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Cardiovascular diseases (CVDs) are the leading health problem worldwide. Investigating causes and mechanisms of CVDs calls
for an integrative approach that would take into account its complex etiology. Biological networks generated from available data
on biomolecular interactions are an excellent platform for understanding interconnectedness of all processes within a living cell,
including processes that underlie diseases. Consequently, topology of biological networks has successfully been used for identifying
genes, pathways, andmodules that governmolecular actions underlying various complex diseases. Here, we review approaches that
explore and use relationships between topological properties of biological networks and mechanisms underlying CVDs.

1. Introduction

Cardiovascular diseases (CVDs) cover a broad range of disor-
ders which affect different parts of cardiovascular system and
include coronary diseases, carotid diseases, peripheral arte-
rial diseases, and aneurysms. They remain the leading health
problemwhich affectsmore than 80million individuals in the
United States alone [1]. Based on the data from 2009, in the
United States, on average one person dies of CVDs every 40
seconds. Coronary heart disease alone causes one out of every
six deaths [1]. By year 2020 it is expected that Brazil, Russia,
India, and China will contribute significantly to a global
increase of additional 4% of deaths caused by CVDs [2].

Etiology of cardiovascular diseases is not simple. There
are forms of CVDs that are Mendelian disorders resulting
from a mutation on a single gene [3]. However, the majority
are complex diseases occurring as a result of an interplay
between multiple genes [3], as well as a variety of factors
such as diet, dyslipidemia, hypertension, and body mass
index [4]. For addressing this complexity, an integrative
approach, that would take into account coaction between the
multiple causes behind CVDs, seems to be the method of
choice. This is because properties of a complex system as a
whole cannot be completely discovered by simply observing
properties of individual parts of the system without taking

into account their interconnectedness [5]. Hence, different
systems biology approaches have been used in CVD research,
which has recently been reviewed elsewhere [6–9].

Amathematical concept of anetworkhas been introduced
in systems biology as it accurately captures the innerworkings
of many complex biological systems. For example, metabolic
pathways are interconnected into a network, providing
redundancy, adaptability, and robustness [10], thus enabling
energy-efficient production of metabolites. Also, the fact that
a specific network topology comes as a direct consequence
of biological processes occurring between the elements of the
underlying system highlights the importance of the topology
as a valuable source of new biological knowledge.

In this survey, we focus on network-based systems biol-
ogy approaches to CVD research. More specifically, we aim
to investigate the extent to which network topology has
contributed to novel medical insights into CVDs.

2. Topology of Biological Networks Reveals
Disease Genes, Modules, and Pathways

2.1. Biological Data and Networks. Recent advances in high-
throughput techniques have resulted in a number of large-
scale biological data sets. In Table 1, we list commonly
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Table 1: Databases of human molecular interaction and disease ontology data.

Database name Type of data URL
BioGRID PPI and genetic interactions http://thebiogrid.org/

HPRD
PPI, disease associations, posttranslational modifications, tissue
expression, subcellular localization, and enzyme/substrate
relationships

http://www.hprd.org/

DIP Experimentally determined PPI http://dip.doe-mbi.ucla.edu/dip/
HomoMINT PPI http://mint.bio.uniroma2.it/HomoMINT/
OPHID PPI http://ophid.utoronto.ca/ophidv2.204/

KEGG
Pathway maps, human diseases, drugs, orthology groups, genes,
relations within genes, metabolites, biochemical reactions, and
enzymes

http://www.genome.jp/kegg/

OMIM Information on genes and genetic disorders http://www.ncbi.nlm.nih.gov/omim

used databases of molecular interaction and disease ontol-
ogy data for H. sapiens. These databases accumulate bio-
logical information, including interactions and relation-
ships among biological macromolecules and metabolites,
such as protein-protein interactions (PPI), genetic interac-
tions, or enzyme-substrate relationships. The available data
also include gene functional annotations, pathway maps,
information on genetic disorders, and disease associations.
As an example of the scale of available data, BioGRID
currently lists 303,268 nonredundant physical interactions
between 51,129 proteins across 48 organisms, while DRYGIN
(http://drygin.ccbr.utoronto.ca/) contains 5,482,948 genetic
interactions for S. cerevisiae.

A network is the same as a mathematical concept of a
graph, denoted as a pair 𝐺 = {𝑉, 𝐸}, where 𝑉 is a set of
vertices (nodes) and 𝐸 is a set of links (edges) that connect
pairs of nodes [11]. When constructing a graph it is necessary
to determine how biological elements and relations between
them correspond to nodes and edges. For example, an edge
in a protein network can be placed between two proteins if
they bind together to perform their biological function; this
results in a commonly used protein-protein interaction (PPI)
network. Conversely, an edge between two proteins can also
be placed if the two proteins share a common trait, such as
being targeted by the same drug or causing the same disease.
These associations are usually found by mining the scientific
literature, resulting in an association network. Other highly
exploited networks are genetic interaction networks, where
genes correspond to nodes in the graph and edges repre-
sent functional associations between genes: an interaction
between two genes occurs when the result of mutations
in the genes is not just a combination of phenotypes of
those mutations [12]. A metabolic network is a union of all
metabolic pathways within a cell, where nodes correspond to
metabolites and enzymes, and directed edges are metabolic
reactions [10, 13, 14]. Regulator-gene interactions can be
summed up into a transcriptional regulatory network [15].
Given various experimental limitations, up till date, only a
handful of transcriptional regulatory networks for complex
biological systems have been defined [16].

Graph theoretic approaches offer insight into the struc-
ture of these networks and allow us to single out properties
of a network, or its parts, which are different from expected

by random. Such findings can reveal the connection between
a specific topological characteristic and related biological
function or a process, such as a disease. Here, we will not
provide details on global and local network properties nor
specific algorithms commonly used in graph theory, such as
algorithms for network clustering or alignment. For more
details on these topics, see [17–20].

Note that a limiting factor regarding network analyses is
the quality of data. Although large amounts of biological data
are available, they are still noisy and incomplete. Techniques
used for obtaining the data are often biased—they may
not provide enough sensitivity to detect all changes in the
system [21]. Outcomes of experiments depend not only on
experimental design but also on the stringency of conditions
of the experiments: for example, too stringent conditions can
lead to false negative interactions, as opposed to false positive
results obtained from experiments that were not stringent
enough. Also, depending on the focus of the research and
experimental design, some genes/proteins can be favoured
and their possible interactions are explored more often, such
as those of disease genes. This can impose a particular
structure in the network, for example, false hubs, without
reflecting the underlying network topology. In addition, not
all biological processes can be accurately represented as
interactions (edges in the network) between two elements.
Often a process in a biological system requires more than
two elements and involves different types of interactions.
However, a benefit is that network representation gives an
opportunity to reduce the complexity of biological data
that is required for performing computational analyses.
Different data sources offer various insights into underlying
biological processes, and, only if integrated, they will yield
the full meaning. Network analysis provides exactly insight
into interconnectedness of the data that describe different
processes within a living cell. Below we give a short overview
of methods that use biological networks to extract new
knowledge about diseases. Specifically, we focus on network
biology in CVDs.

2.2. Exploring Disease through Network Topology. Topology
of PPI networks has widely been explored and used for
inferring involvement of proteins in biological functions and
processes, including diseases. It has been shown that proteins
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that are closer in the network are more likely to perform
the same function [22]. In particular, association by guilt
approach was used to infer functions of unannotated pro-
teins: the direct neighbourhoods of proteins were examined
looking for most common functions among annotated direct
neighbours [23]. Similarly, the n neighbourhood of proteins
[24] and shared neighbours of proteins [25] were analysed to
annotate functions of unannotated proteins.These properties
were used to associate genes with diseases using linkage
methods (nomenclature adopted from [26]). In that sense, it
has been shown that directly linked proteins in the human
PPI network are more likely to cause similar diseases [27,
28] (simplified concept illustrated in Figure 1, panel (a)). A
variant of linkagemethodwas successfully applied to discover
genes related to Alzheimer’s disease [29].

Several other methods have shown that PPI network
topology around proteins is a predictor of their function
or their involvement in disease [30–32]. The local topology
around a protein in a PPI network was summarized into a
topological “signature” of a protein, graphlet degree vector
(GDV) [30]. Proteins in the PPI network were grouped based
on similarity of their “signatures,” or GDV similarity, and it
has been shown that proteins within those groups belong to
same protein complexes, perform the same biological func-
tion, and are part of the same subcellular components [30].
Also, GDV similarity between proteins in the PPI network
was used as a similarity measure for clustering proteins using
series of clusteringmethods, resulting in clusters significantly
enriched in cancer and disease related proteins. This leads to
predictions of new melanogenesis related genes purely from
the topology of the human PPI network and the predictions
were phenotypically validated [31, 32].

Described methods used clustering of nodes in the
network based on their topological properties (simplified
example is illustrated in Figure 1, panel (b)). Note that this
is different from clustering the network by identifying its
topological modules: locally dense neighbourhoods in the
network called graph clusters or network communities [17]
(Figure 1, panel (c)). It is generally accepted that a subset
of nodes is a good cluster, or community, if the induced
subgraph is dense, with relatively few connections between
the cluster nodes and nodes that are in the remaining
part of the graph [33]. These topological modules often
correspond to functional modules: aggregations of nodes
similar in function, and to disease modules: sets of nodes
that contribute to a specific disease phenotype [26]. Mitra
et al. [34] thoroughly reviewed integrative approaches for
identifying such functional modular structures in biological
networks. Accordingly, module-based methods use assump-
tion that nodes belonging to same topological or functional
module are highly likely to be involved in the same disease.
These methods have often been applied in studies related to
cancer [35–37]. Another example of this principle is modules
identified using community discovery algorithm [38], which
resulted in the discovery of new links between Alzheimer’s
disease and CVDs at the coexpression and coregulation levels
[39]. Several module-based methods have been applied to
research of CVDs, which will be elaborated in more detail
later in this survey.

An interesting survey on different methods that use
network topology for predictions of disease genes [40]
pointed out that many of the methods that rely on clustering
algorithms, or linkage-based inference, are outperformed
by random walk-based methods. Random walkers diffuse
along the network starting from disease involved nodes with
the same probability of visiting any neighbouring node—
most visited genes are considered to be on the disease
pathway and potentially involved in a particular disease. A
method for prioritization of candidate disease genes using
random walk analysis was tested on 110 disease gene families
and significantly outperformed methods based on distance
measures such as linkage-based methods or methods based
on shortest paths to disease proteins [41].

2.3. Disease Networks. We are currently witnessing an
increase in using disease networks, networks of biomolecules
involved in a particular disease or a group of diseases,
for exploring relationships between different diseases. For
example, Goh et al. [42] created a bipartite “diseasome”
network, where one partition consists of a set of diseases and
the other of a set of disease genes (and where, by definition of
a bipartite network, all edges in the network are between the
partitions).They used it to generate two network projections:
disease gene network and human disease network (which
they found is clustered according to major disorder classes).
By exploring centrality and peripherality of genes in the gene
network, they showed that contrary to essential human genes
that encode hub proteins—highly linked proteins in network,
the majority of disease genes do not encode hubs and are
localized in the periphery of the network [42].

Janjić and Pržulj [43] demonstrated the existence of
topologically and functionally homogeneous “core subnet-
work” of the human PPI network, which is enriched in
disease genes, drug targets, and a small number of genes that
have theoretically been proposed to be required for tumour
formation, referred to as “driver genes” [44]. They call this
subnetwork the “Core Diseasome” [43] and postulate it is the
key to disease onset and progression and hence should be the
primary object of therapeutic intervention.

CVD networks have recently gained interest, serving
as a basis for a better understanding of the complexity
behind the disease [6, 7]. In the next section we focus on
various CVD networks with emphasis on the use of network
topology. Note that henceforth we will use terms gene and
protein interchangeably, as topological properties of proteins,
represented as nodes the in PPI network, are commonly
used to gain new knowledge about genes that encode these
proteins.

3. Using Biological Networks in
Research of CVDs

3.1. CVDNetworks. Therewere several attempts to create bio-
logical networks relevant to various cardiovascular disorders.

A combination of methods based on experimental cell
culture and data mining was used to collect a compre-
hensive set of vascular and atherosclerosis related genes
[45]. In particular, public databases such as PubMed
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Figure 1: Using network topology to infer elements involved in disease. Panel (a): green node is associated with disease based on its
neighbouring disease nodes (shown in red). Panel (b): nodes bordered in blue are part of the same cluster based on similar topology around
them. Green node is associated with disease based on the cluster’s enrichment in disease nodes (shown in red). Panel (c): nodes bordered
in blue are part of the same graph cluster or community, in the network. Green nodes are associated with disease based on the community’s
enrichment in disease nodes (shown in red). Panel (d): node shown in green is associated with the disease, as a common node on shortest
paths between nodes related to disease (shown in red).

(http://www.ncbi.nlm.nih.gov/pubmed) were searched for
genes related to the terms atherosclerosis, smooth muscle cell,
endothelial cell, apoptosis, cytokine, and adhesion molecule.
This list of genes was then combined with genes obtained
from sequencing clones from stimulated vascular cells in
culture. Next, a large association network was constructed

through semantic mining of published literature—an asso-
ciation between two genes was extracted from sentences in
scientific literature that contained two gene names and a
verb as defined by user context file. Also, coronary artery
segments isolated from explanted hearts of 22 cardiac trans-
plant patients were experimentally processed, resulting in
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significant gene expression profiles obtained using signifi-
cance analysis of microarrays (SAM) [46]. Then, for each
gene from the large association network, a subnetwork was
constructed. The subnetwork consisted of that gene and its
neighbouring genes which were obtained using SAM analy-
sis. A cumulative and average SAM scores were computed for
each subnetwork and were used to identify subnetworks of
high overall significance. Their central, “nexus,” genes were
singled out as potential regulators that may cause the disease
phenotype [45].

A similar method was used for constructing an
association network of human in-stent restenosis [47]. Genes
relevant to the disease were collected usingmethods based on
experimental cell culture and data mining, while associations
between genes were obtained through text mining of
MEDLINE (http://www.nlm.nih.gov/pubs/factsheets/med-
line.html) abstracts. Again, a subnetwork for each gene was
constructed containing the gene and its direct neighbours
in the network. Gene expressions were experimentally
assessed from tissue samples of 89 patients using SAM
analysis. Subnetworks were next compared based on the
overall significance score calculated using SAM scores of the
subnetwork members. Central nodes of these subnetworks
were identified as successful targets for drug therapy.

Skogsberg et al. [48] revealed a regulatory gene network
of cholesterol-responsive atherosclerosis genes that control
formation of plaques in arteries, using analysis of gene
expression in response to plasma cholesterol-lowering. They
established a list of genes related to atherosclerosis, foam
cells, smooth muscle cells, endothelial cells, and T cells using
automated text mining of PubMed abstracts. The resulting
network was proposed as a starting point for future research
of novel atherosclerosis therapies.

Another PPI network of cardiovascular diseases was
created from CVD related proteins that were identified using
protein annotations fromUniprot database (searching for the
keyword cardiovascular) and known protein-protein interac-
tions fromHPRD [49]. Only proteins with at least one known
interaction in HPRD were taken into account. In addition to
these proteins, their interacting partners in the PPI network,
which also appear in the signalling pathways from KEGG
database, were included in the network. The resulting CVD
PPI network consisted of 55 proteins and 122 PPIs and
was used to identify network CVD biomarkers as follows.
(1) Single biomarker discovery was based on significantly
different expressions between proteins in control patients
and disease patients (significantly low 𝑃 values); biomarkers
were evaluated using not only 𝑃 values but also support
vector machine (SVM). (2) A candidate pair biomarker is
composed of two single biomarkers and a PPI between them.
Pair biomarkers were selected based on the best performance
in SVM and significantly low 𝑃 values. (3) Candidate triple
biomarker is composed of three single biomarkers and PPIs
between every pair among them. Again, triple biomarkers
were selected based on the best performance in SVM and
significantly low𝑃 values. (4)Multiple CVDbiomarkers were
identified in similar manner as combinations of different
single ones, pair ones, and triple biomarkers.

As mentioned in Section 2.1, despite their important bio-
logical role, human transcriptional regulatory networks are
still largely unexplored. Some of the reasons are experimental
limitations and human cellular diversity [16]. However, there
have been several attempts to construct a cardiac transcrip-
tion network. For example, mRNA profiles were integrated
with DNA-binding events of key cardiac transcription factors
(TFs) [50]. Insights into combinatorial regulation by cardiac
TFs showed that they compensate each other’s functions.
Cardiac transcription network was built based on findings
from RNA knockdown experiments. Target genes that are
important for the cardiovascular system were chosen based
on their biological roles such as muscle contractility and car-
diac growth. The network depicted the common regulation
of several transcriptional factors and the impact of the post-
transcriptional modulation of expression levels by miRNAs
[50]. Another transcriptional network of cardiac TFs and
genes important for cardiac function was constructed based
on coexpression analysis involving TFs critical for hearth
development. Coregulatory relationships between five such
TFs were revealed [51]. These types of relationships can
give a new perspective for understanding the complexity of
CVDs.

The quality of biological data is crucial for constructing
a reliable CVD network, as discussed in Section 2.1. New
technologies, such as next generation sequencing platforms,
have significantly increasedDNA sequencing output [52] and
as such will largely increase the size of available biological
data.Therefore, next generation sequencingmethods for gene
expression profiling will change the approaches to studying
many common complex disorders, including CVDs [53].The
resulting new insights into underlying mechanisms of CVDs
will yield more complete CVD networks and open a window
of opportunities for exploring the topology of these networks.

3.2. Correlating Network Topology with CVD Mechanisms.
Several authors tried to explore whether basic topological
information from a biological network, such as connectivity
of the nodes, can be correlated with biological properties
required for CVD onset and progression.

One example is a global PPI network in heart failure
(HF) [54], created as a subnetwork of PPIs from HPRD that
includes HF relevant genes. Next, differentially expressed
genes in HF were identified from microarray data encoding
molecular profiles of healthy versus HF subjects. Proteins
encoded by these significantly differentially expressed genes
were also included in the HF PPI subnetwork. This network
was used to explore the relationship between gene coex-
pression levels and their connectivity in the HF network.
It was discovered that hub proteins in the network are
encoded by genes that display a significant diversity of
coexpression patterns in comparison to peripheral proteins.
However, hub proteins are not necessarily encoded by genes
that are significantly differentially expressed. Analysis of
gene ontology (GO) terms [55] revealed the relationship
between connectivity of the proteins in this network and their
involvement in specific biological processes, such as processes
related to cardiac remodelling.
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In their later work, the same authors explored dilated
cardiomyopathy (DCM) genes [56], as DCM is recognised
as a leading cause of HF. DCM genes were identified using
gene expression profiles from three independent datasets,
while associations with HF were identified using literature
mining.HumanHFPPI networkwas created using PPIs from
HPRD by including genes known to be involved in HF and
genes from the gene expression datasets along with biological
pathways associated with them. Again, connectivities of
nodes (proteins) in HF PPI network were compared to
their gene expression patterns. Differential gene expression
was measured using SAM analysis, resulting in divalues
representing genes’ score of class differentiation. Focusing on
significantly differentially expressed genes, it was found that
superhubs and hubs in the network had a lower range of
divalues, while genes that encoded peripheral proteins in the
network had a higher range of divalues.

Severalmodule-based approacheswere applied to various
CVD networks attempting to identify functional modules
related to the disease or discover new associations between
genes and disease. Diez et al. [57] created a combined
gene association and correlation network, using data from
47 microarrays from a database of carotid endarterec-
tomies (Biobank of Karolinska Endarterectomies, BiKE
(http://ki.se/start)). The gene correlation network was con-
structed using statistical analysis of gene expression data.
The association network was constructed using the list of
differentially expressed genes, by performing literature search
for each gene symbol and association keywords such as “gene
A activates gene B.” The networks were then merged into
an undirected network of atherosclerosis. This network was
searched for active modules based on closeness centrality
using jActiveModules Cytoscape plugin [58]. APOC1 gene
was differentially expressed in atherosclerotic plaque and
related to several important GO categories characteristic of
the disease mechanism, so it was selected for a more detailed
analysis. Hence, among detectedmodules, the one containing
APOC1 genewas further inspected.Thismodule was checked
for GO enrichment. GO categories relevant to atherosclerosis
mechanisms and etiology that were identified in this module
were all characteristic of APOC1 gene, suggesting its impor-
tance in this disease.

Ischemic dilated cardiomyopathy (ICM) is one of the
main pathological forms of DCM. A set of genes differen-
tially expressed in ICM, downloaded from gene expression
omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), and
cardiacmyocytes proteins retrieved fromhumanprotein atlas
(HPA) [59] were merged to create another CVD relevant
PPI network [60]. Information about PPIs was integrated
from several public databases.The analysed largest connected
component of this PPI network was divided in four layers,
based on subcellular localization information. This revealed
that the extracellular and plasma membrane layers contained
more downregulated genes, while cytoplasm and nucleus
contained more upregulated genes. Next, significantly over-
represented biological processes (BPs) were identified, and
PPI network containing only proteins related to these GO
BPs was then divided into 12 clusters according to BPs. It was
shown that the number of PPIs between proteins involved in

different BPs was associated with differential gene expression
patterns.

Rende et al. [61] used topological features of PPI networks
in search of genes common to CVDs and other diseases,
by identifying functional modules of genes. They extended
a core CVD network, consisting of proteins known to be
associated with CVDs (manually curated from the literature),
by including their direct interactors in PPI network, resulting
in a cardiovascular disease “functional linkage network”
(CFN). Hub proteins in this network were considered to be
the key nodes that regulate molecular mechanisms of CVDs
and interdependence between CVDs and other complex
disorders. These hubs were identified using distributions
of node degrees and betweenness centralities. Functional
modules, highly connected subgraphs, were identified using
a modularity measure based solely on topological properties,
allowing modules to overlap. All hub proteins appeared in
these functional modules. Presence of a protein in multiple
functional modules in addition to its high connectivity
implied that any changes regarding protein would affect all
its functional modules. Next, proteins in functional modules
were matched to diseases from OMIM database: 19 modules
were associated with CVDs. Also, modules associated with
at least two diseases were examined for functional GO term
enrichment and were shown to be functionally linked. This
approach revealed some significant complex disorders that
cooccur with CVDs and identified relevant shared disease
genes and shared disease functional modules.

Known causal congenital heart disease (CHD) genes and
genes differentially expressed in this disease (named target
genes) were mapped onto a PPI network with the aim of
identifying gene modules relevant to CHD [62].The network
was modelled as an electrical circuit, where edges between
nodes (genes) were used as a conductance of a resistor
according to correlation of coexpression between the two
end nodes. Shortest paths from one causal gene to all target
genes were merged into a subnetwork, and the current flow
for each gene in the subnetwork was computed to evaluate
its importance. Genes were assigned to a subnetwork in
which they scored best. This resulted in 12 disjoint modules
for further analyses: relationships of individual modules
with disease phenotypes, mutual coexpression among genes
within the modules, functional enrichment, and pathway
analysis. As a result, candidate disease genes andhubmodules
that regulate key pathways of CHD were identified.

Functional modules of gene coexpression networks were
also explored in research of cardiac development, hypertro-
phy, and failure [63]. Datasets from microarray experiments
involving myocardial tissue were collected from GEO and
used for creating a weighted gene coexpression network,
where edges represent adjacencies between genes based
on weighted Pearson correlation between gene expression
profiles. Gene modules were identified using agglomerative
hierarchical clustering of adjacencies given by the topological
overlap measure based on shared network neighbours. The
modules were first identified in fetal tissue, followed by
evaluating their reproducibility in normal adult, hypertro-
phied, and failing myocardial tissue. The analysis revealed
specific gene coexpression modules that were present both in
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Table 2: Methods that explored topology of biological networks in research of CVDs.

Network Type of data/interactions in
the network

Topological analysis
performed on the data Aims of topological analysis Reference

Heart failure (HF)
network

HF relevant genes, genes
differentially expressed in HF
and dilated cardiomyopathy
(DCM), and PPI data

Connectivity of nodes

Relationship between gene
connectivity and gene
coexpression levels and
their biological functions

[54, 56]

Network of
atherosclerosis

Literature associations and
gene expression data

Network modules
identified based on
closeness centrality

GO enrichment of network
modules [57]

Network of
ischemic dilated
cardiomyopathy
(ICM)

Genes differentially expressed
in ICM, cardiac myocytes
proteins, and PPI data

Number of edges between
network clusters

Correlation between
number of edges between
network clusters and
differential gene expression
patterns

[60]

Cardiovascular
disease “functional
linkage network”
(CFN)

CVD proteins and PPI data
Degree distribution,
betweenness centrality, and
modularity measure

Associating functional
modules (highly connected
subgraphs) with diseases

[61]

Congenital heart
disease (CHD)
network

Known CHD genes, genes
differentially expressed in
CHD, and PPI data

Subnetworks based on
shortest paths and current
flow (network was
modelled as an electrical
circuit)

Functional subnetwork
analysis in search of key
pathways of CHD

[62]

Networks for
analysis of cardiac
development,
hypertrophy, and
failure

Gene coexpression data
Network modules based on
hierarchical clustering and
shared network neighbours

Identifying common
modules in networks of
different types of
myocardial tissue

[63]

Human PPI
network PPI data

Node degree,
neighbourhood
enrichment, betweenness
centrality, clustering
coefficient, and shortest
path length

Inferring coronary artery
disease genes based on
topological information

[65]

Human PPI
network PPI data

Clustering nodes based on
graphlet degree vector
similarity

Inferring new CVD genes
based on clusters’
enrichment in CVD genes

[66]

developing heart and in hypertrophied or failing myocardial
tissue.

3.3. Methods for Utilizing Network Topology in CVD Research.
In previous section, we described a variety of methods that
used biological networks in search of genes, pathways, or
functional modules that are significant for different types of
CVDs.

We see that the majority of approaches focused on
constructing biological networks of particular cardiovascular
disorders. Several approaches further explored topological
properties of these networks and use them in search of
new CVD knowledge. In particular, modules in the network
of atherosclerosis [57] were identified based on closeness
centrality. Functional modules of a CVD network used for
investigating relationships between CVD and other disorders
were identified using modularity measure based solely on
network topology [61]. The method for identifying modules
in CHD utilized shortest paths in the network between genes
of interest [62]. Also, some basic topological properties, such

as node connectivity [54, 56], or the number of interactions
between functional sets [60], were examined in correlation
with disease. Note that the vast majority of the above-
presented topological analyses focused on CVD subnetworks
in isolation, rather than observing them as parts of a larger,
more complete interaction network, such as the entire human
PPI network.

Thismay be a limiting factor when exploring the interplay
between genes involved in different CVD disorders or when
targeting genes that have previously not been connected to
CVDs. The importance of observing the neighbourhood of
disease genes in the entire PPI network was emphasized in
one of the studies related to atherosclerosis [64]. Functional
enrichment test performed only on differentially expressed
genes failed to detect biological processes related to the
disease progression. However, the network that included
both differentially expressed genes and genes that have
high connectivity with them in the entire PPI network was
functionally enriched in relevant biological processes. This
analysis showed that the regulators of disease progression
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should be looked for among genes that are not necessarily
differentially expressed and within the context of the entire
available PPI network.

We summarized the methods that used topology of
biological networks in research of CVDs in Table 2. There
are only few approaches that identified new genes relevant to
CVDs relying solely on topological properties of entire PPI
network.The example is the computational method based on
six topological features (degree, neighbour count of disease
genes, ratio of disease genes among neighbours, betweenness
centrality, clustering coefficient, and mean shortest path
length to disease gene) [65]. The constructed classifier was
used on the PPI network to predict candidate genes for
coronary artery disease.

The PPI network topology was also used for inferring
proteins’ involvement in CVDs as follows [66]. Proteins
were clustered based on the similarity of topologies of
their neighbourhoods in the PPI network, measured using
GDV similarity [30]. The clusters were then checked for
enrichment in CVD genes. The overlap of statistically sig-
nificantly enriched clusters contained 10 key CVD genes and
17 predicted new CVD related genes. More than 70% of
these predictions were validated in the literature. Also, both
key CVD genes and predicted CVD genes were enriched in
biological functions that CVD drug mechanisms rely on,
showing that this approach may be successful in identifying
potential drug targets.

4. Conclusion

The emerging interest in molecular interaction networks of
various cardiovascular diseases has resulted in a number
of association, gene expression, PPI, and transcriptional
regulatory networks being examined to study atherosclerosis,
in-stent restenosis, heart failure, dilated cardiomyopathy,
ischemic dilated cardiomyopathy, and CVDs in general.
Many of these networks were constructed using experimental
data combined with literature mining, with the aim of
identifying a broader set of genes involved in a particular car-
diovascular disorder. These networks are a valuable platform
for exploring the mechanisms of the disease. Nevertheless,
their topologies have not been fully explored.

We surveyed studies that explored the link between some
basic topological properties of CVD genes in networks and
involvement of these genes in specific disease related pro-
cesses. Several CVD networks were checked for enrichment
in biological functions relevant to the disease, and functional
modules in the networks were identified, in some cases using
topological properties. However, topological analysis was
usually limited to the disease specific subnetwork, without
observing it in the context of a larger,more complete network.
Such complete interaction networks were analysed only in
few studies, which explored the topology around genes that
were previously not associated with CVD and thus not
present in the disease specific subnetwork. This resulted in
predictions of novel CVD genes.

There is a huge potential in analysing CVD related
molecular subnetworks and their topology in the context
of the complete biomolecular interaction networks. Such

approaches could give better insight into interconnectedness
of different CVDs. They could help discover novel CVD
genes and pathways responsible for the dependency between
different disorders.
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