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A B S T R A C T

Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of
carbon, bioactive compounds and perspective pharmaceutical agents. Antioxidant activity of fullerenols was
studied in model solutions of organic and inorganic toxicants of oxidative type – 1,4-benzoquinone and
potassium ferricyanide. Two fullerenol preparations were tested: С60О2–4(ОН)20–24 and mixture of two types of
fullerenols С60О2–4(ОН)20–24+С70О2–4(ОН)20–24. Bacteria-based and enzyme-based bioluminescent assays
were used to evaluate a decrease in cellular and biochemical toxicities, respectively. Additionally, the
enzyme-based assay was used for the direct monitoring of efficiency of the oxidative enzymatic processes.
The bacteria-based and enzyme-based assays showed similar peculiarities of the detoxification processes: (1)
ultralow concentrations of fullerenols were active (ca 10–17–10−4 and 10–17–10−5 g/L, respectively), (2) no
monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and (3)
detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The
antioxidant effect of highly diluted fullerenol solutions on bacterial cells was attributed to hormesis
phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose
exposures. Sequence analysis of 16S ribosomal RNA was carried out; it did not reveal mutations in bacterial
DNA. The suggestion was made that hydrophobic membrane-dependent processes are involved to the
detoxifying mechanism. Catalytic activity of fullerenol (10−8 g/L) in NADH-dependent enzymatic reactions
was demonstrated and supposed to contribute to adaptive bacterial response.

1. Introduction

Fullerenols are bioactive compounds, polyhydroxylated water-so-
luble derivatives of fullerenes, specific allotropic form of carbon [1].
They are promising for application in different fields of physics,
chemistry, nanobiotechnology, pharmacology, and medicine [2–5].
Chemical structure of a representative of fullerenol group, C60(OH)x,
is presented in Fig. 1.

Similar to fullerene C60, fullerenols behave like electron deficient
agents and readily react with electron rich species. This feature makes
fullerenols effective catalysts in chemical and biochemical processes.
Fullerenols are amphiphilic structures: hydroxyl groups provide them
with aqueous solubility while the fragments of fullerene skeleton – with
affinity to lipid structures of cellular membranes [6,7]. The aqueous

solubility of fullerenols depends on the amount of hydroxyl groups [8].
Due to hydrophilic properties and ability to scavenge free radicals,

fullerenols could provide a serious alternative to the conventional
pharmacological agents in chemotherapy, treatment of neurodegen-
erative diseases, and radiobiology [4,9]. A range of fullerenol biological
effects is wide: from cell protection [4,6] to drug transport [10] and
neutralization [4]. Biological activity of a series of fullerenols
С60(ОН)12–14, С60(ОН)18–24, С60(ОН)30–38, was studied by Eropkin
and co-workers [8]. Fullerenols С60(ОН)18–24 revealed maximal biolo-
gical activity [3,4,11]. The fullerenols demonstrated antioxidant activ-
ity, neutralizing reactive oxygen and nitrogen species [5,11–13]. The
antioxidant property endows fullerenols with ability to treat neurolo-
gical diseases [4,5,12,14], to function as radioprotectors [12] or
antitumor agents [15].
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Luminous marine bacteria are proper candidates for study the
antioxidant activity of fullerenols. The bacteria have been used as a
toxicity bioassay for several decades [16–20]. The tested parameter
here is luminescence intensity; it can be easily measured instrumen-
tally with simple physical devices. High rates of bioluminescence
registration and simplicity of the test organism pave the way for
simultaneous analyses of a lot of test-samples under comparable
external conditions resulting in a proper statistical treatment.

Bacterial bioluminescent assays can be based on biological systems
of different complexity – bacteria or their enzymes [17,21,22]. Along
with water-soluble bacterial preparations, the solid preparations of
immobilized bacteria and their enzymes have been developed [23–27].
The bacteria-based and enzyme-based assays allow studying mechan-
isms of toxic effects at cellular and molecular levels, respectively. First
classification of toxic effects in the bioluminescent enzyme system,
based on physicochemical, chemical, and biochemical processes, was
suggested in [28] and developed in [29–32].

Evaluation of antioxidant activity of bioactive compounds is a novel
and prospective field in biosensor application [33,34]. The assay
systems based on luminous marine bacteria and/or their enzyme
reactions are proper candidates in this field. The both bioassays,
cellular and enzymatic, can be used to evaluate general toxicity of test
samples under conditions of oxidative stress. Additionally, the enzy-
matic assay is specific to oxidizers [32]; therefore it can be used for
direct monitoring of oxidative toxicity of solutions. The oxidative
toxicity is attributed to redox activity of toxic compounds, while the
general toxicity considers, in a nonadditive way, all interactions of
exogenous compounds with the components of the bioluminescent
enzymatic assay system – redox reactions, hydrophobic and polar
interactions. Previously [35,36] the general and oxidative toxicities of
solutions of organic and inorganic oxidizers, quinones and polyvalent
metals, were studied using the bioluminescent enzymatic assay.
Decrease of both general and oxidative toxicities under addition of
humic substances (products of natural decomposition of organic matter
in soil and bottom sediments) was studied in [37–39]. Description of
the enzyme bioluminescent technique to evaluate antioxidant activity
and toxicity of bioactive compounds is presented in [40]. It should be
noted that, similar to reactive oxygen species, active chlorine species
can also produce toxic effects [41].

Current work uses fullerenols as bioactive compound models; the
oxidative stress is simulated in solutions of model inorganic and
organic oxidizers – complex salt potassium ferricyanide K3[Fe(СN)6]
and 1,4-benzoquinone, respectively. Potassium ferricyanide was cho-
sen because of its stability in water solutions (in contrast to unclustered
iron salts) and monoelectron oxidative transition Fe3+/Fe2+. The 1,4-
benzoquinone was chosen being a typical representative of the organic
oxidizer group. In nature, quinones can appear as a result of oxidative
transformation of various phenols [42,43], i.e. numerous group of
hydroxylated aromatic compounds, third in the top list of widespread
pollutants (after metal salts and oil products), and frequent compo-
nents of industrial wastewaters.

Current study evaluates changes of general and oxidative toxicities
under addition of fullerenols as detoxifying agents. Cellular and

enzymatic assays are used for the evaluation the toxicities. A wide
range of the fullerenol concentrations is tested, including ultralow
concentrations. Detoxifying activities of two types of fullerenols
(С60О2–4(ОН)20–24 and a mixture of fullerenols С60О2–4(ОН)20–
24+С70О2–4(ОН)20–24) are under investigation. Additionally, our work
focuses on chemical and biochemical processes taking place in the
course of detoxification of the oxidizer solutions; the rates of chemical
and biochemical processes in oxidizer +fullerenol solutions are ana-
lyzed.

The paper describes the results in the following sequence: Section
3.1 presents the evaluation of proper conditions for toxicity measure-
ments focusing on fullerenol and oxidizer concentrations; mutagenicity
of the oxidizer solutions is tested; Section 3.2 studies a response of
bacterial cells to the fullerenol exposure in the oxidizer solutions;
changes of general toxicity are determined; Section 3.3 studies the
effects of the fullerenols on the bioluminescent enzymatic system;
changes of general and oxidative toxicities are evaluated; rates of
chemical and biochemical reactions are determined. Section Discussion
considers peculiarities of fullerenol detoxifying effect (4.1) and pre-
sents speculations on mechanism of biological activity of highly diluted
fullerenol solutions (4.2).

2. Materials and methods

2.1. Reagents and equipment

Toxicity of water solutions of model oxidizers K3[Fe(СN)6] (potas-
sium ferricyanide) and 1,4-benzoquinone was assessed using two
bioluminescent assay systems: (1) bacterial assay, i.e. Microbiosensor
677F, based on the lyophilized luminous bacteria Photobacterium
phosphoreum, and (2) enzymatic assay, i.e. the preparation based on
the coupled enzyme system NADH: FMN-oxidoreductase from Vibrio
fischeri (0.15 a.u.) and luciferase from Photobacterium leiognathi,
0.5 mg/ml [44]. All the biological preparations were produced at the
Institute of Biophysics SB RAS (Krasnoyarsk, Russia). The chemicals
used were: NADH from ICN, USA; FMN, and tetradecanal from
SERVA, Germany; potassium ferricyanide of analytical grade,
Khimreactiv, Russia; 1,4-benzoquinone, Aldrich, USA.

The enzymatic system includes two coupled reactions:

NADH FMN FMN H NAD+ ⟹ ⋅ +
NADH FMN oxidoreductase: −

− + (1)

FMN H RCHO O FMN RCOO H O hν⋅ + + ⟹ + + +
luciferase

−
2

−
2 (2)

To construct the enzyme system, 0.1 mg/ml enzyme preparation,
5∙10-4 M FMN, 4∙10−4 M NADH, and 0.002% tetradecanal solutions
were used. The assay was performed in a 0.05 M phosphate buffer (pH
6.8) at room temperature.

Fullerenes were synthesized by carbon helium high-frequency arc
plasma at atmospheric pressure [45,46]. The fullerene content in
carbon soot was about 12.6%. Fullerene mixture was extracted with
toluene, and the individual C60 fullerene was separated by liquid
chromatography with turbostratic graphite (with interplanar distance
3.42 Å) as a stationary phase and toluene/hexane (4:6) mixture as a
mobile phase. Fullerenol С60О2–4(ОН)20–24 (F-60) and mixture of
fullerenols С60О2–4(ОН)20–24 and С70О2–4(ОН)20–24 (with 60% of F-
60) (F-60,70) were produced by fullerene hydroxylation in nitric acid
followed by the hydrolysis of the polynitrofullerenes [3,46,47]. The
fullerenol preparations were characterized with IR and photoelectron
spectroscopies [48].

Measurements of bioluminescent intensity were carried out with
bioluminometers BLM-3606 (Nauka Special Design Bureau, Russia)
and TriStar LB 941 (Berthold Technologies, Germany). Optical density
of solutions was measured by double-beam spectrophotometer
UVIKON-943 (KONTRON Instruments, Italy).

Fig. 1. Hypothetical structure of fullerenol C60(OH)x [1].
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2.2. Experimental data processing

Effects of fullerenols on bioluminescence of bacterial and enzyme
assay systems were evaluated by relative bioluminescent intensity, IF

rel:

I I I= /F
rel

F contr (3)

Here, Icontr and IF are maximal bioluminescent intensities in the
absence and presence of fullerenols, respectively.

General Toxicity (GT) of the oxidizer solutions was evaluated by a
similar way (Eq. (3a)), i.e. with relative bioluminescent intensity, IOx

rel:

I I I= /Ox
rel

Ox contr (3a)

Here, Icontr and IOx are maximal bioluminescent intensities in the
absence and presence of oxidizers, respectively.

Effective concentrations of oxidizers decreasing bioluminescent
intensity by 50% (IOx

rel=0.5), EC50, were determined.
To characterize the changes of General Toxicity (GT) under the

exposure to fullerenols, both bioluminescent assays, bacterial and
enzymatic, were applied. The detoxification coefficients, DGT, were
calculated as:

D I I= / ,GT Ox F
rel

Ox
rel

+ (4)

where IOx F
rel

+ and IOx
rel are relative bioluminescent intensities in oxidizer

solutions at EC50, in the presence and absence of fullerenols, respec-
tively. Values of DGT were determined at different fullerenol concen-
trations.

To characterize the Oxidative Toxicity (OxT) of oxidizer solutions,
the bioluminescent enzymatic assay was used; an example of the
bioluminescent kinetics is schematically presented in Fig. 2.
Bioluminescence delay period in oxidizer solutions, (T0.5)ox, is
indicated in this Figure. Changes of Oxidative Toxicity (OxT) under
fullerenol exposure were characterized with detoxification coefficients,
DOxT:

D T T= ( ) /( )OxT x x F0.5 О 0.5 О + (5)

here, (T0.5)Оx+F and (T0.5)Оx are bioluminescence delay periods
in oxidizer solutions in the presence and absence of fullerenols,
respectively. Values of DOxT were determined at different fullerenol
concentrations.

Values of DGT
>1 and DOxT >1 showed a decrease of GT and OxT in oxidizer

solutions under the exposure to fullerenols, i.e. detoxification of the
oxidizer solutions. Values of DGT ≈1 and DOxT ≈1 showed the absence
of the fullerenol effects.

Values of SD for DGT and DOxT did not exceed 0.1. The data for the
calculations of DGT or DOxT were obtained in three parallel experi-
ments with five samplings for all fullerenol and control solutions.
Values of SD for NADH oxidation rates were 10–8 М/min; the data for
the rate calculations were obtained in three experiments with five
samplings in each of them.

2.3. Sequence analysis

Mutagenic effect of the oxidizer solutions was examined using
sequence analysis of the 16S ribosomal RNA gene of P.Phosphoreum.
This gene was chosen for genetic analysis as a model for evaluating
nonspecific DNA damage. The analysis was performed on the samples
of bacterial suspensions exposed to 1,4-benzoquinone (2 10−7M and
10−6M); the results were compared to those obtained on the control
bacterial suspensions.

3. Results

3.1. Evaluation of fullerenol and oxidizer concentrations for toxicity
measurements

3.1.1. Influence of fullerenols on bioluminescent intensity
Fig. 3 presents a dependence of bioluminescent intensity (IF

rel, Eq.
(3)) of luminous bacterial and enzyme assay system on concentrations
of fullerenol F-60. As is evident from this Figure, the fullerenol
suppresses bioluminescence of the bacterial and enzymatic systems
at concentrations >10-2 g/L and >5∙10-3 g/L, respectively. Similar
results were obtained for the other fullerenol preparation, F-60,70.

The suppression of bioluminescent intensity is an evidence of
fullerenol toxic effect; it is concerned with inhibition of membrane
and intracellular processes (for bacterial cells) or chemical and
biochemical reactions (for enzyme system). Additional reasons for
the bioluminescence suppression can be: the effect of “optic filter” as a
result of bioluminescence absorption/reabsorption [17] and “concen-
tration quenching” resulted from collisional intermolecular interac-
tions. The latter processes are concerned with peculiarities of the
luminescence registration in solutions and do not contribute to toxic
effects.

Basing on the experiments described, we chose the range of
fullerenol concentrations for further experiments (<10−4 g/L) provid-
ing the absence of the fullerenol inhibiting effect. The fullerenol
concentrations varied in this range to decrease General Toxicity (GT)
and Oxidative Toxicity (OxT) in solutions of oxidizers (organic and
inorganic) as described below in Sections 3.2 and 3.3.

3.1.2. Oxidizers: effective concentrations (EC50) and mutagenicity
Effective concentrations of oxidizers decreasing bioluminescent

intensity by 50% (IOx
rel=0.5), EC50, were determined with bacterial

and enzymatic bioluminescent assays. The EC50 values of 1,4-benzo-
quinone were 2.5∙10-7 M and 10−4 M for bacterial and enzymatic
assays, respectively, while the EC50 values of potassium ferricyanide
were 4∙10−2 M and 2·10−4 M. Lower EC50 values of 1,4-benzoquinone
reveal higher toxicity of this oxidizer. This result is supported by the
differences in standard redox potentials (0.7 V and 0.36 V at neutral
pH for 1,4-benzoquinone and potassium ferricyanide, respectively)
[49] and hydrophobic characteristics of the oxidizers.

The ЕС50 values were applied in further experiments to monitor
changes of General Toxicity (GT) in oxidizer solutions under addition
of fullerenols, as described in Sections 3.2 and 3.3.1 for bacterial and
enzymatic assays, respectively.

Mutagenic effect of organic oxidizer solutions (1,4-benzoquinone,
2.5 10−7M and 10−6 M) was examined using sequence analysis of the
16S ribosomal RNA gene; the results were compared to those obtained
on the control bacterial suspension. No changes in the analyzed gene
sequence were found under the conditions of the experiment. Hence,
the analysis did not reveal any mutations in DNA of the bacteria
exposed to the oxidizer.

3.2. Bacterial response to the fullerenol exposure in solutions of
oxidizers

Detoxifying ability of fullerenols was studied using the bacteria-Fig. 2. Bioluminescent kinetics in solution of a model oxidizer (Ox) and fullerenol (F).
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based assay. Bioluminescent intensity of the bacteria was measured in
solutions of model oxidizers (1,4-benzoquinone and potassium ferri-
cyanide) at ЕС50 in the absence and presence of fullerenols F-60 and
F-60,70. Concentrations of the fullerenols varied in a wide range as
shown in Fig. 4. Detoxification coefficients DGT were calculated
according to Eq. (4).

Fig. 4 shows that 1,4-benzoquinone solutions were detoxified (DGT
>1) in the concentration ranges of 10–17–10−8 and 10–17−10−4 g/L

for F-60 and F-60,70, respectively. Maximal values of DGT were about
1.5 and 1.8, respectively. In solutions of potassium ferricyanide, the
values of DGT were lower: they are not more than 1.3 for F-60,70 and
close to “1” at all F-60 concentrations. No monotonic dependencies of
DGT on fullerenol concentrations were observed in all cases.

3.3. Effects of fullerenols on enzymatic processes

This section presents fullerenol effects on the bioluminescent
system of coupled enzymatic reactions (reactions (1), (2)). It studies:

(1) enzymatic activity characterized by bioluminescent intensity of the
coupled enzymatic system (I, Figs. 2), (2) redox properties of the
enzyme system evaluated by the bioluminescence induction period
(T0.5, Figs. 2), and (3) rates of oxidation of NADH, endogenous
reducer, a low-molecular component of the bioluminescent enzyme
system. Changes of these characteristics are presented in Sections
3.3.1, 3.3.2, and 3.3.3, respectively.

3.3.1. Changes of enzymatic activity under the action of fullerenols in
oxidizer solutions

Bioluminescent intensity was measured in solutions of oxidizers in
the absence and presence of fullerenols: Iox and Iox+F, respectively,
Fig. 2. Detoxification coefficients DGT calculated with Eq. (4), are
presented in Fig. 5. Fig. 5A demonstrates detoxifying effect of F-60
(DGT >1) in oxidizer solutions in at different fullerenol concentrations.
Lower detoxification coefficients DGT were found under exposure to F-
60,70, Fig. 5B. It is evident that DGT values in solutions of organic
oxidizer, 1,4-benzoquinone, are higher than those of inorganic oxidizer,
potassium ferricyanide. Probably, hydrophobic properties of the solu-
tion components (fullerenol+oxidizer) are critical for the enzymatic

Fig. 3. Bioluminescent intensity IF
rel at different concentrations of F-60 in bacterial (A) and enzymatic (B) systems.

Fig. 4. Detoxification coefficients DGT vs. concentration of fullerenols F-60 (A) and F-
60,70 (B) in solutions of 1,4-benzoquinone (2.5∙10-7 M) and potassium ferricyanide (4·
10-2 М). Bacteria-based assay.

Fig. 5. Detoxification coefficients DGT vs. concentration of fullerenols F-60 (A) and F-
60,70 (B) in solutions of 1,4-benzoquinone (10−4 M) and potassium ferricyanide (2·
10−4 М). Enzyme-based assay.
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process, similar to the cellular process.

3.3.2. Changes of redox properties of the bioluminescent enzyme
system in oxidizer+fullerenol solutions

Bioluminescent kinetics of the enzymatic system was studied in
solutions of model organic and inorganic oxidizers. Induction periods
were measured in the absence and presence of fullerenols: (T0.5)ox
and (T0.5)ox+F, respectively, Fig. 2. Detoxification coefficients DOxT

were calculated with Eq. (5).
Fig. 6 demonstrates the dependences of DOxT on fullerenol

concentrations. Detoxification coefficients DOxT in the solutions of
organic oxidizer 1,4-benzoquinone (Fig. 6A,B) were found to be higher
than these in ferricyanide solutions; they reached up to “2” in the cases
of both F-60 and F-60,70. These data demonstrate an effective decrease
of oxidative toxicity in the range of ca 10–12–10-6 g/L for F-60, and ca
10–16–10-4 g/L for F-60,70.

3.3.3. Reaction rates in enzymatic assay system in solutions of
oxidizers and fullerenols

The rates of NADH oxidation were studied in the presence and
absence of fullerenol F-60, in enzymatic and nonenzymatic processes,
Table 1.

The rates of NADH auto-oxidation in the absence (No. 1) and
presence (No. 1E) of the enzymes are presented in the Table 1. These
values are close to those determined previously [36,39]. The data show
that the addition of F-60 to NADH solutions increases the auto-
oxidation rates by 4∙10−8 and 5∙10−8 М/min, respectively.

Reactions No. (2) and 2E (Table 1) present endogenous processes
in the bioluminescent assay system, i.e. nonenzymatic and enzymatic
redox reactions of the endogenous reducer and oxidizer (NADH and
FMN, respectively, reaction (1), Section 2.1). Addition of F-60 in-
creased the rate of the enzymatic reaction by 57∙10−8 М/min, Table 1.
Similar results were obtained with fullerenol F-60,70.

Light-absorption spectra of oxidizer solutions (EC50, Section 3.1.2)
were studied under exposure to fullerenols of different concentrations:
10–17−10−4 g/L. No changes in oxidizer concentrations were observed

during the 4-h exposure.

4. Discussion

4.1. Peculiarities of fullerenol detoxifying effect

Figs. 4–6 demonstrate that DGT and DOxT exceed “1” in a wide
range of fullerenol concentrations, revealing detoxification ability of
fullerenols in oxidizer solutions. Both cellular and enzymatic assays
demonstrate the detoxifying activity of the fullerenols. Three peculia-
rities of the fullerenol detoxifying effect are evident from these
experiments: (1) highly diluted fullerenol solutions were active, (2)
no monotonic dependencies of DGT or DOxT on fullerenol concentra-
tions were observed, and (3) detoxification of organic oxidizer solutions
was more effective.

The NADH, organic reducer, is a component of a lot of biochemical
reactions, including reaction (1) in the bioluminescent system of
coupled enzymatic reactions (Section 2.1). The change of rate of
NADH oxidation serves as an indicator of intensification (or slowdown)
of redox processes in the assay system. Section 3.3.3 studied rates of
NADH oxidation in the absence and presence of fullerenol (10−8 g/L),
in enzymatic and nonenzymatic processes, Table 1. Acceleration of
auto-oxidation processes (No. 1 and 1E, Table 1) by the fullerenol was
found. This result shows that the fullerenol stimulates an oxidation of
the endogenous reducer, NADH, withdrawing it from the biochemical
process, decreasing the bioluminescent intensity in accordance with
reactions (1) and (2) (Section 2.1), and contributing to toxicity increase
(DGT

<1). On the other hand, fullerenol increased the rate of the
enzymatic redox reaction of endogenous reducer and endogenous
oxidizer (NADH and FMN, respectively, reaction (1), Section 2.1) by
57∙10-8 М/min (No. 2E, Table 1). So, the experiments demonstrate that
fullerenols are able to increase toxicity of aqueous solutions by
acceleration of NADH auto-oxidation, or decrease the toxicity by
acceleration of endogenous NADH-dependent biochemical processes.
In both cases, fullerenol in highly diluted solutions (10–8 g/L, corre-
sponding to ca 10–11 M) can be considered as a catalyzer of the redox
reactions.

Light-absorption measurements in oxidizer solutions showed in-
dependence of 1,4-benzoquinone or ferricyanide concentrations on the
exposure to fullerenol and, hence, did not confirm the neutralization of
the oxidizers in the solutions, outside the bioassay systems.

All the peculiar experimental results suggest a specific mechanism
of the fullerenol biological influence.

4.2. On mechanism of antioxidant effects in highly diluted solutions of
fullerenols

Ultralow bioactive concentrations of fullerenols are a subject of a
special interest. Previous sections showed that antioxidant effects of the
fullerenols take place within ca 10–17–10−4 and 10–17–10−5 g/L for

Fig. 6. Detoxification coefficients DOxT vs. concentration of fullerenols F-60 (A) and F-
60,70 (B) in solutions of 1,4-benzoquinone (10−4 M) and potassium ferricyanide (2·
10−4 М). Enzyme-based assay.

Table 1
Rates of NADH oxidation in the absence (V) and presence (VF) of fullerenol – F-60,
СNADH=1.6∙10–4 М, СF-60=10

–8 g/L. CFMN=5.4∙10–5 М, E – enzyme preparation.
Registration wavelength 340 nm. SD for V and VF was 10–8 М/min.

No Components of solution V·108, М/min

V VF VF - V

Nonenzymatic processes
1 NADH (auto-oxidation) 6 10 4
2 NADH+FMN 32 32 0
Enzymatic processes
1Е NADH+Е 4 9 5
2Е NADH+FMN+Е 317 374 57
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bacteria-based and enzyme-based assays, respectively. The active
concentrations may correspond to several tens of fullerenol molecules
per liter.

Activation of vital functions of various organisms by low-intensive
exposures is a well-known effect, common to all living organisms. It is
attributed to triggering of cell defense response under the influence of
low concentrations of toxins, low dose radiation, and other stressors. It
is known that low doses of bioactive substances can serve as effective
drugs [50–52].

Generally, low-intensive exposures are described in terms of
hormesis phenomenon. “Hormesis” is a term for “a generally favorable
biological response to low exposures to toxins and other stressors.” “It
is characterized by low-dose stimulation and high-dose inhibition,
resulting in either a J-shaped or an inverted U-shaped dose response”
[51,53–56]. The rapid and extensive exponential growth of hormesis
citations in the biomedical community takes place for the last two
decades [55]. Evidence emerged that hormesis is highly generalizable,
independent on biological model or endpoint measured, inducing agent
and level of biological organization (e.g. cell, organ, organism). The
hormesis mechanism is not understood yet and still lacks strong
experimental support, which leads to uncertainty as to the exact
underlying causes of hormesis [57]. There exist two models explaining
mechanism of hormesis; they consider the adaptive response as related
with DNA damage or cell membrane processes [50,58–61].

In our previous studies, we demonstrated a positive response of
luminous bacteria to low-dose radiation exposure. The results of a
series of investigations were summarized in a review [62].
Independency of the bacterial luminescent response on active concen-
tration of beta-emitting radionuclide tritium was demonstrated for
intact and lyophilized bacteria in a wide radioactivity interval: 10-4-200
MBq/L [22]. Similar low-dose radiation effects, current study showed
(a) positive response of the luminous bacteria to fullerenol exposure
and (b) absence of linear dose-effect dependencies: the bacterial and
enzyme luminescent responses did not depend on fullerenol concen-
trations in a wide concentration interval: ca 10–17–10−4 and 10–17–
10−5 g/L, respectively.

Biological efficiency of ultralow concentrations of hydrated full-
erenes was determined and discussed earlier in [63,64]. This effect was
attributed to fullerene ability to adjust dynamic structure of aqueous
media and to “regulate redox processes (especially those involving
oxygen) in aqueous systems”. Earlier [65], a role of aqueous medium in
antiradical activity of fullerenols was discussed. According to [62,66],
reactive oxygen species in aqueous media might contribute to bacterial
bioluminescence activation under low-dose exposures.

Sequence analysis did not reveal any mutagenic effect of the
oxidizer solutions under the conditions of the experiments.
Therefore, the low-concentration fullerenol effect might be due to
“nongenetic” mechanism of the cellular response. The results of this
study might be interpreted using the novel “exposome” concept, that
complements the genome and encompasses the totality of environ-
mental (i.e. non-genetic) exposures [67].

The difference in effects of fullerenols in solutions of organic and
inorganic oxidizers might be concerned with membrane processes in
the luminous bacteria. Probably, the combination of amphiphilic
compounds (1,4-benzoquinon+fullerenol) in water solutions promotes
membrane processes resulting in the intensification of protecting
metabolic response of the bacterial cells. Changes in structural
organization and fluidity of lipid bilayers in hydrophobic parts of a
membrane by F-60 were previously reported in [68]. In our resent
experiments under conditions excluding penetration of radionuclide
tritium to the bacterial cells [69], a preference of membrane process for
the bacterial bioluminescence activation was proved.

Hence, the low-concentration antioxidant effects of fullerenols on
bacterial cells can be attributed to hormesis phenomenon, while the
intensification of biochemical reactions is explained in terms of full-
erenol catalytic activity. Cellular and enzymatic bioluminescent assays

showed that solutions of organic oxidizer are detoxified more effectively
than those of inorganic oxidizer, indicating the importance of hydro-
phobic interactions in the detoxification mechanism.

5. Conclusions

The study considers antioxidant properties of bioactive compounds,
fullerenols – nanosized water-soluble derivatives of fullerenes, specific
allotropic form of carbon. Two fullerenol preparations were tested:
С60О2–4(ОН)20–24 and mixture of two types of fullerenols С60О2–

4(ОН)20–24+С70О2–4(ОН)20–24. Fundamental and applied aspects of
the fullerenol antioxidant activity were under consideration.

The study promotes application of bioluminescent assays to eval-
uate detoxifying activity of bioactive compounds, with fullerenols taken
as an example. Bacteria-based assay was used to demonstrate a
decrease in cellular toxicity, while the enzyme-based assay – in
biochemical toxicity. Additionally, the enzyme-based assay was used
for the direct monitoring of the efficiency of oxidative enzymatic
processes.

Bacteria-based and enzyme-based assays have demonstrated simi-
lar peculiarities of the detoxification processes: (1) ultralow concentra-
tions of fullerenols were active (ca 10–17–10−4 and 10–17–10−5 g/L,
respectively), (2) no monotonic dependencies of detoxification effi-
ciency on fullerenol concentrations were observed, and (3) detoxifica-
tion of organic oxidizer solutions was more effective than that of the
inorganic oxidizer. First and second peculiarities attribute the antiox-
idant effects of fullerenols to hormesis phenomenon, which is generally
considered as a basis for biological adaptive response. Since the
sequence analysis of 16S ribosomal RNA gene did not reveal any
mutagenic effects of oxidizer solutions, the results support the concept
of a “nongenetic” mechanism of the cellular response to the low-
concentration fullerenol exposure.

Higher detoxification efficiency in solutions of the organic oxidizer
supports a suggestion on involving hydrophobic (probably membrane-
dependent) processes to the detoxification mechanism.

Catalytic activity of fullerenol (10−8 g/L) in NADH-dependent
enzymatic reactions was demonstrated and supposed to contribute to
the adaptive bacterial response.

Current work elaborates physicochemical, biochemical and cellular
basis for bioluminescence-based sensors aimed at evaluation of anti-
oxidant activity of bioactive compounds. The study develops applica-
tion of luminous marine bacteria and their enzyme reactions for the
antioxidant activity monitoring. High potential of the bioluminescence
systems for studying the biological activity in ultra-diluted solutions is
demonstrated. The bioluminescent bacteria- and enzyme-based assays
are suitable for low-dose effect evaluation due to simplicity and high
rates of bioluminescence measurements. These properties ensure
higher reliability of the biological measurements.

Apart from the quantitative evaluation, molecular mechanisms of
adaptive response in the bacterial cells should be studied in further
experiments using a number of methods applicable for intracellular
processes: from membrane penetrability to gene regulation, enzyme
activity, ATP consumption and crystallinity of intracellular macrocom-
ponents.
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