropy alloys require

the ΔSmix value are higher than 11 J/mol K, where ci is the

molar fraction of the ith element, R is the constant (8.314 J/mol

K), and n is the total number of constituent elements.

The enthalpy of mixing (ΔHam) 3) range of the HEA is a key

parameter, which requires between −11.6 and 3.2 kJ/mol, where

ΔHij is the binary enthalpy of elements i and j (Zhang and Lv,

2008).

ΔSam � −R∑ cilnci (2)
ΔHam � ∑ cjΔHij (3)

The parameter O 4) involves ΔSam and ΔHam, which can

predict the composition of the final HEA phase, where Ttop is the

melting temperature calculated using 5. Usually, only solid

solutions are formed when Ω > 1.1 and δ < 3.6%, and only

solid solutions and intermetallic compounds are formed when

1.1 < O < 10 and 3.6% < d < 6.6%; furthermore, only solid

solutions are formed when Ω > 10 (Yang and Zhang, 2012).

Ω � TtopΔSam/|ΔHam| (4)
Ttop � ∑ ciTtop i (5)

The difference in electronegativity Δχ 6) is also used as the

criterion for judging whether a single solid solution can be

formed, where χ is the average electronegativity and χi is the

electronegativity of element i. Only solid solutions are formed

when the components of the alloy elements are between

3 and 6%.

Δχ � 100

������������∑ ci(1 − χi
χ)2

√
(6)

Although there may be some differences in the above criteria

in the current research on high-entropy alloys, these criteria are

useful for predicting the solid phase and composition selection

and determination of the atomic fraction ratio for bio-HEAs

(Takeuchi et al., 2013; Ye et al., 2015b).

HEAs design and numerical
simulation

Compared with traditional alloys, bio-HEAs have a high

freedom in element design, which also means more factors need

to be considered. Multi-element of bio-HEAs not only induce

strong chemical fluctuation to random phase, but also have

important effects on the stacking fault energy, second phase

and dislocation core structure. In fact, numerical simulations

could reflect the bio-HEAs properties independent of material

test, which is very beneficial for guiding the design of alloys with

high freedom such as bio-HEAs (Yin et al., 2020; Xu et al., 2021).

In recent years, Monte Carlo (Zhou et al., 2021), molecular

dynamics (Jian et al., 2020; Li et al., 2020), first-principles

calculations (Rao et al., 2019), and deep learning

(Kostiuchenko et al., 2019) is widely applied in modeling and

prediction of bio-HEAs.

Lee (Lee et al., 2020) predicted the Young’s modulus (E), bulk

modulus (K) and shear modulus (G) of the material by First-

principles calculations, showing excellent agreement with the

experimental values. Moreover, Yao (Yao et al., 2016) established

phase diagrams of NbTaTiV, NbTaVW, and NbTaTiVW

through CALPHAD modeling, which predicted the state of

NbTaV(TiW) in different temperature ranges. Liu (Liu et al.,

2021) used Monte Carlo to predict order-disorder transitions

caused by W and Nb. By comparing with experiments, the

simulation results provide insight into the role of chemical

ordering in the strength and ductility of HEAs.

In fact, HEAs with so many element combinations means

huge data and this is a perfect example of deep learning. With the

rapid development of computer science, deep learning is

becoming more and more accurate for analyzing data patterns

and predicting development from samples (Lecun et al., 2015;

Guo et al., 2016). For the design of HEAs, the optimal HEA

potential element ratio could be output by a deep learning

network trained on HEA experimental data (Yan et al., 2021).

For instance, wen (Wen et al., 2021a) collected experimental data

on AlCoCrFeNi, CoCrFeNiMn, HfNbTaTiZr, and MoNbTaWV,

and trained a deep learning network for these types of HEAs to
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FIGURE 2
(A) Two-beam BF images show the frequently observed accumulation of dislocations on the {111}-type FCC slip planes in Co22Cr22Fe22Ni22Si10
and Co10Cr10Fe10Ni10Mn10Si10HEA (Wei et al., 2022b). (B) the (100) peak of hcpM could be found when the stress was over 520 MPa (C) Dislocations
in the 8% strained O-2 HEA, imaged under {1a11}-type diffraction conditions (Wang et al., 2020b). (D) The dislocation pinning point (red circle) in (C)
was chosen for further STEM characterization. (E) Aberration-corrected STEM-ABF images of the local atomic structure of pinning sites. White
arrows point to the pillars of oxygen atoms. (F) STEM-HADDF also indicates ordered oxygen complexes near the dislocation pinning point (G)
Aberration-corrected STEM-ABF images far from the pinning point (Lei et al., 2018).
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predict the potential of solid solution strengthening. In the

future, deep learning might play a guiding role in the design

and prediction of potential properties of HEAs.

Mechanical properties

Compared with traditional medical metal implants, HEAs

have excellent mechanical properties (Picak et al., 2021; Wei

et al., 2022a). The strength, ductility, elastic modulus and fatigue

properties of bio-HEAs should be considered. The excellent

mechanical properties of these medical high-entropy alloys are

inextricably connected with their microstructures. In fact, the

microstructures of HEAs are numerous and complex, and the

final microstructure is not the same even for HEAs with the same

elements but different ratios, furthermore, heat treatment and

thermal deformation also affect the structure (Dirras et al., 2016;

Zhang et al., 2018; Li et al., 2019). It is critical to obtain an overall

view and summarize the properties of bio-HEAs at this stage, as

well as to determine the design ideas of future bio-HEAs.

Tensile and compressive properties

Tensile and compression tests are some of the most intuitive

criteria to detect the mechanical properties of materials, which

can obtain a series of material performance data, such as yield

strength, breaking strength, and elongation, from stress–strain

diagrams. Furthermore, many HEAs with excellent mechanical

properties have been developed in recent years, which yield

strength exceeding 1000 MPa and the elastic modulus lower

than 70 GPa These HEAs often have high tensile strength and

excellent elongation data, achieving simultaneous improvement

of material strength and plasticity. Wei (Wei et al., 2022b)

replaced part of the metal elements in HEAs with the

metalloid element Si, in which the metalloid element is

between metals and nonmetals, and it is easy to induce

complex subnanometre-scale structures in the substrate.

Figure 2A illustrates the accumulation of dislocations on the

{111}-type FCC slip planes. The mechanical properties of -Si

HEAs are improved due to these defects, which is consistent with

the results of first-principles calculations and Monte Carlo

simulations. It shows the elevation of ductility simultaneously

with strength in macroscopic performance. Su (Su et al., 2019)

designed a hierarchical microstructural for HEA by introducing

grains and textures with different size gradients and

substructures, which enhanced transformation-induced

plasticity (TRIP) and twinning-induced plasticity (TWIP)

effects. The material exhibits bimodal microstructures, which

were produced consisting of nanograins (~50 nm) in the vicinity

of shear bands and recovered parent grains (10–35 μm) with

preexisting nanotwins after tempering. Compared with the 95%

recrystallized specimen’s yield strength of 555 MPa, the HEA

yield strength of the bimodal microstructures is increased to

1.3 GPa.

The equiatomic HfNbTaTiZr achieves a tensile yield strength

of 974 MPa and has an elongation of 20%. Furthermore, there are

numerous dislocations with restricted movement at grain

boundaries in HfNbTaTiZr, due to grain refinement (Juan

et al., 2016). The O element doped TiZrHfNb exhibited a

yield strength of 1,300 MPa and an elongation of 30% in the

room temperature tensile test. The strong ordered oxygen

complexes in Figures 2C–G are the key reason to achieve such

performance. The strength improvement is due to the O solid

solution strengthening, more interestingly, the plasticity

improvement is due to O changing the plastic deformation

mode from plane slip to wave slip, which is different from

conventional alloys (Lei et al., 2018). This study shows that

the presence of interstitial oxygen elements in a nano-ordered

manner could successfully overcome the strength–ductility

trade-off.

Chen (Chen et al., 2022a) found that the WNbMoTaZr HEA

has a significant increase in strength and toughness with

increasing Zr content; the yield strength in the compression

test is 1,223 ± 20.1 MPa, and the fracture strain is 6.4 ± 0.66%. In

addition, TiZrNbTa doped with N also achieved high strength

and high toughness of the material. The yield strength and

fracture strain of the tensile test reached 1,196 ± 8 MPa and

17.5 ± 0.3%, respectively (Wang et al., 2022c). The introduction

of N in the original matrix resulted in dendritic structures and

simultaneously led to dislocation pinning and reduce

diffusion rate.

In recent years, some studies on the microstructure and

mechanism of bio-HEAs may provide theoretical support for

high-strength mechanical properties. Lee believes that unlike

traditional body-centered cubic (BCC) structure metals and

dilute alloys, in which the strain strengthening depends on

screw dislocation, plastic flows in HEAs mainly contribute to

edge dislocation (Lee et al., 2021). Furthermore, TWIP and TRIP

are still the main methods to enhance the mechanical properties

of bio-HEAs. During the tensile process, TWIP and TRIP occur

sequentially in the ß phase. Ti16Zr35Hf35Ta14 was found to

exhibit a new stress-induced martensitic transformation

(SIMT) α”-to-hcpM by in situ high energy X-ray diffraction

(HEXRD), as shown in Figure 2B. The peak of hcpM starts to

appear when the stress is 520 MPa, and the peak of α” gradually
weakens and finally disappears when the stress is 800 MPa. In

addition, SIMT improves the yield strength-ductility of

Ti16Zr35Hf35Ta14 72. Wen (Wen et al., 2021b) found that

the Nb content in HfNbTa0.2TiZr HEA affects the stability of

the BCC phase. With the decrease in Nb content, the martensite

tends to transform from the BCC structure to the HCP structure,

as shown in Figure 3A. A large number of twins are observed

during the transition, which may be due to the lower SFE of the

HCP structure, and the material finally exhibits a dual increase in

strength and plasticity, as shown in Figure 3B. In addition, the
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fine precipitates in Hf20Nb10Ti35Zr35 formed by ageing cooperate

with TWIP and TRIP and improve the mechanical properties of

the material (Su et al., 2022).

Additive manufacturing (AM) is a new type of

manufacturing method that has a great impact on medical

implant fabrication and its ability to produce complex, porous

configurations and structure-specific implants (Herzog et al.,

2016; Bourell et al., 2017). Additively manufactured porous

materials fabricated by AM could well mimic the skeletal

environment in which cells grow (Hafeez et al., 2020; Zhang

et al., 2021a). Compared with the HEAs prepared by cold crucible

suspension, the microstructure fabricated by AM may be

different due to different cooling rates during fabrication;

furthermore, the final mechanical properties of the material

are also different. Defects caused by AM are an important

factor that affects the performance of bio-HEAs because the

elements used in bio-HEAs not only have highmelting points but

also have a wide range of melting points between different

elements. Zhang (Zhang et al., 2021b) found that a mixed

powder of NbMoTa has a high defect rate after fabrication.

Consequently, the printed material has higher formability and

strength for SLM after adding Ti and Ni elements. Compared

with NbMoTa, the NbMoTaTi0.5Ni0.5 HEA has a large amount of

extended dislocation at the grain boundary, which strengthens

the grain boundary of the crystal. Xiao (Xiao et al., 2022) studied

the effect of selected laser melting (SLM) on the microstructure

and mechanical properties of WMoTaNbTi HEAs. Several

different scan speeds, including 4.0 m/s, 3.5 m/s, 3.0 m/s and

2.5 m/s, were collected and are illustrated in Figure 3C. The

material exhibited the highest compressive strength of 1,312 MPa

and exhibited good local ductility when the scanning speed was

2.5 m/s.

Low elastic modulus HEAs

Reducing the elastic modulus of metal implants to match

human bone to prevent potential stress shielding risks is an

important goal for medical metal implants. TiZrNb,

Ti40Zr40Nb20, Ti45Zr35Nb20, Ti45Zr45Nb10, and Ti50Zr40Nb10

FIGURE 3
(A) TEMbright-field images of the co-existed BCC andHCP phase (Wen et al., 2021b). (B) Selected area diffraction show the extra twinning spots
(C) Four different scanning speeds at 4.0 m/s, 3.5 m/s, 3.0 m/s, 2.5 m/s for the SLM (Xiao et al., 2022).
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all exhibit low elastic moduli (Hu et al., 2022). In particular, the

TiZrNb HEA, at room temperature, is composed of dendritic

crystals with a single BCC, whose elastic moduli range from 73 ±

3 GPa to 52 ± 2 GPa and are very close to the elastic moduli of

large human bones. Schönecker (Schönecker et al., 2022)

proposed a new idea for reducing the elastic modulus of

TiZrNbMoTa. Considering the service conditions of the

bones, including walking, running, and climbing, the load

direction of the leg is along the long-bone (longitudinal

direction). For this unidirectional loading situation, the

anisotropy of the material is used to reduce the elastic

modulus. Single crystals and textured polycrystals have lower

elastic moduli than isotropic materials in a certain direction.

In fact, the elastic modulus of a material is affected by the

chemical bond, crystal structure, chemical composition, etc. The

bio-HEAs could form numerous types according to different

ratios and selected elements. Such a large number of samples

undoubtedly provides sufficient samples for machine learning to

calculate and predict the final performance of materials. In recent

years, with the rapid development of computer science, machine

learning, as a product of the development of computer science,

has been widely used in the calculation of big data (Dove et al.,

2017; Wei et al., 2019). Roy (Roy et al., 2020) used the gradient

boost for a regression model to predict 26 high-entropy alloys

with different compositions, in which the deviation from the test

value of the sample did not exceed 20%, and the elastic modulus

of TaTiZr was predicted to be 98.33 GPa. Compared with blindly

arranging and combining element types, machine learning can

provide a relatively clear path in designing materials.

Superelastic HEA

In 1963, the Naval Ordnance Laboratory discovered

superelasticity in TiNi alloys with nearly equiatomic

proportions (Buehler et al., 1963). To date, supereelastic

metals have been widely used in aerospace, marine and cable

communications (Hoh et al., 2009). In medical metal implants,

bone scaffolds fabricated by superelastic materials have better

flexibility and better fit the complex structure inside the

human body.

SIMT could improve the mechanical properties of HEAs; for

instance, TRIP could improve the plasticity of HEAs. In addition,

SIMT is a prerequisite for superelasticity effects and shape

memory of mental materials. The ß phase in the superelastic

alloy transforms into orthorhombic α″ martensite when loaded

up to a certain critical stress (sSIM). The α″ martensite grows

through several variants that yield to the maximum strain along

the loading direction. These repeatedly loaded trajectories exhibit

a cyclic shape in the stress–strain curve in Figure 4

(Ramezannejad et al., 2019). Upon unloading, α″ martensite is

able to totally transform back to ß under the ideal scenario.

FIGURE 4
The schematic diagram for mental superelasticity by martensitic transformation (Ramezannejad et al., 2019).
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Some bio-HEAs have also been shown to have superelastic

properties. Peltier (Peltier et al., 2021) pointed out that for

(TiHfZr)74(NbTa)26, its superelasticity originates from the

transition of β↔α” when deformation occurs. The superelastic

temperature range is 40–200°C, which is compatible with the

human service environment temperature. Furthermore, Wang

(Wang et al., 2019) utilized in situ XRD to characterize the

superelastic behavior of TiZrHfAlNb and found β↔α” during

unloading in experiments on uniaxial tension. In addition, the

plastic deformation is also recovered during this process. The

discovery of these superelastic bio-HEAs will encourage more

scholarly interest and attention.

Fatigue properties of HEA

Fatigue fracture often occurs when the material is under the

action of alternating loads for a long time, and the material is

broken by a stress lower than the breaking strength. Fatigue

fracture is due to the initiation of internal cracks, and the cracks

gradually propagate under alternating loads until failure. Metal

medical implants are often under alternating loads during

service. For instance, artificial teeth undergo hundreds of

times of chewing every day. These chewing movements can be

regarded as materials that are under the alternating stress

environment.

HfNbTaTiZr exhibits good performance in fatigue tests. The

maximum stress required to exceed the yield stress causes fatigue

failure of HfNbTaTiZr even in the high cycle fatigue regime

(Guennec et al., 2018a). In the microstructure, the fatigue

strength of the material is affected by the mobility of

dislocations, which increases with mobility. This feature has

also been observed in other alloys (Mughrabi and Wüthrich,

1976; Magnin and Driver, 1979; Guiu et al., 1982; Guennec et al.,

2015). In the low-cycle regime of HfNbTaTiZr, the resistance to

fatigue is through the accumulation of dislocations at the crack

tip, which can lead to the closure of the crack (Chen et al., 2022b).

In fact, currently, more fatigue research on HEAs focuses on

FeCoNi systems (Hemphill et al., 2012; Tang et al., 2015;

Thurston et al., 2017; Guennec et al., 2018b), and research on

medical high-entropy alloys is still lacking. To date, medical

high-entropy alloys are mainly aimed at strength and toughness,

as well as low modulus. Fatigue performance is an important

medical indicator; therefore, fatigue behaviour investigations on

bio-HEAs are suggested to obtain a wider range of bio-HEAs

with good fatigue performance.

Biocompatibility properties of Bio-
HEAs

Compared with the HEA materials used in the

manufacturing industry and aerospace industry, which require

metals to have excellent mechanical properties, bio-HEAs not

only require good mechanical properties but also require

additional materials with excellent biocompatibility properties.

Furthermore, the purpose of testing biocompatibility is to explore

the potential biological risks when medical high-entropy alloys

are used as implants. In recent years, many scholars have

extensively studied the biocompatibility of HEAs and found

many bio-HEAs with excellent biocompatibility. The

biocompatibility of bio-HEAs, including cytocompatibility,

corrosion resistance, friction resistance, and bio-HEAs with

these three excellent properties, is summarized.

Cytocompatibility

The cell viability experiment is the most intuitive test to

analyze the biocompatibility of bio-HEAs. The purpose of the cell

viability experiment was to simulate cell growth and

differentiation and to observe whether the cells still have

normal functions on the implant surface. For instance,

osteoblasts are often cultured on the implant surface to

observe osteoblast division, differentiation, and the final

mineral deposition quality (McBeth et al., 2017). At present,

many studies have shown that medical high-entropy alloys

exhibit high cell viability and provide a good environment for

cell work.

Todai (Todai et al., 2017) found that TiNbTaZrMo HEA

exhibited excellent biocompatibility, and the osteoblast activity

attached to the surface was closely related to the microstructure

of HEA. SUS316L, CP-Ti, and TiNbTaZrMo HEAs in the as-cast

and annealed samples were tested in total, and it was pointed out

that the osteoblast density of TiNbTaZrMo in the as-cast and

annealed samples was higher than that of SUS316L and CP-Ti. In

addition, TiNbTaZrMo in the annealed sample exhibited the

highest cell density and was superior to SUS316L in cell size and

cell spreading, which are important for cell migration and protein

synthesis. Furthermore, this study also pointed out that the

annealed TiNbTaZrMo has better cytocompatibility due to the

redistribution and grain growth of the annealed grains. Shittu

(Shittu et al., 2020) showed that MoNbTaTiZr HEA not only has

good mechanical properties, in which the elastic modulus is 30%

lower than that of SS304 but also has good cytocompatibility.

Stem cells were cultured onto MoNbTaTiZr and tissue culture

polystyrene (TCPS) surfaces, and fluorescence microscopy was

used to show cellular coverage. The cell coverage ofMoNbTaTiZr

and TCPS reached 89 and 100%, respectively. Furthermore,

numerous long cytoplasmic extensions forming a network in

contact with adjacent cells were observed on the bio-HEA

surface, indicating that the MoNbTaTiZr surface supports cell

attachment by filopodia extensions and provides strong support

for the growth of cells (Hasan et al., 2017).

The TiNbTaZrMo fabricated by SLM not only has superior

mechanical properties but also has great biocompatibility.
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Giemsa staining images showed that the cell growth density of

bio-HEAs fabricated by SLM was the same as that of CP-Ti and

much higher than that of SS316L, as shown in Figure 5A.

Furthermore, fluorescent images demonstrate the cell

cytoskeletal components and focal adhesions of osteoblasts

adhered to the specimens in Figure 5B. The cells exhibited a

uniform distribution on the bio-HEA surface, which had an

obvious advantage of cell spreading. Such great mechanical and

biological properties of bio-HEAs are due to the rapid

solidification in the SLM fabrication process, which can

effectively inhibit the segregation of components (Ishimoto

et al., 2021).

Animal models are an effective approach to evaluate the

service status of materials in the in vivo environment. Akmal

(Akmal et al., 2021) demonstrated (MoTa)xNbTiZr implantation

inside a mouse thigh and counted the changes in the mouse thigh

over 16 days, as shown in Figures 5C,D. The mouse thigh was

inflamed after implantation, and after Day 7, the inflammation

subsided without abnormal neurobehaviour. However, host

response experiments including inflammatory response,

osteoinductive and bioactive behavior still lack additional

investigation, and in vitro experiments should be further

discussed.

Corrosion resistance

Metal implants may have a potential risk of corrosion in the

human body, which may lead to a decrease in implant

performance and failure. Bio-HEAs have shown good

potential in corrosion resistance properties, and research on

corrosion resistance will broaden bio-HEA applications in

medical materials.

In a corrosive environment, bio-HEAs are oxidized, and a

passive oxide film grows on the surface. The density of the oxide

film is a key factor in preventing further corrosion and avoiding

material failure. Yang (Yang et al., 2020) pointed out that the

corrosion rate of TiZrHfNbTa HEA is 10–4 mm/year under an

environment of a low passive current density of approximately

10–2 A/m2, comparable to the traditional Ti6Al4V alloy.

Through X-ray photoelectron spectroscopy (XPS) tests, it was

found that TiO2, ZrO2, HfO2, and Ta2O5 were formed during

FIGURE 5
(A) Giemsa staining images of osteoblasts cultured on the surface of SLM-built BioHEA and CP-Ti, SS316L, and cast BioHEA counterpar
(Ishimoto et al., 2021)t. (B) Fluorescent images of osteoblast adhesion on SLM-built bio-HEA, CP-Ti, SS316L, and cast bio-HEA (Akmal et al., 2021).
(C,D) Visual evidence of mice thigh before and d after implantation (MoTa)0.2NbTiZr alloy (Akmal et al., 2021).
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the corrosion process, which played an important role in resisting

corrosion, as shown in Figures 6A–F. Furthermore, Wang (Wang

et al., 2022d) replaced the element Ta in TiZrHfNbTa with

element Fe to test the effect of different volume fractions of

Fe elements (0, 0.25, 0.5, 0.75, 1, 1.5, 2) on the material corrosion

resistance. It should be noted that the corrosion potential first

decreased and then increased with increasing Fe content. Fe0.5
exhibited the best corrosion resistance, and no corrosion pits

were observed after polarization. Hua pointed out that

TiZrNbTaMo also has great corrosion resistance.

TiZrNbTaMo has better corrosion potential than traditional

Ti6Al4V, which means that the passivation film produced by

TiZrNbTaMo has higher stability (Hua et al., 2021).

Friction resistance performance

Metal implants inevitably contact the surrounding tissue

when implanted into the human body. Wear behaviour is

unavoidable and must be considered for metal medical

implants. Especially in bone implants, the high amount of

frictional behaviour puts the material at risk of wear failure.

FIGURE 6
XPS spectra of the surface films formed on the TiZrHfNbTa [(A)O 1s, (B) Ti 2p, (C) Zr 3d, (D) Hf 4f, (E) Nb 3d, and (F) Ta 4f], which exposed to air
and after the 7-days immersion in the Hank’s solution at 310 K33.
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Furthermore, implant wear may lead to inflammation and osteolysis,

which affect implant longevity and increase the patient’s risk of

secondary injury. Tribocorrosion includes the interaction of

corrosion with sliding wear, biological solutions, solid particle

erosion, frictional oxidation, cavitation erosion, abrasion, and

fretting (Wood, 2007). Figures 7A–C shows two types of medical

mental implants wear in the human body environment, namely, two-

body wear and three-body wear. Compared with two-body wear,

three-body wear has an additional interaction with particles that are

dropped by wear, and two-body wear will eventually transform into

three-body wear over time (Li et al., 2021).

Bhardwaj designed AlxTiZrNbHf (x = 0, 0.25, 0.50, 0.75, 1)

bio-HEA to explore the effect of Al on the friction resistance. The

reason why the addition of Al can enhance the wear resistance is

because Al improves the mechanical properties of the material.

Furthermore, an oxide film with higher friction resistance grows

on the surface of AlTiZrNbHf due to the Al element, which is

found without any elemental separation in the friction track in

EDS analysis (Bhardwaj et al., 2021).

In fact, the friction and corrosion behaviour of metal

implants often occur in combination. The corrosion behaviour

may accelerate the wear situation of the material; conversely, the

peeling of the oxide film due to wear may accelerate the corrosion

of the material. TiZrHfNbFe bio-HEA exhibited good wear

resistance in the dry friction test. Although corrosive wear

occurs in a phosphate buffer saline (PBS) solution, the final

performance is better than that of Ti6Al4V (Wang et al., 2022d).

In addition, Hua (Hua et al., 2021) pointed out that the friction

resistance of TiZrNbTaMo increases with decreasing Ti content.

The wear is worse in the dry environment than in the PBS

environment. The reason is that the oxide films formed in the dry

environment are brittle and are more likely to fall off during

friction, as shown in Figure 7D. The peeled oxide film changes

the wear environment from two-body wear to three-body wear.

Surface modification is a common and effective method to

improve bio-HEA surfaces and reduce friction loss. The film with

a laminated structure of NbMoWTa has good friction resistance,

especially when the film height is 2.5 nm; it exhibits excellent friction

resistance, and the coefficient of friction (COF) is significantly lower

than that of the monolithic NbMoWTa film (Luo et al., 2021).

Conclusion

In recent years, many studies have aimed to determine the

biomedical potential of HEAs to design excellent medical metal

implants and expand the application range of bio-HEA.

Compared with traditional medical metals, bio-HEAs have

more freedom in composition selection and could be widely

used in medical implants, especially in bone scaffolds, bone

plates, and bone nails. The microstructure and morphology of

bio-HEAs are closely affected by the selected elements or the

proportion of each element. Strategies for designing reasonable

and excellent HEA systems need to be further investigated.

FIGURE 7
Schematic diagram of friction corrosion mechanism of implant surface: (A) three-body wear; (B) two-body wear; (C) removal process of the
passivation film (Li et al., 2021). (D) SEM images of wear scars of the Ti0.5ZrNbTaMo, TiZrNbTaMo, Ti1.5ZrNbTaMo, and Ti2ZrNbTaMo HEAs under the
dry wear condition (Hua et al., 2021).
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In this review, the superior mechanical properties and

biocompatibility of bio-HEAs are summarized. For mechanical

properties, bio-HEAs could both have high yield strength and

low modulus, which meet the strength requirements and avoid

stress shielding. Furthermore, some bio-HEAs with

superelasticity could be developed in the medical field.

However, fatigue experiments are still lacking in bio-HEAs

and need to be further evaluated. For biocompatibility, the

elements selected by bio-HEAs focus on having excellent

biocompatibility and low biotoxicity, for instance, Ti, Ta, Nb,

Zr, and Hf. More importantly, the cytocompatibility of some bio-

HEAs was even higher than that of CP-Ti and Ti6Al4V.

However, the current cell viability tests of bio-HEAs focus on

in vitro cell viability, lacking relevant in vivo animal experiments.

Although bio-HEAs have made significant progress, the

availability of new bio-HEAs still has many properties to test.

In addition, many medical properties of bio-HEAs have

surpassed those of traditional medical metals. However, most

of these studies only show a certain medical performance of bio-

HEAs, and there is a lack of systematic and complete research on

all the medical implant indices possessed by a certain material. In

the future, one approach to obtain excellent bio-HEAs is by

designing the bio-HEA composition and regulating the

microstructure and morphology. The new bio-HEA is

expected to become a new generation of metal medical

implants with excellent performance.
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