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Abstract: Steam oxidation of austenitic heat-resistant steels TP347H and TP347HFG at 650–800 ◦C
was investigated. Comprehensive micro-characterization technologies containing Scanning Electron
Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), and X-ray
Photoelectron Spectroscopy (XPS) were employed to observe and analyze the oxidation products.
Results show that breakaway oxidation behaviors were observed on TP347H at 700 ◦C and 800 ◦C.
The oxidation kinetics of TP347HFG at 650–800 ◦C followed a parabolic law. The oxide scales formed
on TP347HFG were composed of MnCr2O4 and Cr2O3. A thin and protective Cr-rich oxide scale
was replaced by Fe2O3 nodules due to the insufficient outward migration of metallic ions, including
Cr and Mn at the subsurface of coarse-grain TP347H. Smaller grain of TP347HFG promoted the
formation of the compact Cr-rich oxide scales. At higher temperatures, the incubation period for
breakaway oxidation of the Cr-rich oxide scale was much shorter because of quick evaporation of the
Cr2O3 oxide scale and the slower outward diffusion of metallic ions via the grain boundaries.
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1. Introduction

Increasing the steam temperature of modern coal-fired power plants is the best approach
to improve the efficiency of fossil fuel and reduce pollutants. In recent years, more and more
ultra-supercritical (USC) and supercritical (SC) power plants have been built worldwide. For example,
as of now, almost 100 ultra-supercritical and supercritical power plants have been built in China.
However, proper materials for superheaters and reheaters, which are the hottest in the whole power
plant, are still challenged, especially for the use of coarse-grain and fine-grain heat-resistant steel.
One of the most important factors for material selection is the oxidation resistance at elevated
temperatures in steam [1–5].

There are many papers describing the steam oxidation of heat-resistant steel used in USC power
plants [6–16]. It is well known that Cr is the indispensable element in heat-resistant steel, with excellent
strength and corrosion resistance. A stable chromia layer forms on the surface of Cr-containing
steels and alloys at elevated temperatures to provide protection against severe environments [17–20].
Viswanathan et al. [1] concluded that steam oxidation of heat-resistant steel was influenced by the
heat flux, environment, steam parameter, and alloy compositions. Surface pretreatments and sample
geometry also affected the oxidation resistance of steels, such as sandblasting and pre-oxidation
treatment [1,16,21]. Fry and Piedra [22] discussed the effect of specimen geometry, steam pressure,
and dissolved oxygen of water on the oxidation behavior of heat-resistant steel. However, the effect of
grain refinement on the steam oxidation of austenitic heat-resistant steels was not fully understood.
Peng et al. [23] investigated the effect of grain refinement on the resistance of 304 stainless steel in
wet air. They found that abundant grain boundaries greatly increased the outer diffusion of Cr ions
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to guarantee the growth of Cr-rich oxide scales. Perez [24] studied the influence of grain size on the
oxidation behavior of PM2000 in the air. He confirmed that grain boundaries acted as rapid pathways
for the diffusion of the aluminum ion. Nevertheless, Yan et al. [25] investigated the steam oxidation
of austenitic stainless. Their results showed that the breakaway oxidation of fine-grain R304H and
TP347HFG was observed, which was not the case for coarse-grain W304H steel. They explained
that the grain boundaries promoted the Fe outward diffusion and faster growth of interfacial voids.
Research attention was attracted by the contrary results of the effect of grain size on the oxidation
resistance of heat-resistant steel.

The aim of this paper is to investigate the steamoxidation behavior of austenitic heat-resistant
steels TP347HFG and TP347H.

2. Experimental System and Methods

The steam oxidation test setup is shown in Figure 1. The system consisted of a gas flow controller,
a steam generator, and a horizontal tube furnace with an alumina tube. An internal thermocouple
was used to measure and control the temperature of the test samples. In the steam generator, water
was continuously introduced at the rate of 6 mL/h, into a separately heated stainless-steel vessel
to generate a continuous flow of steam, with a rate of 134.4 mL/h for the oxidation experiments.
Specimens were placed perpendicular to the alumina boat surface so that they were in a constant
temperature zone and did not affect steam flow to other samples.
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Figure 1. Schematic diagram of the steam oxidation system. Adapted from [26], with permission from 

©  2015 Spring Nature. 

The compositions of steels TP347H and TP347HFG are listed in Table 1, which are used for 

reheaters and superheaters in modern USC boilers [1,15,17]. Steels TP347H and TP347HFG were 

provided by Shanghai Boiler Works Ltd. (Shanghai, China). Coarse-grained TP347H and fine-grained 
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curves were obtained using five samples and each one was removed from the furnace for different 

times. After the oxidation test, the oxide scale formed on the sample surface was characterized by 

XRD (X’Pert PRO, PANalytical, Eindhoven, The Netherlands) using Cu K-alpha radiation. The 

scanning range was 20°–80°. The voltage and the current used were 25 kV and 40 mA, respectively.  

Figure 1. Schematic diagram of the steam oxidation system. Adapted from [26], with permission from
© 2015 Spring Nature.

The compositions of steels TP347H and TP347HFG are listed in Table 1, which are used for
reheaters and superheaters in modern USC boilers [1,15,17]. Steels TP347H and TP347HFG were
provided by Shanghai Boiler Works Ltd. (Shanghai, China). Coarse-grained TP347H and fine-grained
TP347HFG were normalized at 1150 ◦C for 13 min (water cooled) and 1180 ◦C for 7 min (water
cooled), respectively. Figure 2 shows the microstructures of TP347H and TP347HFG. The average
grain sizes of TP347H and TP347HFG were 51.3 µm and 14.5 µm, respectively. Samples with a size
of 15 mm × 15 mm × 2.8 mm were ground by 120#, 400#, and 1000# SiC papers and ultrasonically
cleaned in ethanol for 5 min. Specimens were weighed using an electronic balance with an accuracy of
10−4 g before and after the experiment to obtain the mass change during the oxidation test. Mass gain
curves were obtained using five samples and each one was removed from the furnace for different
times. After the oxidation test, the oxide scale formed on the sample surface was characterized by XRD
(X’Pert PRO, PANalytical, Eindhoven, The Netherlands) using Cu K-alpha radiation. The scanning
range was 20◦–80◦. The voltage and the current used were 25 kV and 40 mA, respectively.

Table 1. Compositions of steels TP347H and TP347HFG (wt.%).

Materials C Mn Si S P Cr V Ni Cu Nb

TP347H 0.07 1.19 0.39 0.002 0.015 18.39 <0.3 10.1 <0.03 0.73
TP347HFG 0.08 0.75 0.48 0.002 0.020 18.31 <0.1 10.7 0.05 0.73
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Figure 2. Microstructures of TP347H and TP347HFG. (a) TP347H; (b) TP347HFG.

For another set of test samples, the cross-sectional morphology was observed using a scanning
electron microscope (SEM, SU3500, Hitachi, Tokyo, Japan) with energy dispersive spectroscopy
(EDS, Oxford, Oxford Instruments, London, UK). X-ray photoelectron spectroscopy (XPS, Thermo
Scientific K-Alpha, Thermo Fisher Scientific, Waltham, MA, USA) was used to characterize the main
oxidation products.

3. Results and Discussion

Figure 3 shows the weight gain curves of TP347H and TP347HFG at 650 ◦C, 700 ◦C, and 800 ◦C
in a steam environment. Weight gains of TP347H were much higher than that of TP347HFG at all
experimental temperatures. Weight gain gaps between TP347H and TP347HFG at 700 ◦C and 800 ◦C
were much bigger, as shown in Figure 3b,c. The oxidation kinetics of TP347HFG approximately
followed a parabolic law at all temperatures, while the oxidation kinetics of TP347H only followed a
parabolic law at 650 ◦C. Weight gain of TP347H increased sharply due to the probable failure of the
protective oxide scale. Higher temperatures promoted the failure of the protective oxide scale, leading
to the breakaway oxidation of TP347H. The oxidation constants of steel at 650 ◦C, 700 ◦C, and 800 ◦C
were calculated by fitting weight gain curves, as listed in Table 2.
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Figure 3. Weight gain curves ofTP347H and TP347HFG in a steam environment. (a) 650 ◦C; (b) 700 ◦C;
(c) 800 ◦C.

Table 2. Oxidation constants of TP347H and TP347HFG.

Materials 650 ◦C 700 ◦C 800 ◦C

TP347H ∆m = 0.00796t0.5 - -
TP347HFG ∆m = 0.00526t0.5 ∆m = 0.00537t0.5 ∆m = 0.00595t0.5

Figure 4 displays the macroscopic morphologies of TP347H and TP347HFG at 700 ◦C after
exposure to the steam for 12 h, 48 h, and 168 h and at 800 ◦C for 24 h. No exfoliation of oxide scales
was found in any sample at 700 ◦C in Figure 4a,b, but some oxide scales spalled at 800 ◦C, as shown in
Figure 4c. With a longer experiment time, the color of TP347HFG was converted from blue to faint
yellow, which agreed with the published literature [27]. Note that numerous black dots were observed
at the surface of TP347H after 168h, which was responsible for the higher weight gain of TP347H in
Figure 3b.

Figure 5 displays surface microscopic morphology of TP347H and TP347HFG at 700 ◦C after
exposure to the steam for 168 h. Some independent oxide particles were observed on the plain
surface of TP347HFG, as shown in Figure 5a,b. The surface of TP347H was covered by some big,
island-like oxides. Some island-like oxides were connected together, as shown in Figure 5d. At a larger
magnification, the breakaway of the oxide scale was detected on the surface of TP347H, as shown
in Figure 5e. This phenomenon was closely related to the release of hydrogen in oxide scales [2],
which caused the exfoliation of the outer oxides scale on TP347H. In Figure 5f, we found many
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spherical oxides at the island-like oxidation products, which is in accord with the occurrence of the
hydrogen release reaction. The hydrogen was originally from the reaction between the metal or metal
oxide and the steam [28].
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Figure 5. Surface morphology of TP347H and TP347HFG at 700 ◦C after 168 h. (a) TP347HFG;
(b) TP347HFG; (c) TP347HFG; (d) TP347H; (e) TP347H; (f) TP347H.
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Figures 6 and 7 show EDS analysis of the surface oxides formed on TP347H and TP347HFG
at 700 ◦C. The island-like products at the surface of TP347H were mainly composed of Fe oxides,
as shown in Figure 6a. The plain surface between these oxide islands was covered by Cr-Mn-Fe oxides,
of which Cr-rich oxides dominated, as shown in Figure 6b. This Cr-Mn-Fe oxide scale improved the
oxidation resistance of heat-resistant steel in steam at higher temperatures. The independent oxide
particles labeled by the point 01 in Figure 5b on TP347HFG were mainly Nb-rich oxides, which were
surrounded by Cr-rich oxides, as shown in Figure 6. Moreover, element Mn was detected on the
surface of TP347H and TP347HFG, as listed in Table 3.
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Figure 6. EDS analysis of the oxides formed on TP347H at 700 ◦C after 168 h. (a) No.03 in Figure 5;
(b) No.04 in Figure 5.
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Figure 7. EDS analysis of the oxides formed on TP347HFG at 700 ◦C after 168 h. (a) No.01 in Figure 5;
(b) No.02 in Figure 5.

Table 3. EDS analysis of the oxides formed on TP347HFG and TP347H (wt.%).

Content Cr Fe O Mn

No.01 34.53 22.68 33.73 4.45
No.03 25.82 35.25 23.88 3.53

Figures 8 and 9 show the elemental distribution of surface oxides of TP347H and TP347HFG
at 700 ◦C after 168 h. Some extrusive Nb oxides on TP347HFG were covered by Fe-Cr oxides.
For TP347H, the oxide scales were mainly composed of island-like Fe oxides and Cr-Mn oxides
at other positions. Associated with morphology variation of TP347H in Figure 4a and weight gain in
Figure 2, we confirmed that this steam oxidation was the breakaway oxidation.
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Figures 10 and 11 display the cross-sectional morphology and elemental mapping of TP347H
and TP347HFG after 168 h at 700 ◦C. The oxide scales on TP347H were composed of an outer
layer of Fe-oxides and an inner layer of Fe-Cr oxides. Some cracks and pores were detected at
the outer layer on TP347H, which may have caused the exfoliation of the outer layer. Because the
oxide scales on TP347HFG were very thin, the focused ion beam technique was used to obtain the
cross-sectional morphology of TP347HFG. The thin and protective oxide scales were observed on
TP347HFG, which were mainly Cr oxides and Mn-Cr oxides, as shown in Figure 11. This result agreed
with the weight gain results in Figure 3, because thin Cr-rich oxide scales on TP347HFG provided
good resistance against the steam environment.
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Figure 12 shows the XRD results of the oxide scales on TP347H and TP347HFG at 700 ◦C.
The oxide scales on TP347H were composed of Fe2O3 and (Fe,Cr)3O4 in Figure 12a, while oxide scales
on TP347HFG consisted of Cr2O3 and MnCr2O4 in Figure 12b. From the XRD results and the EDS
mapping results in Figures 10 and 11, it was confirmed that the outer and inner oxide layers of TP347H
were Fe2O3 and (Fe,Cr)3O4 from the steam/oxide scale interface to the substrate of TP347H.
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Figure 13 shows XPS results of the oxide scales of TP347HFG at 700 ◦C after 168 h. The main
elements were Cr, Fe, Mn, and O. Figure 13 shows the XPS high-energy resolution spectra of Fe 2p,
Cr 2p, Mn 2p, and Nb 3d. Depth profiling by argon sputtering was obtained for different times to get
the chemical state of elements at different sputtered depths. Depth-resolved Fe 2p3/2 spectra shown
in Figure 13b positioned the binding energy ranging from 711 eV to 709.9 eV, which corresponded to
Fe-oxides. After 0.5 h sputtering, metallic Fe peak at 706.9 eV indicated the oxide scale/the substrate
interface. Cr 2p3/2 spectra were located at the binding energy values of 576.7 eV and 575.7 eV.
The binding energy peak at 576.7 eV was thought to be Cr2O3 and the lower one was (Fe,Cr)3O4.
Despite the low content of Mn in TP347HFG, a high degree of segregation and its oxides were observed.
The binding energy value of 641.6 eV for Mn 2p3/2 spectra in Figure 13c corresponded to Mn-oxides,
including MnCr2O4 and MnO. The Nb 3d structure in Figure 13d showed a peak up to the sputtering
time of 0.5 h at 207 eV, which indicated that Nb was oxidized to Nb2O5. The XPS results indicated
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that the oxide scales were mainly composed of MnCr2O4 and Cr2O3 from the gas/solid interface to
the substrate.Materials 2019, 12, x FOR PEER REVIEW 11 of 14 
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4. Discussion

The weight gain of TP347H increased sharply from 650–800 ◦C after a slow weight gain, while the
weight gain of TP347HFG followed a parabolic law. Breakaway oxidation was observed on the TP347H
at 700 ◦C and 800 ◦C, which was different from Yan’s result [25], which was that breakaway oxidation
occurred on fine-grain steel at 620 ◦C. From the results of weight gain and microstructures of austenitic
heat-resistant steel TP347H and TP347HFG, it was concluded that the initial protective Cr-rich oxide
scale formed on TP347H failed because of the coarse grain of TP347H. The initial protective Cr-rich
oxide scale was mainly composed of lamellated MnCr2O4 and Cr2O3 layers, which are validated by the
XRD results in Figure 12b, the EDS results in Figure 11, and the XPS results in Figure 13. After a longer
experiment time, the breakaway oxidation was confirmed by the greater weight gain seen in Figure 2
and the island-like Fe oxides seen in Figures 9 and 10. Many Fe2O3 oxides were characterized at the
failure position of the original Cr-rich oxide scales, as shown in Figures 3b and 9. From the viewpoint
of oxidation kinetics and oxidation nature, the breakaway oxidation was decided by the ion diffusion
and the evaporation of chromia in a steam environment at high temperatures [23,29,30]. In this study,
the different oxidation behaviors of TP347H and TP347HFG were caused by the different grain sizes
in Figure 2. The breakaway oxidation behavior was found on TP347H, as shown in Figures 3 and
5f. For the ion diffusion during the oxidation process, the outward diffusion rates of metallic ions
via the grain boundary (GB) are at least ten times that via the grain bulk, so grain boundaries play a
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significant role in the ion diffusion [28]. As we know, the diffusion rate is usually expressed by the
effective diffusion coefficient Deff, which is described in the following Equations (1) and (2).

Deff = f Db + (1 − f )Dl (1)

f = qw/d (2)

where Dl is the diffusion coefficient via the grain, Db is the diffusion coefficient at the grain boundary,
q is the value decided by the grain shape, w is the width of the grain boundary, and d is the grain size.
Deff values of Cr and Mn are larger when the grain size d is smaller, so the Deff values of Cr and Mn
on TP347HFG are much larger than those on TP347H, resulting in the sufficient outward diffusion of
Mn and Cr ions during the oxidation, leading to the stable oxides formed on TP347HFG, as shown
in Figure 3. The rapid diffusion of metallic ions in TP347HFG provides sufficient Cr and Mn for the
formation of Cr-rich oxide scales in Figure 8. For TP347H, nodule Fe oxide scales were attributed to
the coarse grain, which cannot provide sufficient Cr and Mn ions. There are two reasons explaining
the effect of Mn and Cr on the oxidation resistance of TP347H and TP347HFG.

First of all, the outward diffusion of Mn and Cr is much faster than that of other metallic ions
at higher temperatures [31]. Secondly, due to the lower free energy of the formation of MnCr2O4,
which can be calculated by the following equations, duplex oxide layers were developed at the surface
of austenitic steels containing Mn at the early oxidation stage, as shown in the XRD and XPS results in
Figures 12 and 13, respectively. The MnCr2O4 oxide scale other than Cr2O3 could effectively hinder
the evaporation of CrO2(OH)2 [32,33], improving the oxidation resistance of TP347HFG.

2Mn + O2(g) = 2MnO(s), ∆Gθ
T= −856.3 + 0.1825T (3)

4/3Cr + O2(g) = 2/3 Cr2O3(s), ∆Gθ
T= −753.12 + 0.1826T (4)

MnO + Cr2O3(g) = MnCr2O4 (s), ∆Gθ
T= −1469.2 + 0.2798T (5)

where ∆Gθ
T is the change of free energy and T is the reaction temperature.

On the other hand, considering the dissolved oxygen content in distilled water of 9.08 mg/L at
25 ◦C, the evaporation of chromia in a steam environment occurred at 650–800 ◦C in Equations (3)
and (4), which has been confirmed by Asteman and Young [34–38]. In USC power plants, complex
chromium oxyhydroxides were also detected in the steam, which proved the experimental data [35,36].

2Cr2O3 + 3O2 = 4CrO3 (g) (6)

2Cr2O3 + 4H2O + 3O2 = 4CrO2(OH)2 (7)

The calculated values of PCrO2(OH)2 at 650–800 ◦C in a steam environment are listed in Table 4
according to the curve in literature [38]. The PCrO2(OH)2 at 800 ◦C was ten times than that at
700 ◦C and 650 ◦C, leading to the abnormal weight gain after 100 h at 700 ◦C and 24 h at 800 ◦C
(Figure 3b). The values of PCrO2(OH)2 at 800 ◦C indicate quicker consumption of Cr2O3. Due to
the quicker consumption of Cr2O3 and the slower diffusion of beneficial Cr and Mn ions on TP347H,
the incubation period for breakaway oxidation of Cr-rich oxide scales on TP347H at high temperatures
was much shorter, as shown in Figure 3.

Table 4. PCrO2(OH)2 in steam at 650–800 ◦C.

Temperature (◦C) 650 700 800

PCrO2(OH)2 (atm) 1.4 × 10−11 4.0 × 10−11 4.0 × 10−10
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5. Conclusions

(1) The weight gain of TP347HFG at 650–800 ◦C was much lower than that of TP347H. The oxidation
kinetics of TP347HFG nearly followed a parabolic law. Breakaway oxidation behaviors were
observed on TP347H at 700 ◦C and 800 ◦C.

(2) Duplex oxide scales formed on TP347HFG were composed of MnCr2O4 and Cr2O3 from the
steam/oxide scales interface to the substrate. The oxide scales on TP347H consisted of Fe2O3

nodules and Fe-Cr oxide scale. This result was decided by the grain size, which provides quick
outward diffusion of metallic ions at the grain boundaries.

(3) The thin and protective Cr-rich oxides were replaced by Fe2O3 nodules, which was attributed
to insufficient outward migration of metallic ions, including Cr and Mn at the subsurface of
coarse-grain TP347H. The fine grain of TP347HFG improved its oxidation resistance against the
steam environment.

(4) Quick evaporation of the Cr2O3 oxide scale and the slower outward diffusion of metallic ions at
higher temperatures led to the shorter incubation period for breakaway oxidation of the Cr-rich
oxide scales on TP347H.
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