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Abstract: Shock is a life-threatening condition characterized by inadequate tissue perfusion
leading to systemic hypoxia and metabolic failure. Ischemia/reperfusion (I/R) injury exac-
erbates shock progression through oxidative stress and immune dysregulation, contributing
to multi-organ dysfunction. This narrative review synthesizes current evidence on the
interplay between I/R injury, oxidative stress, and immune modulation in shock states. We
analyze the classification of shock, its progression, and the molecular pathways involved in
ischemic adaptation, inflammatory responses, and oxidative injury. Shock pathophysiology
is driven by systemic ischemia, triggering adaptive responses such as hypoxia-inducible
factor (HIF) signaling and metabolic reprogramming. However, prolonged hypoxia leads
to mitochondrial dysfunction, increased reactive oxygen species (ROS) and reactive ni-
trogen species (RNS) production, and immune activation. The transition from systemic
inflammatory response syndrome (SIRS) to compensatory anti-inflammatory response
syndrome (CARS) contributes to immune imbalance, further aggravating tissue damage.
Dysregulated immune checkpoint pathways, including CTLA-4 and PD-1, fail to suppress
excessive inflammation, exacerbating oxidative injury and immune exhaustion. The in-
tricate relationship between oxidative stress, ischemia/reperfusion injury, and immune
dysregulation in shock states highlights potential therapeutic targets. Strategies aimed at
modulating redox homeostasis, controlling immune responses, and mitigating I/R damage
may improve patient outcomes. Future research should focus on novel interventions that
restore immune balance while preventing excessive oxidative injury.

Keywords: shock; ischemia/reperfusion injury; oxidative stress; immune dysregulation;
HIF pathway; inflammatory response; multi-organ dysfunction

1. Introduction
The shock state (a life-threatening condition caused by inadequate blood flow) is a

critical condition produced by an insufficient supply of oxygen and nutrients to the tissues
in relation to the tissue metabolic demand [1–3]. The pathological state progresses with
the deterioration of the function of vital organs such as the brain, heart, kidneys, lungs,

Cells 2025, 14, 808 https://doi.org/10.3390/cells14110808

https://doi.org/10.3390/cells14110808
https://doi.org/10.3390/cells14110808
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-8751-2994
https://orcid.org/0000-0001-9489-2481
https://doi.org/10.3390/cells14110808
https://www.mdpi.com/article/10.3390/cells14110808?type=check_update&version=1


Cells 2025, 14, 808 2 of 35

liver, and gastrointestinal tract. For instance, reduced perfusion in the kidneys may lead
to acute kidney injury, while hypoxia in the brain can result in cognitive impairment or
loss of consciousness [4–9]. The secondary effect is mediated by circulatory failure that will
produce inadequate or inappropriate tissue perfusion distribution resulting in systemic
cellular hypoxia. Under these critical conditions, the pathophysiological characteristics
are driven by inadequate oxygen and metabolic substrate supply, alongside increasing
demands for these requirements. This imbalance can result in cellular injury and eventual
organ dysfunction [10–14]. In parallel, the inability to eliminate metabolites and wastes
resulting from energy expenditure, hypoxic adaptation, cellular injury, and cell death can
exacerbate the condition, ultimately causing permanent damage [15–18].

Understanding any shock state requires recognizing the concept of shock as “in-
adequate organ and peripheral tissue perfusion” [1–3,18–26]. When analyzing is-
chemia/reperfusion (I/R) lesions, it is important to note that ischemia is defined as “the
abrupt blockage of the blood supply that causes an imbalance in the oxygen supply and
metabolic nutrients essential for cell survival”. This leads to hypoxia, metabolic disruption,
and impaired energy production [10,11,13,14,26–28]. The shock state and the first compo-
nent of I/R lesions share the same outcome: systemic cellular hypoxia and metabolic failure.
Although the mechanisms behind their initiation may differ, both phenomena result in
similar detrimental effects across the entire system [10,11,13,14,26–28].

2. Classification and Categorization of Shock State
To understand the process of shock, it is necessary to classify the different types, as they

differ in pathological mechanisms and therapeutic approaches. These differences are crucial
because they guide the selection of appropriate treatments. For instance, hypovolemic shock
caused by acute blood loss requires fluid resuscitation and blood transfusion, whereas septic
shock requires antibiotics to target the underlying infection and vasopressors to restore
vascular tone [29–31]. Shock is currently classified into six types (Table 1): hypovolemic,
distributive, cardiogenic, obstructive, and mixed. Each type has distinct causes and requires
specialized management [1,3,19–21,29,30].

Hypovolemic shock is a condition where the system presents inadequate organ per-
fusion caused by loss of intravascular volume [1–3,19,20,32–34]. It can be subclassified
into four main categories depending on the mechanics of the lesion (hemorrhagic, trau-
matic/hemorrhagic, pure hypovolemic, or traumatic/hypovolemic) (Table 1). This type of
shock primarily arises from a critical reduction in circulating volume, which impairs venous
return and diminishes cardiac preload, ultimately leading to a drop in cardiac output. In
the hemorrhagic subtype, blood loss occurs rapidly, either externally or internally, and can
result from vascular rupture, trauma, or surgical complications. In traumatic hemorrhagic
cases, the combination of bleeding and tissue damage triggers an inflammatory response
and further fluid sequestration into the interstitial space. Pure hypovolemic shock, on the
other hand, is caused by severe fluid loss without hemorrhage—often through persistent
vomiting, diarrhea, or heat-related dehydration—leading to hypovolemia with minimal
tissue injury. Traumatic hypovolemic shock involves similar fluid depletion but is com-
pounded by soft tissue injury or burns, which promote capillary leakage and third-spacing.
Regardless of the etiology, all hypovolemic shock subtypes converge on the common patho-
physiologic outcome of inadequate end-organ perfusion and generalized tissue ischemia,
requiring prompt volume resuscitation to restore hemodynamic stability [1–3,19,20,32–34].
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Table 1. Expanded categorization of shock types and clinical scenarios.

Shock
Type Subtype Volume Mechanism Tissue Injury Clinical Scenario Common

Pathway

H
yp

ov
ol

em
ic

Hemorrhagic Acute hemorrhage (critical) No major soft tissue
injury Aortic dissection rupture

G
en

er
al

iz
ed

ti
ss

ue
is

ch
em

ia

T/hemorrhagic Acute hemorrhage (critical) With major soft tissue
injury Polytrauma

Pure hypovolemic Critical reduction of plasma volume
(fluid loss) without hemorrhage

No major soft tissue
injury

Persistent fever, diarrhea, or
vomiting

T/hypovolemic Critical reduction of plasma volume
(fluid loss) without hemorrhage

With major soft tissue
injury

Large surface burns or deep
skin lesions

C
ar

di
og

en
ic

Ischemic Decreased contractility/↓ cardiac
output

Myocardial tissue
injury ST-elevation MI

Arrhythmic Reduced ventricular filling or ejection
due to abnormal rhythm

No direct structural
injury

Sustained ventricular
tachycardia

Valvular Acute increase in preload or afterload
due to valve dysfunction

Possible valve
apparatus injury

Acute mitral regurgitation
from chordae rupture

Myopathic Progressive loss of myocardial pump
function

Chronic myocardial
injury

Decompensated dilated
cardiomyopathy

O
bs

tr
uc

ti
ve

Pulmonary vascular
Obstruction of blood flow through
pulmonary arteries/↓ left ventricular
preload

No direct myocardial
injury

Massive pulmonary
embolism

Mechanical cardiac
compression

Intrapericardial pressure limiting
cardiac filling

Pericardial or pleural
injury

Cardiac tamponade or
tension pneumothorax

Outflow obstruction Left ventricular ejection obstruction Structural cardiac
abnormality Severe aortic stenosis

D
is

tr
ib

ut
iv

e

Septic Vasodilation + capillary leak/relative
hypovolemia

Inflammatory tissue
injury

Sepsis with hypotension and
elevated lactate

Anaphylactic IgE-mediated vasodilation + increased
permeability/plasma extravasation

Immune-mediated
reaction

Bee sting or drug-induced
anaphylaxis

Neurogenic Loss of sympathetic tone/unopposed
vagal tone and vasodilation

Spinal cord or CNS
injury Cervical spine trauma

Endocrinologic
Cortisol/thyroid hormone
deficiency/vasodilation, impaired
response to catecholamines

No structural tissue
injury

Adrenal crisis or myxedema
coma

Diss/Cyto Toxic-metabolic Impaired cellular oxygen use despite
adequate perfusion

Mitochondrial or
enzymatic injury

Cyanide or carbon monoxide
poisoning

T/hemorrhagic = traumatic/hemorrhagic; T/hypovolemic = traumatic/hypovolemic.

Distributive shock is the critical redistribution of the absolute intravascular volume
and, depending on its causes, can be subclassified into four major types: septic (infections),
anaphylactic (immune response), neurogenic (acute neurological trauma), and endocrine
shock (acute adrenal insufficiency) (Table 1) [1–3,19,20,30,31,35–37]. Septic shock is distinct
due to its infectious etiology, leading to widespread inflammation and vasodilation trig-
gered by microbial toxins. In contrast, anaphylactic shock results from a severe allergic
reaction, where histamine release causes rapid vascular permeability and hypotension.

Neurogenic shock involves loss of sympathetic tone, often after spinal cord injury,
leading to unopposed parasympathetic activity and bradycardia. Endocrine shock, such
as in acute adrenal insufficiency, results from hormonal deficits causing vascular insta-
bility. These differences underline the importance of precise identification for targeted
management [1–3,19,20,30,31,35–37].

Cardiogenic shock is the critical reduction of the heart’s pumping capacity; the most
common causes are myocardial failure (acute myocardial infarction), cardiac conduction
system failure (brady and tachyarrhythmias), and heart valve dysfunctions (acute insuffi-
ciency and decompensated stenosis) (Table 1) [1–3,19,20,38–41].
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Obstructive shock occurs due to obstruction in critical vascular or cardiac structures. It
can arise from extracardiac conditions such as aortic dissection, which impede blood flow, or
mechanical obstructions affecting the heart, like tumors or hemopericardium. Additionally,
issues with afterload or preload may impair venous return or increase resistance, as seen
in pneumothorax, hemothorax, pneumopericardium, or hemopericardium. Pulmonary
causes, such as pulmonary embolism, can also hinder blood flow in the lungs. Each of these
mechanisms results in inadequate cardiac output and systemic perfusion, necessitating
targeted interventions [1–3,19,20,41,42].

Dissociative or cytotoxic shock (Diss/Cyto) arises from the inability of tissues to utilize
oxygen effectively, despite adequate oxygen delivery and normal or near-normal hemody-
namic parameters (Table 1). This condition is typically caused by toxic or metabolic insults
that impair cellular respiration at the mitochondrial level. Examples include poisoning
with cyanide or carbon monoxide, which disrupt oxidative phosphorylation by inhibit-
ing cytochrome c oxidase or displacing oxygen from hemoglobin, respectively. In such
scenarios, oxygen may be present in sufficient quantity in the bloodstream, yet it remains
biologically unavailable to cells. As a result, aerobic metabolism fails, leading to a shift
toward anaerobic glycolysis, lactate accumulation, and widespread cellular dysfunction.
This form of shock is distinct in that it represents a failure of oxygen utilization, rather than
oxygen delivery, and requires rapid identification and specific antidotal therapy to prevent
irreversible organ damage [1–3,19,20,41,42].

Besides the classification of shock and subclass, there is a categorization of shock sever-
ity that involves the ability of the body to compensate. Non-progressive shock, also known
as compensated shock, is characterized by the activation of allostatic mechanisms, such as
increased heart rate and vasoconstriction, to maintain perfusion to vital organs. Progres-
sive shock occurs when these compensatory mechanisms fail, leading to worsening tissue
hypoxia, metabolic acidosis, and organ dysfunction (Figure 1) [1–3,19–22,24,25,43–49]. Fi-
nally, irreversible shock results in multi-organ dysfunction syndrome (MODS), where
tissue damage becomes severe and unresponsive to therapeutic interventions [50–53].
In the compensated state, the mechanisms of allostasis (the body’s process of maintain-
ing stability) temporarily adapt to the pathological changes induced by the shock state.
During this period, unaffected organs and physiological systems strive to maintain per-
fusion to vital organs. However, if these adaptations fail, the system transitions into a
non-compensatory state, leading to further deterioration and progression of the shock
state [1–3,19–22,24,25,43–49].
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Figure 1. The progression of shock and its systemic immunological domains. This diagram represents
the sequential pathophysiologic progression of shock, beginning with systemic ischemia (1), followed
by a global increase in cellular metabolic demands (2), the accumulation of deleterious metabolites and
oxidative stress (3), the onset of cellular dysfunction or death (4), and organ dysfunction or failure (5),
culminating in CHAOS (6): Cardiovascular Compromise—Loss of Homeostasis—Apoptosis—Organ
Dysfunction (MODS, SOF, MOF)—Immune Suppression. These six components radiate outward from
a central white core labeled “Shock progression”, which anchors the diagram and symbolizes the
primary pathological axis. This core is surrounded concentrically by three immunological domains: a
blue ring representing SIRS (Systemic Inflammatory Response Syndrome), a green ring representing
CARS (Compensatory Anti-inflammatory Response Syndrome), and an outer purple ring denoting
MARS (Mixed Antagonistic Response Syndrome). These domains illustrate the immunometabolic
milieu—the dynamic environment in which immune and metabolic responses interact and evolve—
while also supporting localized intercellular communication through neighboring effects among
cellular populations. Together, these processes modulate or amplify each step of shock progres-
sion, reinforcing the multiscale nature of systemic failure. Abbreviations: CHAOS—Cardiovascular
Compromise, Homeostatic Loss, Apoptosis, Organ Dysfunction, Immune Suppression; MODS—
Multiorgan Dysfunction Syndrome; SOF—Single Organ Failure; MOF—Multiple Organ Failure;
SIRS—Systemic Inflammatory Response Syndrome; CARS—Compensatory Anti-inflammatory Re-
sponse Syndrome; MARS—Mixed Antagonistic Response Syndrome.



Cells 2025, 14, 808 6 of 35

3. Progression of Shock State
Independently of the type of shock, the progression will have a stereotyped devel-

opment where, depending on the ability of the tissues to tolerate the ischemia, the de-
gree of the initial injury, and the delay of the initial treatment to containment/eliminate
the aggression, the non-injured tissue will start to present lesion or develop permanent
damage [1–3,19–22,24,25,43–49]. In the clinical scenario, there is the presence of multiple
syndromes that follow the initial shock phase, which follows the intent of the body to adapt
to the aggression (Figure 1). However, if the shock progresses, it will produce deleterious
effects on the prognosis of the patient [54–56].

In the cellular scenario, several events perpetuate the progression of the shock, decreas-
ing the ability of the cells to tolerate the aggression. The micro-verse (cellular neighboring)
and macro-verse (organ systems intercommunication) will orchestrate together the death
of the cells and the body system failure.

4. The Micro-Verse
In the progression of cellular function decay, the primary aggressor is systemic is-

chemia, which affects all cell populations [26,57]. Certain groups—such as endothelial
cells, mesangial cells, and inflammatory cells—activate adaptive responses (adrenergic,
hormonal, metabolic, and hypoxia-inducible pathways) that increase their tolerance to
ischemic injury; these are considered cells with high ischemic tolerance [58–63]. Tissues
such as skeletal muscle, skin, bone, and hepatocytes generally exhibit greater resistance
to the metabolic changes associated with early injury and systemic ischemia [64–70]. In
contrast, cells with inherently lower ischemic tolerance—including epithelial cells, endothe-
lial cells in sensitive vascular beds, cardiomyocytes, neurons, previously injured cells, or
those affected by chronic comorbidities such as diabetes, hypertension, cancer, or toxic
exposures—are more prone to entering pathological states such as apoptosis, autophagy, or
necrosis [71–76].

The dynamic interaction between these cellular territories—those with high and low
ischemic tolerance—shapes the early pathogenesis of shock, even before the onset of
reperfusion injury [26,57–76]. The duration of systemic ischemia following the initial insult,
along with incomplete or inadequate resolution of the ischemic state, remains a critical
determinant of prognosis. Prolonged hypoperfusion and intermittent I/R episodes promote
irreversible cellular damage and propagate systemic dysfunction (Figure 2) [77–83].

While this review does not aim to explore the full range of cellular responses to is-
chemia and reperfusion—which would warrant independent investigation—it emphasizes
the relevance of the micro-verse: the localized, cell-specific network of tolerance and vulner-
ability that precedes and shapes systemic outcomes. Understanding this landscape is key to
elucidating how cellular-level dynamics drive the progression and clinical manifestations
of the shock state (SIRS domain, CARS domain, MARS domain, and CHAOS) (Figure 2)
and identifying targets for intervention that could improve long-term outcomes.
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Figure 2. Shock, ischemia/reperfusion (I/R) injury, and immune syndrome domains. This diagram
illustrates the temporal interplay between shock progression, ischemia/reperfusion (I/R) injury, and
immune system syndromes. Following the first hit (the initial insult that establishes the shock state), a
stereotyped immune response is initiated, beginning with the activation of the Systemic Inflammatory
Response Syndrome (SIRS). Slightly delayed, but interwoven with SIRS, the Compensatory Anti-
inflammatory Response Syndrome (CARS) emerges, followed by the Mixed Antagonistic Response
Syndrome (MARS) in later phases. These three immune domains are depicted as interlinked arrows
converging toward CHAOS (while progression toward CHAOS reflects systemic deterioration and
immune exhaustion, not a distinct second hit), an acronym representing Cardiovascular Compromise,
Loss of Homeostasis, Apoptosis, Organ Dysfunction (MODS, SOF, MOF), and Immune Suppres-
sion. Above the segmented black bar is symbolized the fluctuating nature of systemic ischemia,
with multiple gaps in the arrows indicating intermittent periods of I/R injury. These recurrent
ischemia/reperfusion events exacerbate systemic damage and promote immune dysregulation, con-
tributing to the development of CHAOS. Below, a secondary time bar reflects the duration required
to resolve the first hit; the longer this period, the greater the exposure to cumulative I/R episodes. If
shock resolution is delayed or partial, temporally uncoupled I/R injuries may occur, intensifying
the inflammatory burden and accelerating the immune syndromes. This model emphasizes that
systemic damage is not solely driven by immune activation but also by the timing and severity of
reperfusion dynamics.

4.1. Adaptative Micro-Verse System During Shock Progression

Modern healthcare systems employ highly standardized training protocols for the
early recognition and treatment of shock, which has significantly reduced the duration
of systemic ischemia compared to previous decades [77–83]. While these strategies have
improved immediate survival outcomes, they often focus solely on resolving the initial
insult—specifically, hypoperfusion and oxygen debt—without addressing the deeper cel-
lular consequences. However, shock is increasingly understood as an I/R phenomenon
involving three key cellular segments of injury: (1) activation of membrane and metabolic
processes aimed at tolerating intracellular changes due to energetic substrate deprivation
(e.g., cytosolic cation influx, oxidative stress, mitochondrial dysfunction); (2) intercellular
signaling and interaction among different cell types (neighboring effect) that propagate
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damage (e.g., endothelial injury, no-reflow phenomenon, transcriptional reprogramming);
and (3) systemic I/R lesions characterized by immune activation, apoptosis, autophagy, and
necrosis. Unlike isolated arterial occlusions, which typically localize damage to a specific
organ, systemic shock states affect multiple organs and systems simultaneously [27,84–86].

Specific groups of cells—those primarily affected during the first hit—undergo mem-
brane destabilization and generate large quantities of reactive oxygen species (ROS), thereby
amplifying surrounding damage through neighboring effects. These include endothelial
cells, epithelial cells, cardiomyocytes, renal tubular cells, neurons, and resident immune
cells. Depending on their inherent ischemic tolerance, these cell populations encounter the
I/R lesion at different time points in an asynchronous and tissue-specific manner, leading to
distinct clinical manifestations (e.g., arrhythmias, seizures, immune dysregulation, fever, re-
nal failure, capillary dysfunction, pulmonary gas exchange abnormalities, hepatic dysfunc-
tion) [11,84–89]. Cells capable of initiating adaptive responses engage molecular pathways
that enhance their resistance to hypoxia—these are considered cells with high ischemic
tolerance. One of the most critical regulatory networks is the hypoxia-inducible factor
(HIF) pathway, which orchestrates the transcriptional adaptation to hypoxic stress [90–92].
Unfortunately, current clinical paradigms rarely integrate the dynamics of these cellular
adaptations into therapeutic strategies. By overlooking this microenvironmental resilience,
shock management risks become incomplete, targeting only systemic metrics without
addressing the cellular groundwork that may delay or accelerate injury progression.

4.2. The Role of HIF During Shock and I/R

The HIF pathway consists of transcription factors that regulate cellular adaptation,
with three major members: HIF-1 (HIF-1α & HIF-1β), HIF-2α, and HIF-3α. The functional
dynamics of HIF-1 are complex as it interacts with other HIF family members in a tissue-
specific manner. While HIF-1α and HIF-1β are ubiquitously expressed in all cells, HIF-2α
is primarily found in epithelial cells of the lungs and endothelial cells in the carotid body.
In contrast, HIF-3α is predominantly expressed in Purkinje cells of the cerebellum and
corneal cells [92–95]. HIF-1α and HIF-2α share approximately 48% sequence homology
and can dimerize with HIF-1β to interact with hypoxia response elements (HREs) in DNA,
thereby modulating gene transcription. While HIF-1α and HIF-2α enhance gene expression,
HIF-3α serves as an inhibitor of HRE-mediated gene transcription [92–95].

Under hypoxic conditions, HIF-1α is stabilized and activated through phosphorylation
by MAPK signaling. It subsequently forms a complex with CBP/p300, which translocates
into the nucleus. There, it dimerizes with HIF-1β, forming the HIF-1α(CBP/p300)/HIF-1β
complex, which binds to hypoxia-response elements (HREs) in DNA. This binding initiates
the transcription of genes involved in erythropoiesis, iron metabolism, angiogenesis, glu-
cose metabolism, cell proliferation, survival, and apoptosis. The extent and specificity of
gene expression depend on the cell type involved (e.g., endothelial, myocardial, epithelial,
immune, neuronal, skeletal muscle, pluripotent) and the duration of hypoxic/ischemic
activation (ranging from seconds to hours) [92–96]. Among the most critical functions of
HIF signaling is the induction of angiogenesis, primarily mediated by HIF-1α and HIF-2α
isoforms. HIF-1α strongly promotes the transcription of key pro-angiogenic genes, in-
cluding vascular endothelial growth factor (VEGF), stromal-derived factor 1 (SDF-1), and
angiopoietin-1 (Ang-1) [97,98]. These factors unequivocally facilitate neovascularization
and promote the restoration of blood flow in ischemic tissues. Meanwhile, HIF-2α, pre-
dominantly expressed in endothelial cells, regulates genes such as Tie2 and angiopoietin-2
(Ang-2), which are essential for vascular maturation and stabilization [99]. The complemen-
tary and distinct roles of HIF-1α and HIF-2α enable a precisely orchestrated angiogenic
response that adapts to both acute and chronic hypoxic conditions [97–99].
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In shock states, cell populations with high ischemic tolerance—such as skeletal muscle
cells, hepatocytes, and fibroblasts—initially respond by shifting their metabolism toward
oxygen-independent glycolysis. This adaptive response involves the upregulation of glu-
cose transporters (GLUT-1 and GLUT-3) and the enhancement of glycolytic enzyme activity
to sustain ATP and pyruvate production. Concurrently, the HIF-1α/CBP/p300/HIF-1β
complex promotes the expression of key metabolic genes, including lactate dehydrogenase
A (LDHA), monocarboxylate transporter 4 (MCT4), pyruvate dehydrogenase kinase 1
(PDK1), COX4-2, and the mitochondrial protease LONP1. This metabolic reprogramming
facilitates lactate accumulation (which is subsequently exported via MCT4), inhibits the
conversion of pyruvate to acetyl-CoA (through PDK1-mediated inhibition of PDH), attenu-
ates oxidative phosphorylation, and ultimately reduces excessive mitochondrial production
of ROS and reactive nitrogen species (RNS) by enhancing electron transport efficiency via
COX4-2 modulation and LONP1-mediated COX4 degradation [100–102].

Beyond its metabolic effects, HIF activation also has profound implications in angio-
genesis, particularly during ischemia/reperfusion injury and in various forms of shock.
In such settings, the restoration of microvascular blood flow is vital for tissue survival,
and HIF signaling plays a central role in promoting revascularization and maintaining
endothelial homeostasis [97,98]. However, it is essential to recognize that persistent or
dysregulated HIF activity may have deleterious effects, including increased capillary per-
meability, excessive neovascularization, and the formation of dysfunctional vasculature, all
of which can exacerbate tissue injury and compromise organ function [97].

Beyond its metabolic effects, HIF-1α signaling promotes cellular proliferation and sur-
vival by inducing the expression of insulin-like growth factor-2 (IGF-2) and transforming
growth factor-alpha (TGF-α), alongside activating the MAPK, PI3K, and AMPK path-
ways. These responses exhibit both local (autocrine) and systemic (endocrine) effects, a
phenomenon termed the “neighboring effect”. These mechanisms collectively help keep
cells within a “point of safe return”, the threshold before mitochondrial damage becomes
irreversible [11,13,14,27].

However, in cell populations with low ischemic tolerance—such as neurons, car-
diomyocytes, renal tubular epithelial cells, and endothelial cells in vulnerable vascular
territories—or when the shock state persists, the excessive activity of the HIF pathway may
lead to maladaptive outcomes. These include the induction of apoptosis, overactivation of
the immune system, and upregulation of adrenergic receptors. Clinically, this maladap-
tation is associated with arrhythmias, blood pressure instability, and progressive organ
dysfunction [103,104]. Overactive HIF signaling enhances the expression of pro-apoptotic
genes, including caspase-3, Fas/Fas-ligand, Bcl-2/adenovirus EIB19, BNip3, and NIX, and
further amplifies p53 and p21 signaling pathways. This cascade promotes the expres-
sion of apoptosis mediators such as Bax, NOXA, PUMA, and PERP, ultimately leading to
widespread cellular death and late-stage tissue injury [100–102].

In septic shock, HIF-1α can be activated even in the absence of severe hypoxia, pri-
marily via inflammatory mediators such as lipopolysaccharides (LPSs), tumor necrosis
factor-alpha (TNF-α), and interleukin-1β (IL-1β). This activation exerts a dual effect: while
it enhances glycolytic flux in immune and endothelial cells as an adaptive survival mecha-
nism, it simultaneously exacerbates mitochondrial dysfunction, inflammation, and vascular
permeability, contributing to tissue damage and poor outcomes [105].

Conversely, in hemorrhagic shock, where hypoxia results directly from impaired tissue
perfusion, HIF-1α activation initiates compensatory mechanisms that help preserve cellular
viability. These include the upregulation of VEGF and antioxidant enzymes, which are
crucial for maintaining endothelial integrity and promoting vascular repair during the
reperfusion phase [98,105].
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A key clinical marker of deteriorating HIF-mediated adaptation is oxygen debt, which
correlates with elevated blood lactate levels. In the clinical setting, sustained lactate eleva-
tion is strongly associated with shock progression and poor prognosis [2,39,54,55,106–108].
This reflects ongoing anaerobic metabolism, increased oxygen demand by hypoxic tissues,
and insufficient systemic perfusion to meet metabolic needs. Lactate monitoring thus
provides valuable prognostic information and serves as a guide for therapeutic decision-
making aimed at mitigating I/R injury [2,39,54,55,106–108].

Taken together, these findings highlight the dual and time-dependent nature of HIF
signaling during shock and ischemia/reperfusion. While early HIF activation supports cell
survival, metabolic adaptation, and vascular regeneration, its prolonged or dysregulated ex-
pression contributes to irreversible tissue injury and systemic failure. Thus, HIF represents
a pivotal regulatory hub—both a defender and a potential driver of damage—depending
on the cellular context, type of shock, and duration of hypoxia. Understanding this balance
is essential not only for unraveling the molecular basis of shock progression but also for
identifying therapeutic windows in which modulating HIF activity may improve outcomes
and prevent long-term complications.

5. The Macro-Verse
As the shock state progresses and the ability of metabolically adaptive cell populations

to tolerate systemic ischemia begins to deteriorate, organ systems become interdepen-
dent, coordinating compensatory responses in an effort to sustain global physiological
function [81–84,109]. Several systemic regulatory axes are activated, most notably the
adrenergic, endocrine, and immune systems. Initially, these responses act synergistically
to preserve perfusion to vital organs—such as the brain, heart, lungs, liver, and kidneys—
through mechanisms including the release of adrenaline and noradrenaline, activation of
adrenergic receptors, stimulation of the renin–angiotensin–aldosterone system (RAAS) to
modulate vascular tone and fluid balance, and immune-mediated repair signaling. How-
ever, as cellular damage accumulates and the duration of ischemia/reperfusion extends,
these compensatory systems begin to falter. The immune response, in particular, becomes
dysregulated, shifting from a reparative role to a pathological driver of inflammation, tissue
injury, and systemic dysfunction [14,58,59,61,110]. This marks the transition from cellu-
lar adaptation to multi-organ compromise, laying the foundation for the immunological
syndromes that will be explored in the following sections.

5.1. Ischemia Phase and Immune System

During the ischemic phase of shock progression, as previously described, multiple
cellular stress-response pathways are activated in an attempt to enhance ischemic tolerance.
Despite these adaptive efforts, once the I/R injury is initiated, a cascade of immune clinical
syndromes emerges, each representing the body’s attempt to respond and adapt to systemic
aggression [111–114]. However, if the extent of ischemic damage surpasses the system’s
compensatory capacity, the immune response transitions from a repair-and-sustain role
to one of degradation and destruction, ultimately promoting apoptosis and inflammatory
damage in vulnerable organs [52–55,57,113–116].

As shock advances, the immune system undergoes a staged transformation (Figure 3),
typically progressing through four major phases: (i) Systemic Inflammatory Response
Syndrome (SIRS), characterized by widespread immune activation and massive release of
pro-inflammatory cytokines; (ii) Compensatory Anti-inflammatory Response Syndrome
(CARS), a regulatory phase aimed at suppressing excessive inflammation and restoring
immune equilibrium; (iii) Mixed Antagonistic Response Syndrome (MARS), where simul-
taneous pro- and anti-inflammatory signals lead to immune imbalance and functional
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dysregulation; and (iv) CHAOS—an acronym for Cardiovascular Compromise, Loss of
Homeostasis, Apoptosis, Organ Dysfunction, and Immune Suppression—which represents
a state of systemic collapse and immune exhaustion [53,57,113,114,117–121]. Each of these
immune syndromes reflects a dynamic and context-dependent adaptation of the immune
system to persistent ischemia, oxidative stress, and metabolic instability, ultimately shaping
clinical outcomes and guiding potential therapeutic strategies [53,57,113,114,117–121].

Figure 3. Immune cascade components and shock progression. This diagram illustrates the dynamic
interplay between inflammatory and anti-inflammatory responses during shock, highlighting the
transition from adaptive immune modulation to pathological dysregulation. At the center of the
figure is a blue circle labeled “Inflammation”, representing the immunological core of the shock state.
Surrounding it are four semicircular domains, each corresponding to a phase of the immune response.
To the right, a red semicircle represents the Systemic Inflammatory Response Syndrome (SIRS),
associated with the activation of the entire coagulation system. Adjacent to it, a red rectangular panel
outlines the humoral response (e.g., pro-inflammatory mediators) and the cellular response (e.g.,
activation of neutrophils, monocytes, and endothelial cells). To the left, a green semicircle represents
the Compensatory Anti-inflammatory Response Syndrome (CARS), linked to immune disharmony
and the reactivation of injury cascades. A green rectangular panel describes the corresponding hu-
moral response (e.g., anti-inflammatory cytokines) and cellular response (e.g., suppression of antigen
presentation, T-cell deactivation). Above and below, two identical purple semicircles denote the
Mixed Antagonist Response Syndrome (MARS), in which both pro- and anti-inflammatory responses
coexist, leading to immune dysregulation. MARS is centrally associated with the development of
CHAOS (Cardiovascular Compromise, Loss of Homeostasis, Apoptosis, Organ Dysfunction, and
Immune Suppression). Behind the semicircular domains, a semi-transparent horizontal brown rect-
angle spans the figure, symbolizing systemic consequences that emerge as the immune syndromes
overlap. Beneath CARS, the figure highlights immune disharmony and the reactivation of injury
cascades. Beneath MARS, it shows the emergence of CHAOS. Beneath SIRS, it depicts coagulation
system activation. Overlaying the upper portion of the immune domains are two semi-transparent
bars that depict systemic clinical outcomes: A yellow bar above CARS and MARS indicates immune
suppression or paralysis and increased susceptibility to infections. An orange bar above SIRS and
MARS indicates endothelial dysfunction and the development of coagulopathy. Together, this figure
emphasizes that these immune syndromes are not isolated stages but overlapping domains, each with
its own systemic repercussions, which collectively shape the clinical trajectory of patients in shock.
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The activation of the immune system begins with the first hit (the initial insult), where
the pathological mechanisms of each shock type and subclass play a role in triggering
immune responses. Affected cells upregulate the expression of pattern recognition re-
ceptors (PRRs), including Pathogen-Associated Molecular Patterns (PAMPs), which are
released when the mucosae (such as the skin, eyes, genital tract, or gastrointestinal tract)
are disrupted, exposing constitutional microbiota and surrounding pathogens to the sys-
temic circulation [122–131]. Damage-Associated Molecular Patterns (DAMPs) originate
from locally traumatized tissue, while PAMPs are characteristic of septic shock, where
microbial invasion drives immune activation [122–132]. These signals collectively stimulate
the production of key inflammatory cytokines, including IL-1, IL-6, IL-17, TNF-alpha, and
IL-10, while also activating NF-κB signaling [122–132].

Initially, immune activity aims to contain damage and facilitate tissue repair through
the SIRS mechanism. However, if the injury is extensive or the shock state progresses,
excessive immune activation can lead to a dysregulated response. This results in the
transition from SIRS to CARS, a counter-regulatory mechanism designed to suppress
excessive inflammation and restore homeostasis (Table 2) [122–132].

Table 2. Injury cascade progression and systemic immune response. This table outlines the sequential
stages of immune response activation and progression during shock, highlighting the transition
from initial inflammatory reactions (SIRS) to compensatory and maladaptive phases (CARS, MARS),
culminating in immune dysregulation (CHAOS) and MODS due to I/R injury. SIRS: Systemic
Inflammatory Response Syndrome; CARS: Compensatory Anti-inflammatory Response Syndrome;
MARS: Mixed Antagonist Response Syndrome; MODS: Multiple Organ Dysfunction Syndrome; SOF:
Single Organ Failure; MOF: Multiple Organ Failure; CHAOS: Cardiovascular Compromise—Loss of
Homeostasis—Apoptosis—Organ Dysfunction (MODS, SOF, and MOF)—Immune Suppression.

Stage Immune
Syndrome Trigger/Event Dominant Immune

Response Systemic Consequences

I SIRS First hit (trauma,
infection, ischemia)

Pro-inflammatory cytokines,
immune cell activation

Initial containment, tissue
repair initiation

II CARS Excessive inflammation
or large injury

Anti-inflammatory
mediators, immune
suppression

Attempted immune
balance, risk of suppression

III-A MARS (SIRS
over CARS)

Ongoing injury with
dominant inflammation

Coexistence of pro- and
anti-inflammatory states

Endothelial dysfunction,
coagulopathy

III-B MARS (CARS
over SIRS)

Immune suppression
becomes predominant

Immunoparalysis, decreased
immune surveillance

Susceptibility to infection,
reactivation of injury

IV CHAOS Failure of regulatory
mechanisms

Total immune dysregulation,
exhaustion

MODS, SOF, MOF, immune
collapse

Note: Bold formatting in the first column is used to emphasize the numerical grade of each injury stage.

As the progression or extension of damage in shock continues, the interaction between
the SIRS and CARS responses induces the state of MARS, representing a dynamic balance
between these opposing immune responses (Figure 2). Clinically, this phase corresponds
to the compensated state of shock, where all organs and tissues remain in a precarious
equilibrium that can only persist for a limited period before reaching a critical threshold of
failure. If this threshold is exceeded, the system may shift toward either of two pathological
overlays: (i) SIRS dominance over MARS, which exacerbates tissue destruction and coagu-
lation activity mediated by the immune system (Figure 3), or (ii) CARS dominance over
SIRS, increasing susceptibility to infections and delaying tissue repair. In both scenarios,
the system ultimately deteriorates into CHAOS, leading to MODS and systemic failure
(Figure 3) [53,57,113,114,117–121].
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The immune components play a crucial role in regulating various clinical syndromes,
particularly as shock progresses (Figure 3). Understanding the functional dynamics of
these cellular components is essential for modulating immune responses and mitigating
pathological outcomes.

5.1.1. IL-1 Signaling Pathway: Activation and Inhibition

The interleukin-1 receptor (IL-1R) family consists of ten members classified into four
subgroups: ligand-binding receptors (IL-1R1, IL-1R2, IL-1R4, IL-1R5, and IL-1R6), accessory
proteins (IL-1R3 and IL-1R7), negative regulatory receptors (IL-1R2, IL-1R8, and IL-1R8BP),
and members with unknown functions (IL-1R9 and IL-1R10) [133–139]. These receptors
play a critical role in immune regulation by interacting with Toll-like receptors (TLRs)
through the Toll/interleukin-1 receptor (TIR) domain, which is essential for recruiting and
differentiating immune cells. Furthermore, the TIR domain shares homology with MyD88,
a key adaptor molecule involved in immune signaling pathways (Figure 4) [133–141].

Figure 4. SIRS signaling: inflammatory pathways during shock and cytokine storm and the production
of soluble cytokine receptor antagonists. Damaged tissue during the first hit releases pattern recognition
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receptors (PRRs), which initially activate Toll-like receptors (TLRs) on immune system cells (antigen-
presenting cells, T cells, B cells, regulatory T cells, etc.). These, in turn, promote the release of
pro-inflammatory cytokines, with the magnitude of this inflammatory response depending on both
the extent of the first hit and the patient’s pre-existing comorbid state. Regardless of the scenario,
the immune system initiates signaling pathways that involve the dimerization and activation of
cytokine and Toll-like receptors (TLRs). Through their intracellular Toll/interleukin-1 receptor (TIR)
domain, these receptors facilitate the formation of signaling platforms that enable the phospho-
rylation of MyD88. Once phosphorylated, MyD88 triggers the formation and activation of the
IRAK4/IRAK1/IRAK2 complex, which subsequently interacts with TRAF6. TRAF6, in turn, activates
two critical pathways: (1) the IKKα/IKKβ/IKKγ complex, leading to NF-κB phosphorylation and
activation, and (2) the MAPK signaling pathway, involving ASK1, TAK1, MEKK1, and MEKK3.
Both pathways synergistically enhance the cellular response to stress, promoting pro-inflammatory
activity, oxidative stress (ROS and RNS) in the endoplasmic reticulum and mitochondria, and the
release of inflammatory mediators. While this response is initially necessary for damage containment
and tissue repair, its persistence can lead to an excessive pro-inflammatory state. Depending on
the cell type undergoing this adaptive process (endothelial cells, epithelial cells, immune cells, or
damaged cells) and the duration of shock progression, the inflammatory response may become over-
whelming, leading to a dominant SIRS state. This results in an excessive release of pro-inflammatory
cytokines, culminating in a cytokine storm, which, rather than being protective, exacerbates tissue
damage and systemic inflammation. Graphical elements: Solid red arrows indicate the direct effect
of ischemia/reperfusion injury and shock progression. Dashed red arrows represent the resulting
intracellular oxidative damage. Black dashed arrows with triangular heads indicate signal trans-
duction activation between receptors and intracellular mediators. Black dashed arrows with double
heads represent cyclic organelle damage and feedback mechanisms. These arrows help visualize the
direction and intensity of molecular events described above.

IL-1R1 activation occurs when it forms a complex with accessory proteins IL-1R3 and
IL-1R7, allowing the binding of ligands such as IL-1α, IL-1β, or IL-38. The downstream
effects of IL-1R activation depend on the target cell type and include the induction of
inflammatory cytokines, amplifying immune responses [133–141]; the generation of ROS
and RNS, contributing to cellular damage [135,142–144]; increased prostaglandin synthesis,
promoting inflammatory mediator production [136,145,146]; proteolytic enzyme activation,
which facilitates extracellular matrix degradation and tissue remodeling [146–154]; and im-
mune system modulation, enhancing adaptive immune responses through T cell expansion
and Th17 differentiation [155–158].

At the intracellular level, IL-1R signaling begins when a ligand, such as IL-1β, binds
to IL-1R1, forming a receptor–ligand complex with IL-1R3. This interaction recruits MyD88
via the TIR domain, leading to the activation of two major signaling cascades: the nu-
clear factor kappa B (NF-κB) pathway, which drives the transcription of proinflammatory
cytokines [133–141], and the mitogen-activated protein kinase (MAPK) pathway, which
regulates inflammatory mediator production and cellular stress responses [158–161]. While
these pathways are essential for responding to infections and tissue injury, their uncon-
trolled activation can result in chronic inflammation, tissue damage, and autoimmune
disorders [158–162].

Overactivation of IL-1R signaling contributes to oxidative stress by promoting ex-
cessive ROS and RNS production. Mitochondria are the primary sources of ROS, while
NADPH oxidase plays a critical role in generating superoxide radicals [163–166]. This
oxidative imbalance leads to mitochondrial dysfunction, impairing energy production
and promoting apoptosis [163–166]; endoplasmic reticulum (ER) stress, disrupting protein
folding and triggering the unfolded protein response [141,167,168]; lysosomal damage, re-
sulting in the release of hydrolytic enzymes that contribute to cell death; and DNA damage,
leading to genotoxic stress, mutations, and cellular senescence [169–171].
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Certain cell types are particularly susceptible to excessive IL-1 signaling and oxidative
stress. Immune cells such as macrophages, neutrophils, and dendritic cells may become
hyperactivated, leading to a state of uncontrolled inflammation [172–174]. Endothelial
cells experience increased vascular permeability and dysfunction, contributing to systemic
inflammation [175–179]. Neurons are particularly vulnerable to chronic inflammation and
oxidative damage, which have been implicated in neurodegenerative diseases [180–182].
Cardiomyocytes also suffer from oxidative stress-induced injury, exacerbating heart failure
progression [183–185].

In clinical conditions such as shock and ischemia/reperfusion injury (IRI), IL-1R acti-
vation plays a pivotal role in tissue damage. During shock, excessive cytokine production
and oxidative stress drive systemic inflammation and MODS [186,187]. In ischemia, oxy-
gen deprivation triggers metabolic distress, while reperfusion further exacerbates injury
through a surge in ROS production and inflammatory mediators [188–190].

To counteract excessive IL-1 signaling, the immune system employs regulatory mecha-
nisms such as soluble and decoy receptors that sequester IL-1 ligands. Among them, sIL-1R2
and sIL-1R3 function as competitive inhibitors by binding IL-1 ligands without initiating
downstream signaling [191,192]. However, in prolonged shock or ischemic conditions, the
excessive expression of decoy receptors can lead to immunosuppression, increasing suscep-
tibility to secondary infections and impairing recovery [177,193–195]. This phenomenon is
particularly evident in post-cardiac arrest syndrome and septic shock, where dysregulated
IL-1 signaling has been associated with poor clinical outcomes [196–199].

Maintaining a balanced IL-1 signaling response is crucial for immune homeostasis
and preventing excessive inflammation. Future research should focus on developing
therapeutic interventions targeting this pathway to mitigate tissue damage in inflammatory
and ischemic conditions.

5.1.2. IL-6 and TNF-α Pathways in Shock Progression

The IL-6 family consists of 10 ligands and nine receptors, with signaling mediated by
the gp130 receptor, which is ubiquitously expressed in all cells [200–202]. The pathway
involves Janus kinase (JAK), the signal transducer and activator of transcription factor 3
(STAT3), and JAK-SHP-2-mitogen-activated protein kinase (MAPK). IL-6 interacts with
IL-6Rα (membrane-bound and soluble forms) and recruits gp130 to initiate intracellular
signaling. This signaling cascade modulates inflammation, endothelial activation, hepatic
acute-phase protein production, and immune cell differentiation [203–209].

IL-6 signaling can contribute to oxidative stress by activating intracellular pathways
that lead to the increased production of ROS. The activation of the STAT3 and MAPK
pathways has been shown to enhance mitochondrial ROS production, leading to oxidative
damage and further perpetuation of inflammatory responses [210–214]. Additionally, IL-6
can induce the expression of NADPH oxidase (NOX) enzymes, which catalyze the produc-
tion of ROS, exacerbating oxidative stress and promoting endothelial dysfunction [215–218].

Excessive IL-6 signaling leads to chronic inflammation, tissue damage, and immune
exhaustion, whereas inadequate signaling results in impaired immune responses and
susceptibility to infections [219–221].

The TNF family includes at least 18 ligands and 29 receptors, mediating inflammation,
apoptosis, and immune system regulation. TNF-α interacts with TNFR1 and TNFR2,
leading to differential downstream signaling. TNFR1 activation predominantly results
in proinflammatory and apoptotic pathways, while TNFR2 signaling is associated with
immune modulation and tissue repair [222–224].

In early shock response, TNF-α/TNFR1 and TNF-α/TNFR2 drive macrophage activa-
tion, monocyte recruitment, and cytokine amplification [225–227]. While essential in initial
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host defense, excessive TNF-α signaling contributes to endothelial dysfunction, tissue
damage, and systemic inflammation characteristic of septic shock, ischemia/reperfusion
injury, and multiple organ dysfunction syndrome (MODS) [228–233]. Additionally, TNF-α
induces oxidative stress by stimulating mitochondrial dysfunction and increasing ROS
production, exacerbating cellular damage [234–239].

The therapeutic inhibition of TNF pathways is widely explored in inflammatory
diseases such as rheumatoid arthritis and inflammatory bowel disease, yet excessive down-
regulation in critically ill patients can impair immune defense and increase susceptibility to
secondary infections [240–243].

5.1.3. Integration of IL-1, IL-6, and TNF-α in Inflammatory Waves

Under synergistic action, IL-1, IL-6, and TNF-α drive the initial inflammatory wave
aimed at damage containment and repair (Figure 4). This wave is characterized by (i) pro-
inflammatory actions, including rapid cytokine production, immune cell recruitment,
and the activation of tissue repair mechanisms, and (ii) self-modulatory mechanisms,
such as the simultaneous release of regulatory molecules, including decoy receptors, to
limit overactivation.

The regulation of these pathways is critical to maintaining immune balance. Excessive
activation, as seen in chronic inflammation or severe injuries, can lead to tissue damage and
autoimmune conditions. Conversely, the overexpression of regulatory mechanisms (e.g.,
decoy receptors) may result in immunosuppression, especially in prolonged shock states.
This duality underscores the importance of (i) the therapeutic targeting of pathways (e.g.,
IL-1 receptor antagonists, JAK inhibitors) and (ii) monitoring cytokine levels to predict
progression from pro-inflammatory to regulatory phases.

The balance between IL-6-, TNF-α-, and IL-1-driven inflammation determines shock
progression. Uncontrolled proinflammatory signaling leads to tissue damage, while exces-
sive counter-regulation via soluble cytokine receptors or anti-inflammatory mediators may
cause immune paralysis and secondary infections [244–247]. Understanding these dynam-
ics is crucial for developing targeted immunomodulatory therapies in critical care medicine.

5.1.4. CTLA-4 and PD-1: Immune Checkpoint Pathways

CTLA-4 (cytotoxic T-lymphocyte antigen 4) and PD-1 (programmed cell death protein-
1) are key regulators of immune response suppression and inflammation control and can
be overactivated or inhibited by several mechanisms (Table 3) [248–256]. They function as
immune checkpoints that prevent excessive immune activation and protect against autoim-
munity, but, in anomalous conditions, they can have a negative contribution regarding the
survival of a patient in a shock progression state.

CTLA-4 competes with CD28 for B7 ligands (CD80/CD86), suppressing T-cell activa-
tion by limiting costimulatory signaling. It recruits phosphatases such as SHP-2 and PP2A,
which dephosphorylate key signaling proteins like CD3 and ZAP70, preventing full T-cell
activation (Figure 5). The dominance of its activation is upregulated in the presence of an
excessive immune response [257,258].
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Figure 5. CARS regulation: role of dendritic cells in immune suppression and T cell inactivation.
During SIRS activation following the first hit, immune regulatory mediators are progressively ex-
pressed to counteract excessive pro-inflammatory responses during shock. Dendritic cells (APCs)
play a pivotal role in immune modulation; however, they are also susceptible to ischemia/reperfusion
(IR) injury, oxidative stress, dysfunctional regulatory T-cells (Treg), and receptor reconfiguration in
conventional T cells. As shock progresses, dendritic cells begin expressing PD-L1, which interacts
with PD-1 receptors on dysfunctional Treg cells and conventional T cells. This interaction drives
these cells into a non-responsive state or induces immune-suppressive activity, thereby directly and
indirectly inhibiting T cell activation and expansion, ultimately leading to immune suppression and
increased susceptibility to infections. Dysfunctional Treg cells express CTLA-4, PD-1, and inactive
cytokine receptors due to cytokine sequestration by soluble antagonists (IL-1AR and IL-6AR). These
cells exhibit oxidative stress (ROS and RNS) and abnormal proliferation, promoting the further
generation of dysfunctional Treg cells and reinforcing immune suppression. Conventional T cells also
exhibit inactive cytokine receptors due to cytokine sequestration, along with PD-1 expression and
incomplete TCR activation due to the absence of CD28 co-stimulation (as its ligand, B7, is sequestered
by CTLA-4 on Treg cells). These cells experience reduced infiltration, diminished function, and
exhaustion, contributing to immune suppression. Dendritic cells (APCs), positioned between these T
cell populations, have their B7 ligand sequestered by CTLA-4 on dysfunctional Treg cells, while also
expressing PD-L1, which interacts with PD-1 on both T cell types. Additionally, they exhibit inactive
cytokine receptors due to cytokine deprivation, further dampening T cell activation and limiting
de novo T cell expansion. As a result, this immune dysregulation fosters a dominant CARS state,
characterized by T cell dysfunction, immune suppression, and heightened vulnerability to infections.
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Table 3. Theoretical implications of immune exhaustion pathways in shock and ischemia/reperfusion
injury.

Immune Exhaustion Pathways

Pathway Expression Main
Inducers

Coupled
Signaling
Pathways

Cellular Effects Effects of Overactivity/Inactivity Ref.

CTLA-4
PATHWAY

CTLA-4
COMPETES

WITH CD28 FOR
B7 LIGANDS
(CD80/CD86)

ON ANTIGEN-
PRESENTING
CELLS (APCS)

Induced after
initial TCR

activation but
rapidly

internalized in
effector T cells.
Constitutively
expressed in

Tregs.

TCR
activation,

IL-2,
TGF-β,

Treg differ-
entiation.

Negatively
regulates TCR
signaling and
costimulatory
pathways via

CD28-B7
interaction.

Prevents
excessive T-cell

activation,
reduces

inflammatory
cytokine

production, and
maintains
immune

homeostasis.

Overactivity leads to excessive
suppression of T-cell activation,
reducing inflammatory cytokine
production necessary for proper

immune response and tissue repair.
This can impair the clearance of

pathogens and delay wound healing.
Inactivity results in uncontrolled

immune activation, increasing
oxidative stress and tissue damage
due to excessive pro-inflammatory

cytokine release.

[248–260]

PD-1 PATHWAY
PD-1

INTERACTS
WITH ITS

LIGANDS PD-L1
AND PD-L2,
WHICH ARE

EXPRESSED ON
APCS AND

SOME
NON-IMMUNE

CELLS

Induced in
activated T

cells, especially
in response to

chronic
stimulation.
Sustained

expression in
persistent
infections.

Chronic
TCR

activation,
IL-6, IL-10,

TGF-β,
hypoxia,
IFN-γ.

Inhibits
PI3K-Akt,

Ras-MEK-ERK,
and JAK-STAT

signaling,
reducing T-cell

proliferation
and cytokine
production.

Suppresses T-cell
proliferation,

decreases
cytokine

production, and
induces T-cell
exhaustion in

chronic infections
and cancer.

Overactivity causes prolonged T-cell
exhaustion, leading to reduced
ability to control infections and
impaired antioxidant defenses,

increasing oxidative stress. This
contributes to chronic inflammation

and defective tissue regeneration.
Inactivity results in excessive

immune activation, enhancing ROS
production, damaging tissues, and

overwhelming reparative
mechanisms.

Note: This table reflects mechanistic associations from preclinical and clinical studies, highlighting pathways that
may contribute to immune dysregulation during late-stage shock.

PD-1 is expressed on activated T-cells, B cells, and monocytes. When engaged with
its ligands, PD-L1 or PD-L2, PD-1 recruits SHP-1 and SHP-2 to dephosphorylate ZAP-70,
blocking the downstream activation of the PI3K-Akt and Ras-MEK-ERK pathways. This
results in the inhibition of T-cell proliferation and cytokine release [259–262].

T cell exhaustion and immune checkpoint engagement typically occur during the
compensatory (CARS) and mixed (MARS) phases of shock, rather than immediately after
the first insult, reflecting a delayed but critical stage of immune regulation. Future research
should explore the role of non-conventional immune checkpoints (e.g., Siglec, LAIR-1,
CD200R, KIRs), particularly in regulating innate and stromal cell responses during shock
and I/R injury, which may uncover novel therapeutic avenues beyond the canonical PD-
1/CTLA-4 axis.

5.2. Integration of Inflammatory/Anti-Inflammatory Signaling

The signaling pathways of IL-1, IL-6, and TNF-α play a central role in activating the
immune system and regulating inflammatory responses. However, immune checkpoint
mechanisms such as CTLA-4 and PD-1 modulate these signals to prevent excessive and
potentially harmful immune reactions [252,253,255,263–266].

CTLA-4 exerts its regulatory effect by dampening IL-1-driven inflammatory responses.
It achieves this by inhibiting early T-cell activation, a key process in the amplification of IL-1-
mediated inflammation. By blocking this initial activation, CTLA-4 limits the production of
pro-inflammatory mediators, thereby reducing tissue damage associated with exaggerated
immune responses [252,253,255,263–266].

On the other hand, the PD-1 pathway plays a crucial role in modulating IL-6 signaling.
PD-1 activation inhibits IL-6-induced STAT3 activation, leading to a reduction in inflam-
matory cytokine production and a lower propensity for cytokine storms. This mechanism
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is essential in preventing uncontrolled systemic inflammation, which can result in MODS
and severe tissue damage [252,253,255,263–266].

Furthermore, both CTLA-4 and PD-1 work together to counteract TNF-α signaling.
TNF-α is a key cytokine in inflammation and immune activation, but its excessive activity
can lead to tissue damage and immune exhaustion. The regulation of TNF-α by these
immune checkpoint pathways helps maintain a balance between an effective immune
response against pathogens and the prevention of excessive inflammation or autoimmu-
nity [252,253,255,263–266]. Stromal cells, including fibroblasts, pericytes, and mesenchymal
stromal cells, contribute to tissue remodeling and immune modulation during I/R injury by
releasing regulatory cytokines and ECM components and influencing immune checkpoint
pathways through paracrine signals.

Thus, immune checkpoints CTLA-4 and PD-1 play essential roles in maintaining
immune homeostasis, preventing excessive inflammatory responses that could compromise
tissue integrity and organ function. Although the identity of specific antigens in shock
remains unclear, immune checkpoint activation may occur through antigen-independent
chronic stimulation via DAMPs and inflammatory mediators, leading to T cell dysfunction
and immune suppression.

6. Oxidative Stress and Shock States
In conditions like ischemia/reperfusion injury and shock, immune checkpoint dysreg-

ulation exacerbates oxidative stress and tissue damage [69,234,267–269]. Oxidative stress
plays a critical role throughout the entire pathophysiology of shock, from the initial insult
to the progression of the shock state and the establishment of ischemia/reperfusion (I/R)
injury. Redox signaling is deeply involved in this process, and even after the resolution
of shock, oxidative stress remains active, influencing either recovery or progression into
CHAOS [270–272]. Under physiological conditions, oxidative stress is essential for proper
cellular function, regulating various signaling pathways [273,274]. However, in the shock
state, oxidative stress production becomes overwhelming due to the extent of cell damage
from the initial insult, systemic ischemia, immune system activation, and the massive
release of ROS and RNS during reperfusion [69,234,267–269,275]. The oxidative burst not
only impacts injured cells but also affects non-damaged and repairing cells, amplifying
systemic dysfunction.

Although oxidative stress is necessary for cellular function at a low level, its func-
tional threshold is very narrow. Any perturbation can enhance its activity and induce an
imbalance, although the body possesses enzymatic and non-enzymatic mechanisms to
regulate oxidative homeostasis [273,274]. In a clinical setting, patients typically maintain
an oxidative balance, fluctuating within normal limits. However, certain populations,
including individuals with diabetes, hypertension, dyslipidemia, and cancer, often live
under chronic oxidative stress conditions, making them particularly vulnerable to oxidative
stress-induced injury [276–281].

In shock states, we propose five major factors that could determine the extent of
oxidative stress-mediated injury: the degree of cellular damage during the first insult, the
level of immune system activation, the impact of I/R injury, the presence of pre-existing
pathological conditions, and the basal oxidative stress levels of the patient. If all five
components are severe or persist over prolonged periods, oxidative stress leads to extensive
cellular dysfunction, affecting survival and worsening the prognosis of shock patients.
While some tissues exhibit higher ischemic tolerance, immune and endothelial cells are
major ROS and RNS producers [271,282–286]. Furthermore, highly metabolically active
cells contribute significantly to the oxidative burden.
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The presence of oxidative stress in shock states serves a dual role in regulating inflam-
mation. On the one hand, it promotes the activation of proinflammatory pathways. ROS
and RNS activate NF-κB by degrading its inhibitor, IκB, leading to the upregulation of
inflammatory cytokines such as IL-1, IL-6, and TNF-α [276,287–292]. These cytokines fur-
ther amplify oxidative stress by inducing NADPH oxidase activation in macrophages and
neutrophils. Additionally, ROS stimulate the NLRP3 inflammasome, triggering caspase-1
activation and the maturation of IL-1β and IL-18 [276,287–292]. This process creates a self-
sustaining loop in which oxidative stress perpetuates inflammation. Moreover, excessive
ROS and RNS production induce immunogenic cell death mechanisms, such as necroptosis
and pyroptosis, causing the release of damage-associated molecular patterns (DAMPs),
including HMGB1, ATP, and mitochondrial DNA. These DAMPs activate toll-like receptors
(TLRs) and pattern recognition receptors (PRRs), further amplifying the inflammatory
response [124,293–297].

On the other hand, oxidative stress also suppresses mechanisms that regulate in-
flammation, thereby preventing the resolution of immune activation. One of the pri-
mary mechanisms of this suppression is the disruption of PD-1 and CTLA-4 regulatory
functions [298–301]. ROS and RNS impair the expression and function of these immune
checkpoint proteins, reducing their ability to suppress immune activation. PD-1 normally
inhibits T-cell activation by recruiting SHP-1 and SHP-2, but oxidative stress inactivates
these phosphatases, allowing unchecked inflammation to persist. Additionally, oxidative
stress inhibits IL-10 and TGF-β production, two critical cytokines required for inflammation
resolution. The suppression of IL-10 expression in M2 macrophages and dendritic cells
contributes to chronic inflammation, further exacerbating tissue damage [302–306].

Oxidative stress also alters the balance between Tregs and Th17 cells, which play an
essential role in immune homeostasis. Under normal conditions, Tregs function to suppress
excessive immune activation. However, ROS and RNS favor Th17 differentiation by acti-
vating STAT3 and RORγT, leading to increased inflammation [307–310]. Simultaneously,
oxidative stress destabilizes Foxp3, a key transcription factor required for Treg differentia-
tion, further tipping the balance toward proinflammatory responses. The resulting immune
dysregulation can contribute to persistent inflammation, tissue destruction, and increased
susceptibility to secondary infections [311–313].

Ischemia/reperfusion injury introduces an additional layer of complexity to the ox-
idative stress response. During the ischemic phase, hypoxia induces HIF-1α, which up-
regulates inflammatory genes and promotes anaerobic metabolism [102,314–317]. This
metabolic shift leads to mitochondrial damage, releasing cytochrome C and mitochondrial
DNA, which activate PRRs and amplify inflammation. Upon reperfusion, a massive ox-
idative burst occurs as oxygen re-enters the ischemic tissues, leading to mitochondrial
ROS overproduction. This sudden influx of ROS triggers NF-κB activation and NLRP3
inflammasome stimulation, perpetuating a self-sustaining inflammatory cycle [318–320].

The interplay between oxidative stress, dysregulated inflammation, and ischemia/
reperfusion injury has significant clinical implications (Table 4). Excessive ROS and RNS
production contribute to MODS, endothelial damage, and coagulopathy. The uncontrolled
activation of NF-κB and inflammasomes leads to cytokine storm development in septic
shock. The loss of PD-1 and CTLA-4 function results in persistent immune activation and tis-
sue destruction. The disruption of the Treg/Th17 balance fosters chronic inflammation and
increases the risk of opportunistic infections. Furthermore, reperfusion-induced oxidative
overload worsens ischemia/reperfusion injury and increases patient mortality [321–323].
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Table 4. Clinical impact of oxidative stress in shock states.

Clinical Impactof Oxidative Stress in Shock States

Mechanism Clinical Impact

Excessive ROS/RNS production Multi-organ dysfunction (MODS),
endothelial damage, coagulopathy

Uncontrolled NF-κB and inflammasome
activation Cytokine storm in septic shock

Loss of PD-1/CTLA-4 function Persistent immune activation, tissue
destruction

Treg/Th17 imbalance Chronic inflammation, increased
susceptibility to secondary infections

Reperfusion-induced ROS overload Worsening of ischemia/reperfusion injury,
increased mortality

7. Conclusions
Given the profound role of oxidative stress in the pathophysiology of shock, thera-

peutic strategies aimed at reducing ROS and RNS production hold promise for improving
clinical outcomes. Potential interventions include NF-κB inhibition using antioxidants
such as N-acetylcysteine and flavonoids, the modulation of the NLRP3 inflammasome
using pharmacologic inhibitors like MCC950, the reactivation of PD-1 and CTLA-4 path-
ways to control excessive immune activation, targeting mitochondrial ROS production
with agents such as mitochondria-targeted antioxidant agents to prevent reperfusion in-
jury, and restoring the Treg/Th17 balance through therapies that modulate STAT3 and
Foxp3 expression.

Understanding the interplay between oxidative stress, inflammation, and ischemia/
reperfusion injury provides insight into novel treatment approaches for managing shock
states. By targeting oxidative stress-mediated mechanisms, clinicians may be able to miti-
gate excessive inflammation, reduce tissue damage, and improve overall patient survival.
Further research into these therapeutic avenues may lead to the development of effec-
tive interventions that balance immune control while preserving essential inflammatory
responses necessary for tissue repair and recovery.
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230. Lendak, D.F.; Mihajlović, D.M.; Novakov-Mikić, A.S.; Mitić, I.M.; Boban, J.M.; Brkić, S.V. The role of TNF-α superfamily members

in immunopathogenesis of sepsis. Cytokine 2018, 111, 125–130. [CrossRef]
231. Polat, G.; Ugan, R.A.; Cadirci, E.; Halici, Z. Sepsis and Septic Shock: Current Treatment Strategies and New Approaches. Eurasian

J. Med. 2017, 49, 53–58. [CrossRef]
232. Ríos-Toro, J.-J.; Márquez-Coello, M.; García-Álvarez, J.-M.; Martín-Aspas, A.; Rivera-Fernández, R.; Sáez de Benito, A.; Girón-

González, J.-A. Soluble membrane receptors, interleukin 6, procalcitonin and C reactive protein as prognostic markers in patients
with severe sepsis and septic shock. PLoS ONE 2017, 12, e0175254. [CrossRef] [PubMed]

233. Wang, S.S.; Yan, C.S.; Luo, J.M. NLRC4 gene silencing-dependent blockade of NOD-like receptor pathway inhibits inflammation,
reduces proliferation and increases apoptosis of dendritic cells in mice with septic shock. Aging 2021, 13, 1440–1457. [CrossRef]
[PubMed]

234. Pérez-Torres, I.; Aisa-Álvarez, A.; Casarez-Alvarado, S.; Borrayo, G.; Márquez-Velasco, R.; Guarner-Lans, V.; Manzano-Pech, L.;
Cruz-Soto, R.; Gonzalez-Marcos, O.; Fuentevilla-Álvarez, G.; et al. Impact of Treatment with Antioxidants as an Adjuvant to
Standard Therapy in Patients with Septic Shock: Analysis of the Correlation between Cytokine Storm and Oxidative Stress and
Therapeutic Effects. Int. J. Mol. Sci. 2023, 24, 16610. [CrossRef]

235. Hobai, I.A. Cardiomyocyte Reprogramming in Animal Models of Septic Shock. Shock 2023, 59, 200–213. [CrossRef]
236. Chen, X.; Bi, M.; Yang, J.; Cai, J.; Zhang, H.; Zhu, Y.; Zheng, Y.; Liu, Q.; Shi, G.; Zhang, Z. Cadmium exposure triggers oxidative

stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine.
J. Hazard. Mater. 2022, 421, 126704. [CrossRef] [PubMed]

237. Galeone, A.; Grano, M.; Brunetti, G. Tumor Necrosis Factor Family Members and Myocardial Ischemia-Reperfusion Injury: State
of the Art and Therapeutic Implications. Int. J. Mol. Sci. 2023, 24, 4606. [CrossRef]

238. Grishanova, A.Y.; Perepechaeva, M.L. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and
Therapeutic Significance. Int. J. Mol. Sci. 2022, 23, 6719. [CrossRef]

239. Fakhri, S.; Abbaszadeh, F.; Moradi, S.Z.; Cao, H.; Khan, H.; Xiao, J. Effects of Polyphenols on Oxidative Stress, Inflammation, and
Interconnected Pathways during Spinal Cord Injury. Oxidative Med. Cell. Longev. 2022, 2022, 8100195. [CrossRef]

https://doi.org/10.1155/2021/8671713
https://doi.org/10.1038/s41401-022-00998-0
https://www.ncbi.nlm.nih.gov/pubmed/36253560
https://doi.org/10.1016/j.redox.2021.102099
https://doi.org/10.1016/S2213-2600(21)00103-X
https://doi.org/10.1016/j.intimp.2022.109130
https://doi.org/10.1007/s12291-021-00989-8
https://www.ncbi.nlm.nih.gov/pubmed/34177139
https://doi.org/10.3389/fcell.2020.615141
https://doi.org/10.1016/j.stem.2020.10.016
https://doi.org/10.1152/physrev.00045.2017
https://doi.org/10.1182/bloodadvances.2017006163
https://www.ncbi.nlm.nih.gov/pubmed/29296769
https://doi.org/10.3390/toxins11030178
https://doi.org/10.1016/B978-0-7020-6896-6.00009-0
https://doi.org/10.3389/fnmol.2020.00028
https://doi.org/10.3727/105221617X15042750874156
https://www.ncbi.nlm.nih.gov/pubmed/28893351
https://doi.org/10.1016/j.cyto.2018.08.015
https://doi.org/10.5152/eurasianjmed.2017.17062
https://doi.org/10.1371/journal.pone.0175254
https://www.ncbi.nlm.nih.gov/pubmed/28380034
https://doi.org/10.18632/aging.202379
https://www.ncbi.nlm.nih.gov/pubmed/33406504
https://doi.org/10.3390/ijms242316610
https://doi.org/10.1097/SHK.0000000000002024
https://doi.org/10.1016/j.jhazmat.2021.126704
https://www.ncbi.nlm.nih.gov/pubmed/34325292
https://doi.org/10.3390/ijms24054606
https://doi.org/10.3390/ijms23126719
https://doi.org/10.1155/2022/8100195


Cells 2025, 14, 808 32 of 35

240. Tiegs, G.; Horst, A.K. TNF in the liver: Targeting a central player in inflammation. Semin. Immunopathol. 2022, 44, 445–459.
[CrossRef]

241. Robert, M.; Miossec, P. Reactivation of latent tuberculosis with TNF inhibitors: Critical role of the beta 2 chain of the IL-12 receptor.
Cell. Mol. Immunol. 2021, 18, 1644–1651. [CrossRef]

242. Yang, S.; Wang, J.; Brand, D.D.; Zheng, S.G. Role of TNF–TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic
Implications. Front. Immunol. 2018, 9, 784. [CrossRef] [PubMed]

243. Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [CrossRef] [PubMed]
244. Pratim Das, P.; Medhi, S. Role of inflammasomes and cytokines in immune dysfunction of liver cirrhosis. Cytokine 2023, 170,

156347. [CrossRef]
245. Kim, J.S.; Lee, J.Y.; Yang, J.W.; Lee, K.H.; Effenberger, M.; Szpirt, W.; Kronbichler, A.; Shin, J.I. Immunopathogenesis and treatment

of cytokine storm in COVID-19. Theranostics 2021, 11, 316–329. [CrossRef]
246. Hobbs, K.J.; Bayless, R.; Sheats, M.K. A Comparative Review of Cytokines and Cytokine Targeting in Sepsis: From Humans to

Horses. Cells 2024, 13, 1489. [CrossRef]
247. Li, H.; Breedijk, A.; Dietrich, N.; Nitschke, K.; Jarczyk, J.; Nuhn, P.; Krämer, B.K.; Yard, B.A.; Leipe, J.; Hauske, S. Lipopolysaccha-

ride Tolerance in Human Primary Monocytes and Polarized Macrophages. Int. J. Mol. Sci. 2023, 24, 12196. [CrossRef]
248. Wong, S.K.; Beckermann, K.E.; Johnson, D.B.; Das, S. Combining anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) and -

programmed cell death protein 1 (PD-1) agents for cancer immunotherapy. Expert Opin. Biol. Ther. 2021, 21, 1623–1634.
[CrossRef]

249. Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer
2019, 18, 155. [CrossRef] [PubMed]

250. Pandey, P.; Khan, F.; Qari, H.A.; Upadhyay, T.K.; Alkhateeb, A.F.; Oves, M. Revolutionization in Cancer Therapeutics via Targeting
Major Immune Checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals 2022, 15, 335. [CrossRef]

251. Wojtukiewicz, M.Z.; Rek, M.M.; Karpowicz, K.; Górska, M.; Polityńska, B.; Wojtukiewicz, A.M.; Moniuszko, M.; Radziwon, P.;
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