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Abstract

Background: The use of individual patient data (IPD) in network meta-analyses (NMA) is rapidly growing. This study
aimed to determine, through simulations, the impact of select factors on the validity and precision of NMA
estimates when combining IPD and aggregate data (AgD) relative to using AgD only.

Methods: Three analysis strategies were compared via simulations: 1) AgD NMA without adjustments (AgD-NMA);
2) AgD NMA with meta-regression (AgD-NMA-MR); and 3) IPD-AgD NMA with meta-regression (IPD-NMA). We
compared 108 parameter permutations: number of network nodes (3, 5 or 10); proportion of treatment
comparisons informed by IPD (low, medium or high); equal size trials (2-armed with 200 patients per arm) or larger
IPD trials (500 patients per arm); sparse or well-populated networks; and type of effect-modification (none, constant
across treatment comparisons, or exchangeable). Data were generated over 200 simulations for each combination
of parameters, each using linear regression with Normal distributions. To assess model performance and estimate
validity, the mean squared error (MSE) and bias of treatment-effect and covariate estimates were collected.
Standard errors (SE) and percentiles were used to compare estimate precision.

Results: Overall, IPD-NMA performed best in terms of validity and precision. The median MSE was lower in the IPD-
NMA in 88 of 108 scenarios (similar results otherwise). On average, the IPD-NMA median MSE was 0.54 times the
median using AgD-NMA-MR. Similarly, the SEs of the IPD-NMA treatment-effect estimates were 1/5 the size of AgD-
NMA-MR SEs. The magnitude of superior validity and precision of using IPD-NMA varied across scenarios and was
associated with the amount of IPD. Using IPD in small or sparse networks consistently led to improved validity and
precision; however, in large/dense networks IPD tended to have negligible impact if too few IPD were included.
Similar results also apply to the meta-regression coefficient estimates.

Conclusions: Our simulation study suggests that the use of IPD in NMA will considerably improve the validity and
precision of estimates of treatment effect and regression coefficients in the most NMA IPD data-scenarios. However,
IPD may not add meaningful validity and precision to NMAs of large and dense treatment networks when
negligible IPD are used.
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Background
The use of network meta-analysis (NMA) has grown ex-
ponentially over the past few years [1]. With its in-
creased use has come a number of methodological
developments, including the expansion from aggregate
data (AgD) to the combined use of individual patient
data (IPD) and AgD [2]. Many of these newer methods
have been highlighted in the recent, and highly influen-
tial, National Institute for Health Care and Excellence
(NICE) Technical Support Document 18 [3]. Chief
among them are population-adjusted indirect compari-
sons (PAIC), such as matched indirect comparisons
(MAIC) [3]. The NICE guidance demonstrates that
PAICs can be used in connected networks to adjust for
imbalances in effect-modifiers and in disconnected net-
works to adjust for both effect-modifiers and other prog-
nostic factors. While both are feasible, the guidance
emphasizes that PAIC is more ideally used in connected
networks where the aim is to make better adjustments
of imbalances in effect-modifiers only. The difference is
akin to using randomized trials for causal inference and
propensity score-adjusted analyses of observational stud-
ies. A great achievement of PAIC has been its important
uptake, both in the general research community [4] and
within the health technology assessment (HTA) commu-
nity [5]. The latter has been particularly important in
the current pharmaceutical climate that often sees treat-
ments fast-tracked through development due to very
promising early results, which can lead to non-
comparative studies. While the first phase of uptake of
IPD use within HTA submissions has been principally
focused on disconnected networks, a consistent criticism
of such analyses has been the lack of prognostic factors
being adjusted for [5].
NICE guidance acknowledges that there are numerous

ways to combine IPD and AgD, in addition to PAIC.
These methods are restricted to connected networks,
thus avoiding the criticism regarding the need for prog-
nostic factors. Primarily, they include: a two-stage ap-
proach where data are first transformed into AgD only
and then analyzed traditionally; a one-stage approach
where IPD and AgD are analyzed simultaneously, and
other more under-developed methods, such as hierarch-
ical meta-regression, which may reduce some forms of
bias. Despite the acknowledgement of these other
methods, little guidance is provided for these methods;
in part due to lack of evidence surrounding their per-
formance. Thus, while the uptake of PAIC is partially
due to its ability to handle disconnected networks, it is
also due to the clearer guidance that has been provided
for these methods. It is anticipated that as better under-
standings of other IPD-AgD methods become available,
and that in turn better guidance is provided, the uptake
of other methods will increase substantially.

Effect modification occurs in NMA, when one or more
variables that impact the treatment-effect, dubbed effect
modifiers, are imbalanced across different edges of the
network. In order to move forward with better adjust-
ments for imbalances in effect-modifiers in networks of
evidence, the one-stage approach seems destined to play
a larger role in evidence synthesis moving forward. The
reason is two-fold. First, relative to the two-stage ap-
proach, a one-stage approach takes full advantage of the
data in a single analysis rather than adjusting each IPD
trial separately. Second, it allows for adjustments in lar-
ger networks than using MAIC, which can only make
adjustments in small networks (3 nodes at a time).
Empirically, the use of IPD in NMA has generally been

seen to have a large impact on their results; however,
that isn’t always the case [2, 4, 6]. There are a number of
factors that could explain why IPD adjustments can have
minimal impact on the evidence synthesis results.
Ideally, the underlying reason is due to the evidence base
not being imbalanced with respect to effect-modifiers
(i.e., because there are no adjustments needed to the
data). An alternative may be that there are simply not
enough IPD to make a meaningful impact. Donegan
et al. conducted a one-stage NMA in which IPD made
up 30% of patients and 25% of trials covering much of
the network geometry, and found a meaningful impact
[6]. In their discussion, the authors state: “It would be in-
teresting to compare the proposed approach with AD
meta-analysis of all studies, while varying the number of
studies that contribute IPD, to establish whether equally
dramatic improvements are observed.” [6]
In this study, which was part of a doctoral thesis [7],

we aim to determine through the use of simulations,
‘how much IPD is enough to make a difference’. Put in
more absolute terms, we aim to examine if select factors
are predictive of whether the use of IPD will lead to im-
provements in the validity and precision of estimates of
comparative treatment-effects and meta-regression coef-
ficients within NMA. In particular, the factors include
factors specific to the individual patient data, namely the
proportion of treatment comparisons and number of pa-
tients for which individual patient data are available; fac-
tors pertaining to the network of evidence, namely its
number of nodes and whether it is sparsely populated;
and the presence or absence of effect-modification and
whether it was fully or partially shared across the com-
parisons in the network.

Methods
We performed simulations of several AgD-IPD NMA
data scenarios by varying the following data properties
across scenarios: proportion of treatment comparisons
with IPD, proportion of patients for which IPD are avail-
able, number of nodes in the network, network density,
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and the nature of effect-modification in the network [8].
To ensure that observed differences could be attributed
to these parameters, each was varied individually and all
other factors were kept constant. Consistently across all
individual simulated scenarios, three NMA models were
used to analyze the data: 1) AgD NMA without adjust-
ments (AgD-NMA)); 2) AgD NMA with meta-regression
(AgD-NMA-MR); and 3) IPD-AgD NMA with meta-
regression (IPD-NMA).

Simulation model parameters – outline and rationale
The simulation model parameters are described in
Table 1. The values for the proportion of treatment
comparisons and network density in the table were pur-
posely broad because their meanings are codependent
(see Data Generation below). Varying the number of
nodes in the network (3, 5 and 10 nodes) was highly mo-
tivated by the desire to understand the impact of IPD in
larger networks, which is not feasible using MAIC. The
reason for including the trial sizes model parameter is to
improve the differentiation between the number of pa-
tients available and the proportion of treatment compar-
isons with IPD, which is best captured through the
proportion of treatment comparisons with IPD. To-
gether, these factors are critical to answering the motiv-
ational question: How much IPD are needed to make a
difference?
The type of effect-modification is an intrinsic charac-

teristic regarding the nature of the impact of the covari-
ates on the treatment-effects. These would not be
known to the researcher, except through clinical hy-
pothesizing. Figure 1 presents the three types of effect-

modification that were tested. Consistent effect-
modification implies the relationship between outcome
and covariate is shared between all trials. Exchangeable
effect-modification implies the relationship is contrast-
specific (shared by trials with the same comparison).
While the slopes differ for each contrast, the slopes
come from a distribution of slopes. Thus, in the ex-
changeable model there is a shared mean effect-
modification from the distribution of possible effect-
modifications.

Data generation
For simplicity, only two-arm trials were simulated. All
trials included 200 patients per arm. If IPD trial sizes
were set to large, then the trials selected as having IPD
were set to having 500 patients per arm. The first step in
creating the data was to determine the number of trials
in the network (N) and the number of patients per trial
arm (ni). Figure 2 depicts the number of trials used ac-
cording to the combination of number of nodes and net-
work density (see Web Appendix for precise counts).
This step allowed the construction of the treatment (t)
matrix for the AgD data to be built and hence construct
empty y, se and n matrices to be filled in subsequently.
The treatment matrix comprised of treatment numbers
tjk for each arm k of trial j.
The second step was to identify the IPD trials. The

number of treatment comparisons with IPD was not
fully fixed. When set to low, a single treatment compari-
son was selected to have IPD regardless of the number
of nodes. When set to medium, these increased to 2
treatment comparisons for 3-node networks, 3 for 5-

Table 1 List of the parameters explored through simulation with descriptions

Factor Categories Description and comments

Number of nodes (treatments)
in the network

3 The number of nodes speaks directly to the principal objective of whether too few IPD data will
have an affect the estimated treatment-effects in a noticeable manner. More nodes means more
data are required for full coverage.5

10

Proportion of treatment
comparisons with IPD

Low Low implied only a single treatment comparison with IPD. Medium implied multiple edges with
IPD, but among the lower number of multiple edges possible for the given network. High allowed
for up to 100% of edges having IPDMedium

High

Effect-modification None The relationship between the covariate X and the relative treatment-effects. None indicates no re-
lationship (treatment-effects are unchanged by varying values of the covariate). Constant indicates
that the linear relationship between the covariate treatment-effect has the same slope for all
treatment-effects relative to the reference treatment. Exchangeable indicates that the slope be-
tween covariate and treatment-effect changes according to the treatments being compared, but
that they come from a common distribution of slopes. (see Fig. 1)

Constant

Exchangeable

Trial sizes All trials of
equal sizes

All trials had 200 patients per arm when set to equal. When IPD were larger, the IPD trials had 500
patients per arm. All trials were 2-arm trials.

IPD trials are
bigger

Network density Sparse Sparse networks were star networks with no closed loops. They had 1–3 trials per treatment
comparison. Well-populated trials had closed loops and treatment comparisons with up to 7 trials.

Well-
populated
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node networks, and 4 for 10-node networks. When set
to high, the number of treatment comparisons selected
to have IPD was set to all 3 for 3-node networks, 4–6
for 5 node networks, and 5–15 for 10 node networks.
Following this, a random sample of trials along these
treatment comparisons were selected to have IPD. The
random selection of the number of trials served to help
vary the proportion of patients for which IPD was avail-
able, which is a central feature in the research question.
Having identified the number of trials and patients,

and having assigned them to treatment arms, it was then
possible to construct the observed outcomes. Without
loss of generality, the generated data were continuous
rather than dichotomous, count or otherwise; principally
for computing speed. The mean observed change in the
pre-defined outcome of interest yjk in the case of aggre-
gate data and yijk in the case of IPD (a separate observa-
tion for each patient i); and a standard error sejk for the

mean change in each arm for aggregate data and a
standard deviation sdijk in the case of IPD.
For an IPD trial with no effect-modification, the data

were generated using:

yi jk ¼
(
μ j if tk ¼ 1

μ j þ δ jk if tk > 1

δ jk∼Normalðdtk ; τÞ
ð1Þ

Where μj is the study effect that was generated using a
random uniform distribution between − 3 and 6. The
treatment-effects were constant from replication to rep-
lication. To be clear, d5 was only used in instances where
the number of nodes was set to 5 or 10. The standard
deviation was set to 1.0 and the heterogeneity was set
0.03, which can be considered moderate.

Fig. 1 Illustration of the different types of effect-modification
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For an AgD trial with no effect-modification, the data
were generated using:

yjk ¼
μ j if tk ¼ 1
μ j þ δjk if tk > 1

�
δjk∼Normal dtk ; τð Þ

ð2Þ
Effect-modification was a result of a single covariate, X, that

was generated in two steps. To ensure variability at the aggre-
gate level, the aggregate values of X, x. aggj, were generated
using a random normal distribution with a mean 0.75 and a
standard deviation of 0.25. For trials that had IPD, the covari-
ate values xijk were generated using a random uniform distri-
bution centered at x. aggj and extended by 0.35 in either
direction. When constant effect-modification was called for,
the data for IPD trials was generated in the following manner:

yi jk ¼
μ j þ β1xi jk

μ j þ β1xi jk þ δ jk þ β2xi jk

(
if tk ¼ 1

if tk > 1

δ jk∼Normalðdtk ; τÞ
ð3Þ

Where β1 was set to 0.5 and β2 was set to 1. The data
were generated in the same way and aggregated in the case of
aggregate trials. When the effect-modification was set to ex-
changeable, the slopes for each treatment were generated using
a random normal distribution. For full transparency, the code
used to generate the data is provided in the Web Appendix.
Data were generated over 200 simulations for each

specific set of parameter combinations. The choice of

200 simulations was on the basis of balancing computing
time and having a minimal number of simulations to not be
overly influenced by a single occurrence. According to Bur-
ton et al., the choice regarding the number of simulations
can be based on the accuracy of an estimate of interest, such
as a regression coefficient [9]. Given that this study did not
aim to estimate a specific parameter, this approach was not
used. A review of simulation studies pertaining to NMAs
suggests a similar distribution of number of simulations in
this field, with at least one study using less than 200 simula-
tions per scenario [10]. With 200 simulations per set of
parameter permutations and a total of 108 permutations
(3 node setting × 3 proportion IPD× 3 effect-modification
settings × 2 trial size settings × 2 network density settings), a
total of 21,600 analyses were conducted (see p.3 of Web
Appendix for computer and run-time details).

Data analysis
For each simulation, following the data generation described
above, three analyses were conducted: 1) AgD-NMA; 2)
AgD-NMA-MR; and 3) IPD-NMA. In all three cases, the
NMA were modeled using a random-effects approach given
that the data were generated using between-study heterogen-
eity. Specifically, the model used for AgD-NMA was:

θjk ¼ μjb if k ¼ b
μjb þ δjbk if k≻b

�
δjbk � Normal dbk ; σ

2
� � ¼ Normal dAk − dAb; σ

2
� �

dAA ¼ 0; dAk � Normal 0; 1000ð Þ
ð4Þ

Where δjbk is the trial-specific treatment-effect of k
relative to treatment b. These trial-specific effects are

Fig. 2 Illustration of the networks constructed using the number of nodes and network density
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drawn from a random-effects distribution: δjbk~N(dbk,
σ2). The pooled effects, dbk, are identified by expressing
them in terms of the reference treatment A. The hetero-
geneity σ2 is assumed constant for all treatment
comparisons.
The model used for AgD-NMA-MR was:

θjk ¼ μjb if k ¼ b
μjb þ δ jbk if k≻b

�

δ jbk ¼ Normal dAk − dAb þ
X
l

βlk − βlA
� �

xlj; σ2

 !
if b ¼ A

Normal dAk − dAb; σ
2

� �
if b≠A

8><
>:

dAA ¼ 0; dAk � Normal 0; 1000ð Þ; βlk ¼ bl; bl � Normal 0; 1000ð Þ
ð5Þ

Where xlj is the lth trial-specific covariate value. βlk is
the corresponding treatment-by-covariate interaction
term, as suggested by the NICE DSU TSD 3 document
[11].
The model used for IPD-NMA was:

IPD

θijk ¼
μjb þ

X
l

β0ljxlij if k ¼ b

μjb þ δjbk þ
X
l

β0ljxlij þ
X
l

β1lAk − β1lAb
� �

xlij if k≻b

8><
>:

AgD

ηjk ¼
λjb if k ¼ b
λjb þ δjbk þ

X
l

β1lAk − β1lAb
� �

x:agglj if k≻b

8<
:

δjbk � Normal dbk ; σ2
� � ¼ Normal dAk − dAb; σ2

� �
dAA ¼ 0; β1AA ¼ 0 dAk � Normal 0; 1000ð Þ; βlk ¼ bl; bl � Normal 0; 1000ð Þ

ð6Þ

For the IPD, β0j is a study-specific effect of subject-
level covariate xij. β1Ak − β1Ab reflects the interaction ef-
fects of covariate xij for treatment k relative to control
treatment b. k-1 different regression coefficient β1Ak will
be estimated by the model. Parameters of primary inter-
est from analyses are the pooled estimates of dAk, the es-
timates for the heterogeneity, and treatment-by-
covariate interaction effects β1Ak.
The parameters of the different models were estimated

using a Markov Chain Monte Carlo (MCMC) method.
The first 15,000 iterations were discarded as ‘burn-in’,
and the inferences were based on additional 10,000 itera-
tions using two chains. Given that there were 21,600
analyses to conduct, convergence was assessed numeric-
ally for all analyses using the multivariate potential scale
reduction factor (PSRF) [12]. Values above 1.1 were seen
as evidence of non-convergence. While trace plots, dens-
ity plots and Gelman-Rubin-Brooks (shrink factor) plots
are a better, more in-depth way of assessing conver-
gence, it was simply not feasible to do so for the entire
set of simulations [12].

Data collection and measures of comparison
The final step to each replication was collecting the re-
sults. To assess model performance, the mean squared
error (MSE) and the bias of the treatment-effects and
covariate estimates were collected. Additionally, the
power to detect the covariate was also collected to assess
coverage (i.e., the frequency at which the 95% credible
interval did not contain 0 in the estimation of β1). To as-
sist with answering the hypothesis, the proportion of
treatment comparisons with IPD and the proportion of
patients with IPD was also collected.
The simulations included a varying number of param-

eters corresponding to treatment-effects, ranging from
two to nine according to the size of the network. To
simplify the quantification of the simulation results
across simulation scenarios, the MSE and bias measures
were calculated overall treatment parameters (i.e., the
bias was calculated using d2 and d3 for 3-node networks
and over d2 through to d10 in 10-node networks). More-
over, given the 108 scenarios resulting from the different
factor-permutations, an average over each factor-level
was used as an easier way to make sense of the results.
In addition to comparing the summary statistics of the
MSE, a paired t-test was used to determine whether the
differences were statistically differentiable. To this end,
each observed MSE pair, that is, for each parameter in
each instance of the analysis, the difference between the
AgD-NMA-MR analysis and the IPD-NMA were calcu-
lated and the resulting sample of differences was tested
using a Wilcoxon signed-rank paired test.
All analyses were performed using R version 3.5.1

(http://www.r-project.org/) and JAGS version 4.3.

Results
When did IPD help?
As expected, both AgD-NMA-MR and IPD-NMA out-
performed the AgD-NMA (except for scenarios with no
effect modification). Therefore, comparisons are focused
on IPD-NMA and AgD-NMA-MR, unless specified
otherwise. The use of IPD was beneficial to the estima-
tion process in 88 of the 108 factor permutations that
were explored, was neutral in 11 factor permutations
and was detrimental in 9 of the 108 scenarios. The sce-
narios with small, neutral and negative improvements
were consistently densely populated, often large, and
often with a low or medium proportion of edges with
IPD. Indeed, the largest benefits to IPD were observed in
small networks. Overall, the results suggest that some-
times more IPD is better than having very few and that
in a larger, better-populated network too few IPD will
have a negligible impact on the NMA results. With re-
spect to the scenarios where AgD-NMA-MR had a lower
median MSE than IPD-NMA, 8 of the 9 scenarios were
cases with an exchangeable effect-modification. The lone

Kanters et al. BMC Medical Research Methodology           (2021) 21:21 Page 6 of 13

http://www.r-project.org/


exception was a scenario with no effect modification.
For the numeric differences of each scenario, see the
Web Appendix. Having discussed the big picture, we
present more detailed results in the remainder of this
section.

Treatment-effect estimation
Across all scenarios both the IPD-NMA and the AgD-
NMA-MR had distributions of bias that were centered
at zero. The impact of using IPD-NMA varied greatly
across scenarios, from leading to a noticeably narrower
distribution of bias and more precise estimates to a more
negligible improvement. Averaging over these scenarios
led to density plots that suggest only a moderate im-
provement in validity and, at times, a large improvement
in precision when using IPD-NMA.
The MSE and bias for the different numbers of nodes

in the network are presented in Fig. 3. The average
gained benefits of using IPD were largest in the small 3-
node networks than in the larger 10 node networks.
Again, this aligns with the hypothesis that the benefits of
IPD may be less noticeable when there are few IPD in
larger evidence networks. Similarly, as presented in Fig. 4,
the relative difference in MSE and bias between IPD-
NMA and AgD-NMA-MR was largest among sparsely
populated networks. However, it should be recognized
that while the difference was greatest in sparse networks,
both methods performed better in the well-populated
networks as these had considerably lower MSE. This was
not the case with the size of network, which did not im-
pact the MSE. Although the MSE values were small, the
median MSE was 3.1 times larger for AgD-NMA-MR
than in IPD-NMA in sparse networks and twice as large
in well-populated networks.
Figure 5 panel a presents the standard error of the

treatment effect estimates for both the AgD-NMA-MR
and the IPD-NMA averaged overall treatment-effects
across each of the factor levels. Both network size and
density had the largest differences across levels. On aver-
age, the benefits in terms of precision were immense in
a 3-node network and negligible in a 10-node network.
Similarly, for sparse and well-populated networks.
The effect of factors relating to the IPD had less im-

pact. Neither proportion IPD nor the trial size settings
had a noticeable impact on the degree of improved pre-
cision of estimation (Fig. 5a). The differences in MSE
and bias between IPD-NMA and AgD-NMA-MR across
the different proportions of treatment comparisons with
IPD were in the expected direction (Fig. 1 of Web Ap-
pendix). That is to say that trials with a higher propor-
tion of treatment comparisons with IPD had a bigger
reduction in bias. Among the IPD-NMA, the median
MSE went from 0.0048 to 0.0038 to 0.0026 for low,
medium and high proportions of IPD, respectively, while

the AgD-NMA-MR was consistent with a median MSE
of 0.010 across all three scenarios. It was also reassuring
that the results for the non-IPD based analyses were not
affected by this factor. The difference between IPD-
NMA and AgD-NMA-MR was not as pronounced for
the difference between large and equal sample sizes as
that observed for size and density of network (Figure 7
of the Web Appendix).
One potential issue with averaging over all scenarios is

that we can lose sight of important interactions between
factors. In this regard, it can be helpful to visualize dif-
ferences in a factor for a specific set of factors rather
than averaged over all other factors. Figures 2, 3, 4 and 5
of the Web Appendix compare the distribution of
treatment-effect estimation bias in more specific scenar-
ios. These help highlight that in larger networks the pro-
portion of treatment comparisons with IPD matters
more.
In the trivial case of having no effect-modification, the

unadjusted model performed best (Figure 6 of the Web
Appendix). With no effect-modification, all modeling ap-
proaches were unbiased, but the variance in the un-
adjusted model was considerably lower: this
phenomenon was entirely expected. In the situation with
effect-modification, IPD-NMA performed best given that
AgD-NMA-MR had thicker tails in the bias distribution.
Note that given that the bimodal behaviour of un-
adjusted AgD-NMA is on the basis of differences in
effect-modification, by looking at each effect modifica-
tion separately, the unadjusted AgD-NMA was now uni-
modal. Finally, the advantage of IPD-NMA relative to
AgD-NMA-MR was more muted when effect-
modification was exchangeable (varying from one edge
to another in accordance to a Normal distribution).

Regression coefficient estimation
Understanding how the regression coefficients are esti-
mated can add additional insight into the results ob-
served with respect to treatment-effect estimation.
Table 2 presents the summary statistics of the MSE for
the covariate coefficient estimates. For simplicity, only
the simulations with a constant effect-modification were
explored given that there were no covariates to estimate
in simulations without effect-modification and that the
estimation of MSE and bias were rendered more difficult
when the covariates were generated from a random Nor-
mal distribution in the simulations with exchangeable
effect-modification. The statistics regarding MSE for the
regression coefficient estimates resemble those from the
treatment-effect estimates. Specifically, both estimators
appeared to be unbiased and the AgD-NMA-MR had a
much larger range and standard deviation. As a result,
the IPD-NMA had smaller MSE (both median and
mean), suggesting that it leads to a reliable estimate.
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There was additional interest in the statistics of the
regression coefficient estimates themselves because of
their impact on the treatment-effect estimates. Poor
estimates of the covariate coefficient will lead to poor
estimates of the treatment-effects. To this end, there
was a notable difference in the precision of these esti-
mates. Figure 5 panel b presents the standard devi-
ation of the regression coefficient estimates for both
the AgD-NMA-MR and the IPD-NMA across each of
the factor levels. As can be seen, the very same pat-
terns observed in the treatment effects were observed
for the regression coefficients.

Model diagnostics
The multivariate PSRF were collected for each model (Table 4
of the Web Appendix). The summary values by analysis type
are presented below in. Convergence was consistently met
throughout the simulations, with the exception of very few
simulations. The very small proportion of non-convergence
was judged to be negligible. Scenarios where non-convergence
took place were small, sparse networks and large, well-
populated networks. Note that a high multivariate PSRF is not
always indicative of non-convergence. Small PSRF can be ob-
tained for each parameter and still get a large multivariate
PSRF. Nonetheless, this does not happen commonly.

Fig. 3 Density plots summarizing treatment-effect estimates from simulations separated by the number of nodes in the network. Legend: The
mean-squared error plots on the left were limited up to 0.35 to emphasize the meta-regression analyses at the expense of undermining the
mean-squared error of the unadjusted NMA

Kanters et al. BMC Medical Research Methodology           (2021) 21:21 Page 8 of 13



Discussion
This study used simulations to explore the improve-
ments in estimation using IPD and AgD relative to using
AgD only to conduct NMA with meta-regression in ac-
cordance with numerous extrinsic and intrinsic factors
of the evidence base. Study results suggest that IPD-
NMA reduces estimation bias and, to a greater extent,
improves the precision of treatment-effect and regres-
sion covariate estimates over NMA conducted using
AgD only. On the basis of the conducted simulations, in
evidence bases afflicted by effect-modifiers, the inclusion
of IPD may be most impactful among small and/or
sparse networks of evidence. While IPD consistently im-
proves validity and precision in these networks, they do
not always improve them in large and/or dense net-
works. When too few IPD are used in large or dense net-
works, their impact appear to be washed out and
negligible. As application of IPD-NMA becomes more
common in larger networks, care will be required to en-
sure sufficient IPD are used.

This study suggests caution in guiding users that IPD
is always the approach despite the promising attributes
of using IPD within NMA. The use of IPD within NMA
is also quite promising. Under the strong assumptions of
having access to all effect-modifiers and prognostic fac-
tors, PAIC can be used to conduct NMA with discon-
nected networks of evidence [13]. PAIC methods are
well understood enough to warrant NICE guidance on
their use [13]; however, there remain many properties of
one-stage IPD-AgD NMA that remain unknown. Simu-
lation results do help confirm and quantify some
common-sense properties. Among small and/or sparsely
populated networks, the use of IPD-NMA leads to sig-
nificant improvements in both reduction of bias and pre-
cision of estimates. Incidentally, PAIC tends to be used
in smaller networks, so use of IPD in this manner is
likely to be equally impactful. Based on previous work,
we hypothesized that too few IPD in large networks
would lead to negligible impact – a form of washing out.
Indeed, our simulations showed there needed to be at

Fig. 4 Density plots summarizing treatment-effect estimates from simulations separated by network density. Legend: The mean-squared error
plots on the left were limited up to 0.35 to emphasize the meta-regression analyses at the expense of undermining the mean-squared error of
the unadjusted NMA
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least 10% of patients in the network being from IPD in
order for results to be impacted. In this way, IPD should
not be included blindly, but only included in situations
that could be impactful to the model estimates.
The selected circumstances were restricted to situa-

tions where it was unclear a priori whether there would
be a meaningful advantage to the use of IPD-NMA. As
such, all effect-modification was attributable to a single
variable and the association between treatment-effect
and effect-modifier was perfectly conserved at the aggre-
gate level. For example, in the presence of ecological

fallacy, the phenomenon that arises when trends in ag-
gregate data do not match trends in individual data,
using IPD will trivially be superior to AgD only [14].
There are various reasons this could happen, such as
large differences in sample sizes and weights leading to
Simpson’s paradox. Meta-regression in AgD-NMA is al-
ways at risk of making a model correction using a biased
estimate due to the ecological fallacy and IPD is a simple
way to avoid or reduce the impact of this issue. As an-
other example, we can imagine many real-world situa-
tions where multiple effect-modifiers are imbalanced

Fig. 5 Mean standard errors using IPD-NMA and AgD-NMA-MR for (a) Treatment effect; and (b) regression coefficient
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[15]. Only in exceptional circumstances can AgD be
used to conduct meta-regression adjusting for multiple
variables at a time. On the other hand, unless dealing
with a single, small-sampled trial with IPD, IPD provides
many more data points than AgD and as a result, allows
for the simultaneous adjustment of multiple covariates
[16]. Thus, though not demonstrated through these sim-
ulations, it is important to recognize the ability to make
more complex adjustments through IPD-NMA [16].
Under both these circumstances, the added benefits of
IPD are clear and there is no need to quantify these
differences.
Previous studies exploring the use of IPD in combin-

ation with AgD in NMA have noted the advantages that
it can bring with respect to both precision and validity.
As noted by Donegan and colleagues, studies have yet to
explore how much IPD is enough for the gains to be im-
pactful [6]. A review of the literature did reveal another
simulation study exploring the use of IPD and AgD for
NMA [10]. Leahy and colleagues explored the benefits

of IPD from the perspective of model selection, rather
than bias and MSE. To this end, they found that “an in-
creased proportion of IPD resulted in more accurate and
precise estimates for most models and datasets.” They
concluded that use of IPD was always beneficial relative
to not having IPD. This study adds to theirs by consider-
ing the impact of size of network (theirs only considered
5-node networks), density of networks and proportion of
nodes and edges available with available IPD. These
studies are in agreement in that IPD is beneficial to evi-
dence synthesis; however, our study provides further
insight that too few IPD within a large network will lead
to negligible benefits that may not be worth the effort.
In these simulations, the impact of IPD-NMA was

more notable with respect to the increased precision of
estimates. More attention was paid to the bias and MSE
of the estimates; however, it is important to recognize
the impact of improved precision of IPD-NMA. Im-
proved precision leads to increased ability to correctly
differentiate the impact of treatments and improve

Table 2 Summary statistics of the mean squared error of treatment-effect for the two meta-regression adjusted NMA models

Scenario IPD
Mean

IPD
Median

IPD Std
Dev

IPD
Range

AgD MR
Mean

AgD MR
Median

AgD MR Std
Dev

AgD MR
Range

Mean squared-error

Number of nodes: 3 0.014 0.004 0.035 0.811 2.065 0.015 79.472 3886.193

Number of nodes: 5 0.009 0.002 0.02 0.397 0.044 0.007 0.162 3.587

Number of nodes: 10 0.005 0.002 0.009 0.093 0.014 0.004 0.028 0.349

Proportion edges with IPD: low 0.013 0.004 0.033 0.811 1.833 0.008 79.413 3886.193

Proportion edges with IPD:
medium

0.008 0.002 0.02 0.38 0.144 0.007 2.443 115.198

Proportion edges with IPD:
high

0.006 0.002 0.016 0.244 0.146 0.007 2.057 91.712

Trial size: equal 0.013 0.003 0.032 0.811 0.155 0.009 2.306 115.198

Trial size: large ipd 0.006 0.002 0.013 0.38 1.26 0.006 64.853 3886.193

Network density: sparse 0.015 0.005 0.033 0.811 1.405 0.019 64.891 3886.193

Network density: well-
populated

0.004 0.001 0.007 0.105 0.01 0.004 0.019 0.284

Bias

Number of nodes: 3 0 0 0.119 1.517 0.029 0.005 1.437 73.842

Number of nodes: 5 0.003 0.001 0.093 1.11 0.002 0 0.209 3.773

Number of nodes: 10 0 −0.002 0.072 0.597 −0.004 −0.007 0.118 1.152

Proportion edges with IPD: low 0.003 0 0.115 1.531 0.024 0 1.354 73.842

Proportion edges with IPD:
medium

0 −0.003 0.092 1.158 −0.001 −0.004 0.379 14.589

Proportion edges with IPD:
high

0 0 0.079 0.977 0.003 0 0.382 13.541

Trial size: equal 0.001 −0.001 0.113 1.531 −0.006 − 0.002 0.393 18.309

Trial size: large ipd 0.001 0 0.076 0.947 0.023 0 1.123 73.842

Network density: sparse 0.002 0.001 0.121 1.531 0.017 0 1.185 73.842

Network density: well-
populated

0 −0.001 0.063 0.601 0 −0.002 0.1 0.974
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subsequent decision-making. Here too, gains were not
uniform across all scenarios. Network density was the
most influential factor, with improved precision most
notable within sparse networks.
There are some limitations to the simulations con-

ducted for this study. Firstly, there was no variation in the
heterogeneity of studies. Network heterogeneity is an ex-
trinsic factor that can be evaluated for a network of evi-
dence, so understanding how the impact of IPD-NMA
varies with heterogeneity would be useful to future re-
searchers. The current study has a relatively large scale
already, which led to both computational challenges and
interpretational challenges, and ultimately it was not in-
cluded in the study scope in order to control the complex-
ity of the simulations. Secondly, the AgD generated for
the simulations can be improved and made more realistic
in future simulations, particularly when working with
large sample sizes for IPD trials. By aggregating the IPD
data, the residual standard error at the aggregate level was
much smaller than at the individual level in some settings.
Simulation analyses represent a powerful research tool that

can provide important insights into IPD-AgD NMA. While
our analyses have shed light on some popular methods, fu-
ture research could be expanded to much more than the
suggestions that arose from our limitations above. Chief
among them are simulations to expand these simulations to
other IPD-AgD methods. As previously mentioned, PAIC
methods tend to be restricted to small networks and the
questions around large networks do not apply. Nonetheless,
there are methods that have been developed to overcome
the ecological fallacy in larger networks, such as those devel-
oped by Jackson et al. [14] Properties of these methods are
not well understood. As such, comparisons through simula-
tions to other IPD-AgD methods as well as the impact of the
factors explored in this analysis would help shed light both
on those methods as well as the differences in impact of eco-
logical fallacy in AgD and IPD-AgD models.

Conclusion
This study illustrates the value of IPD for network meta-
analysis, but also shows that it is not a panacea. The effects
of too few IPD in too large a network will get washed out in
the analysis and fail to provide the potential advantages of in-
cluding IPD. Nonetheless, in most circumstances, IPD can
be used to improve the validity and precision of treatment-
effects, which in turn leads to more useful model results.
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