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Background: An increasing number of RNA modification types other than N6-
methyladenosine (m6A) modification have been detected. Nonetheless, the probable
functions of RNA modifications beyond m6A in the tumor microenvironment (TME),
mesenchymal (MES) transition, immunotherapy, and drug sensitivity remain unclear.

Methods: We analyzed the characteristics of 32 non-m6A RNA modification regulators
in 539 glioblastoma (GBM) patients and the TME cell infiltration and MES transition
patterns. Using principal component analysis, a non-m6A epitranscriptome regulator
score (RM score) model was established. We estimated the association between RM
score and clinical characteristics, TME status, GBM subtypes, and drug and
immunotherapy response.

Results: Three definite non-m6A RNA modification patterns associated with diverse
biological pathways and clinical characteristics were identified. The high RM score group
was characterized by a poor prognosis, enhanced immune infiltration, and MES subtype.
Further analysis indicated that the high RM score group had a lower tumor mutation
burden as well as a weaker response to immunotherapy. The higher RM score group may
benefit more from drugs targeting the EGFR and WNT signaling pathways.

Conclusion:Our study exposed the potential relationship of non-m6A RNA modification
regulators with clinical features, TME status, and GBM subtype and clarified its
therapeutic value.
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INTRODUCTION

Glioblastoma (GBM) is the most ordinary malignant intracranial
cancer (1). Patients with GBMhave an approximately 14–16-month
median survival time, and GBM is highly resistant to standard
therapies because of its extraordinary immunosuppressive
microenvironment and mesenchymal (MES) transition (2–4).

There are over 160 posttranscriptional RNA modifications
(5). RNA modifications modulate the structure as well as
functions of RNAs, which results in several diseases, including
GBM (6, 7). In eukaryotic cells, the most common RNA
modification is N6-methyladenosine (m6A) (8, 9). Intensive
investigations have indicated that m6A facilitates a broad range
of critical functions, including embryogenesis, neurogenesis,
hematopoiesis, and tumorigenesis (10–13). Indeed, an
increasing number of RNA modifications beyond m6A have
been found and studied with the development of technology
(14). We found that some RNAmodifications have been recently
reported to be widespread on mammalian RNA; these include
pseudouridine (Y), N6,2′-O-dimethyladenosine (m6Am), N

1-
methyladenosine (m1A), alternative polyadenylation (APA),
N7-methylguanosine (m7G), 2′-O-methylated nucleotides
(Nm), 5-methylcytidine (m5C), N4-acetylcytidine (ac4C),
adenosine-to-inosine RNA editing (I), and cytidine-to-uridine
RNA editing (U) (14–16).

Y, the most abundant non-m6A modification, is generated by
uridine isomerization (17). Y “writers” include TRUB1, TRUB2,
PUS1, PUS7, and DKC1 (18). Y is required for proper folding
and translation of transfer RNA (tRNA), ribosomal RNA
(rRNA) structure stabilization, small nuclear ribonucleoprotein
(snRNP) biogenesis, and messenger RNA (mRNA) splicing
(19–21).

Detected at an approximately 10-fold lower m6A level, m1A is
involved in the methylation of the adenine base on the first
nitrogen atom as well as carries positive electricity (22). The m1A
methylation process is mediated by methyltransferases (writers)
consisting of TRMT61B, TRMT6, and TRMT61A, while the
removal process is catalyzed via demethylases (erasers)
containing ALKBH3, ALKBH1, and FTO (23–25). Various
specific RNA-binding proteins (readers), including YTHDC1,
YTHDF3, YTHDF2, and YTHDF1, can recognize the m1Amotif,
thus affecting m1A functions (26). m1A is necessary for tRNA
structure stabilization, proper rRNA biogenesis, and methylated
mRNA translation (22, 27). If 2′-O-methyladenosine is the first
ribotide behind the m7G cap of mRNA, it could be methylated at
the N6 position to render m6Am, which is related to mRNA
metabolism (28, 29). PCIF1 is the writer that creates the m6Am

modification, and FTO is the eraser of m6Am (25, 30). APA
cleaves mRNA at more than one site and adds poly (A) tails to
generate different transcripts of the 3′-untranslated region (3′
UTR) or coding regions, which regulates the function, stability,
and translation efficiency of RNAs (31). PABPN1, NUDT21,
CLP1, PCF11, and CPSF6 can regulate the APA process (32).

At levels similar to those of m1A, m7G, a modification
carrying a positive charge at the 5′ cap, is necessary for mRNA
export, splicing, and translation (33). In addition, the METTL1-
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catalyzed m7G tRNA methylome is important for the translation
of mRNA (34). Nm is relatively widespread in rRNA, tRNA,
snRNA, and microRNA and can be installed by FBL (35, 36). In
addition, Nm is essential for adjusting the structure and function
of ribosomes (37).

Appearing in both coding and non-coding regions, m5C sites
are chiefly CG-rich regions that accumulate in the UTRs of
mRNA (38). The writer of m5C is NSUN2, while the eraser is
TET2 (14, 39, 40). In addition, YBX1 has been reported to be an
m5C reader (41). m5C modification plays an essential role in
mRNA export, tRNA structure stabilization, and rRNA
translational fidelity (39, 42). Catalyzed by NAT10 and
THUMPD1, ac4C was subsequently discerned in serine and
leucine 18S rRNA and tRNAs. ac4C, the sole acetylation
modification in eukaryotic RNA, regulates mRNA translation
and ribosome biogenesis (43, 44).

RNA editing is a kind of programmed posttranscriptional
mechanism altering nucleotides in selected transcripts (45).
Catalyzed by ADAR, ADARB1, and ADARB2, RNA editing
can transform the sequence as well as alter transcriptional
procedures (46). Accumulating in 3′UTRs, U RNA editing
alters the protein level (47). UPP1 can catalyze the
phosphorolysis of uridine to uracil (48, 49).

To thoroughly comprehend the significance of RNA
modifications beyond m6A, investigation of the crosstalk
among diverse patterns of RNA alterations is urgently needed.
Ten kinds of non-m6A RNAmodification “regulators”may build
a complex and significant regulatory network in GBM, which
might help elucidate GBM tumorigenesis mechanisms.

Immune checkpoint blockade therapy (ICB therapy), also
known as immunotherapy, has delivered promising clinical
outcomes for various cancers; nevertheless, it commonly
exhibits a poor response due to the tumor microenvironment
(TME) (50, 51). Unfortunately, a large number of patients with
GBM have not experienced outstanding survival benefits; that is,
immunotherapy for GBM is far from reaching clinical
expectations (52). Accordingly, to enhance the effect of
immunotherapy for GBM, it is crucial to thoroughly
investigate the immunosuppressive TME. Recent studies have
revealed that m6A plays a significant role in complex TME
formation (53, 54). Estimating m6A patterns of a type of
tumor to characterize TME infiltration could guide more
effective immunotherapy strategies (55, 56). Non-m6A RNA
modification as well as correlative regulators are highly related
to the microenvironment of immune cells as well as tumor cells.
TET2 deficiency in Treg cells results in T-cell activation (57).
NAT10 regulates the function of CD4+ T cells (58). However, few
studies have systematically analyzed the non-m6A RNA
modification patterns of individual tumors, while these RNA
modifications play a non-negligible role in tumorigenesis
(16, 59).

Based on genetic transcription signatures, GBM can be
categorized into three subtypes (MES; classical, CL; as well as
proneural, PN) (3). MES transition promotes radiochemotherapy
resistance in GBM (60, 61). The MES subtype is particularly
aggressive among these three subtypes, while the PN subtype
January 2022 | Volume 12 | Article 809808
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yields the best prognosis (62, 63). In addition, the MES-subtype
GBM promotes the formation of an immunosuppressive TME,
while the TME advances the MES transition in GBM (62, 64). An
increasing number of studies have demonstrated that non-m6A
RNAmodification regulators are significantly correlated withMES
transition. It has been reported that ADAR and YBX1 promote
MES transition by regulating oncogenic microRNA maturation
(65, 66). Nevertheless, research on RNA modifications beyond
m6A is still not as mature as that for m6A for many reasons,
including technology limitations. Accordingly, it is significant to
investigate the non-m6A epitranscriptome patterns and
characteristics of TME infiltration and MES transition in GBM.

In this study, we explored somatic mutation data for 390
GBM cases from The Cancer Genome Atlas (TCGA,
http://portal.gdc.cancer.gov/; http://xena.ucsc.edu/) and
integrated gene expression data from 539 GBM samples from
TCGA and Chinese Glioma Genome Atlas (CGGA, https://www.
cgga.org.cn/) cohorts to evaluate the RNA modification patterns.
We discovered that non-m6A RNA modification patterns were
associated with TME cell-infiltrating characteristics as well as
MES transition. Next, according to differentially expressed genes
(DEGs), we established a non-m6A epitranscriptome “regulator”
score (RM score) to evaluate the effect on the non-m6A
epitranscriptome in individual patients. Eventually, we verified
the pertinence of the RM score in distinguishing the
posttranscriptional and transcriptional events as well as
evaluated its importance in predicting the response to targeted
and ICB therapy.
MATERIALS AND METHODS

Data Collection and Processing
The study workflow chart is shown in Figure S1A. Genetic
transcription data as well as clinical information on GBM
patients were obtained from TCGA and the CGGA. Somatic
mutation counts and copy number variation (CNV) were
obtained from the TCGA database. In total, 539 GBM samples
(CGGA_batch_1:139, CGGA_batch_2:249, TCGA:151) were
gathered in this study for further analyses. We used sva
package’s “ComBat” algorithm to correct non-biotechnology
deviations causing batch effects. R Bioconductor packages and
R (version 4.10) were used to analyze the data.

Unsupervised Clustering for 32 Non-m6A
RNA Modification Regulators
We extracted 32 non-m6A RNA modification regulators and their
expression from the TCGA and CGGA databases. These non-m6A
RNA modification regulators included 10 RNA modification
types, which are listed in Table S1. Using unsupervised cluster
analysis, different non-m6A RNA modification patterns
concerning 32 non-m6A RNA modification regulatory factors
were identified, and the patients were classified into different
clusters. We applied the Consensus Cluster Plus package to
execute the steps above with1,000 repetitions to guarantee
classification stability.
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Gene Functional Annotation Based on
Gene Set Variation Analysis
To analyze the differences in biological processes between non-
m6A RNA modification patterns, gene set variation analysis
(GSVA) enrichment was performed via the “GSVA” R
package. We downloaded the gene set “c5.go.bp.v7.4” as well
as “c2.cp.kegg.v7.4” from the Molecular Signatures Database
(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
for GSVA.

TME Cell Infiltration Estimation
First, single-sample gene set enrichment analysis (ssGSEA) was
used to identify tumor immune-infiltrating cell abundance in
GBM samples. The markers of 28 immune-related cells and types
were obtained from the dataset of Bindea et al. (67). Using an
unsupervised hierarchical clustering algorithm, 539 GBM
samples were assigned to two groups based on immune
infiltration. Next, ESTIMATE was used to calculate the
immune score as well as stromal score (68). Then, we used
CIBERSORT (http://cibersort.stanford.edu/) to measure the
infiltration levels of 22 distinct immune cells among the
GBM samples.

Estimation of the MES/PN Score
Verhaak et al. identified three prognostic subtypes by integrated
genomic analysis (69). There are significant prognostic differences
between different subtypes, and accurate identification of subtypes
can also guide treatment strategies. We downloaded the gene sets
“VERHAAK_GLIOBLASTOMA_MESENCHYMAL” and
“VERHAAK_GLIOBLASTOMA_PRONEURAL” from the
MSigDB database v7.4 and quantified the MES and PN scores of
the GBM samples using the ssGSEA algorithm.

Identification of DEGs Among Non-m6A
RNA Modification Patterns
To identify non-m6A RNA modification-related genes, DEGs
among three different non-m6A RNA modification
characteristics were arranged via the limma R package. The
significance criterion for DEGs was p-value <0.01. To evaluate
the function of DEGs, Gene Ontology (GO) analysis was
performed to calculate biological process (BP), molecular
function (MF), and cellular component (CC) terms using
DAVID (https://david.ncifcrf.gov/) with a p-value cutoff
of <0.05.

Cell Lines and Cell Culture
U-118 MG (Chinese Academy of Sciences Cell Bank) and LN-
229 (ATCC Cell Bank) cell lines were cultured in DMEM (Sigma,
USA) supplemented with 10% FBS (Thermo Fisher Scientific,
USA). THP-1 cells (Chinese Academy of Sciences Cell Bank)
were cultured in RPMI-1640 (Sigma) supplemented with 10%
FBS. The cell lines were incubated at 37°C with 5% CO2. To
induce their differentiation into macrophages, THP-1 cell lines
were incubated with 100 ng/ml phorbol 12-myristate 13-acetate
(PMA, Sigma) for 24 h.
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Small Interfering RNA and Plasmid
Transfection
Small interfering RNAs (siRNAs) targeting UPP1 and plasmid
overexpression of FTO were synthesized (GenePharma, China).
SiRNAs and plasmids were transfected with Lipofectamine™

3000 reagent (Thermo Fisher Scientific) according to the
protocol of the manufacturer.

Western Blotting
Protein was extracted from GBM cell lines. The blots were
incubated with primary antibodies against UPP1 (Abcam, UK),
FTO (Cell Signaling Technology, USA), and ACTIN (Cell
Signaling Technology).

5-Ethynyl-2′-deoxyuridine Cell
Proliferation Assay
A 5-ethynyl-2′-deoxyuridine (EdU) cell proliferation assay kit
(RiboBio, #C10310-1; China) was used to evaluate the
proliferative activity of GBM cells. The cell proliferation rate
was assessed via the ratio of EdU-positive (red) cells to total
Hoechst-positive (blue) cells.

Transwell Assay
To evaluate migratory ability, GBM cells were added to the top
chamber in DMEM without FBS, and the bottom chamber was
filled with 10% FBS DMEM. To measure the ability to recruit
macrophages, macrophages were added to the top chamber in
RPMI-1640 without FBS, and the bottom chamber was filled
with 10% FBS RPMI-1640 and growth media of different groups
of GBM cells. After 24 h of incubation, the membrane was fixed
in 4% paraformaldehyde and stained with crystal violet.

Constructing the RM Scoring System to
Evaluate Individual GBM Samples
First, overlapping DEGs distinguished from non-m6A RNA
modification clusters were chosen for analysis. Then, we
analyzed the prognostic value for each overlapping DEG via a
univariate Cox regression model, and significant prognostic
genes were identified. Next, the PCA algorithms were used to
generate the RM score. Both principal component 2 and
principal component 1 were selected to describe the RM
scoring system.

RM score =oPC2i − PC1i

where i is the DEG expression.

Immunofluorescence
Tumor tissues were obtained from 12 patients treated for GBM
at Qilu Hospital. RNA quantity and quality were estimated via an
Agilent 2100 bioanalyzer (Agilent Technologies) and a
Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific).
The mRNA library was prepared by using the NEBNext®

Ultra™ RNA Library Prep Kit (Beijing Novel Bioinformatics
Co., Ltd.). The HiSeqX platform (Illumina) on the Illumina
standard protocol was used for RNA sequencing. Next, we
Frontiers in Immunology | www.frontiersin.org 4
performed a PCA algorithm based on the expression of DEGs
to calculate the RM scores of the 12 GBM patients. We selected
three cases with the highest as well as three cases with the lowest
scores and performed immunofluorescence (IF) staining. After
blocking with 5% goat serum (Gibco, USA) for 30 min, samples
were incubated with primary antibodies at 4°C overnight. The
following primary antibodies were used: rabbit SOX2 antibody
(3579, Cell Signaling Technology, 1:400, USA), mouse CD44
antibody (3570, Cell Signaling Technology, 1:400), mouse
CD163 antibody (ab156769, Abcam, 1:100, UK), and rabbit
FoxP3 antibody (12653, Cell Signaling Technology, 1:400).
Next, the samples were incubated with fluorophore-conjugated
secondary antibodies at 37°C for 1 h. Alexa Fluor 594 anti-rabbit
antibody (A11037; Invitrogen; 1:400) and Alexa Fluor 488 anti-
mouse antibody (A11029; Invitrogen; 1:400) were used. DAPI
was used to stain the cell nuclei. All immunostained samples
were analyzed using Leica Application Suite Software and a Leica
TCS SP8 confocal system. ImageJ was used to analyze the
fluorescence intensity.

Summary of Genomic and Clinical
Information of the Immunotherapy Cohort
We analyzed gene expression-related clinical information of the
immunotherapy cohort and identified two independent
immunotherapy cohorts: advanced urothelial tumor with
atezolizumab treatment (IMvigor210 cohort, http://research-
pub.gene.com/IMvigor210CoreBiologies/packageVersions/) and
metastatic melanoma with pembrolizumab treatment
(GSE78220 cohort). We obtained the expression data and
clinical annotations of the GSE78200 cohort from the Gene
Expression Omnibus (GEO) database.

Association Analysis Between Drug
Sensitivity and RM Score
Cancer Cell Line Encyclopedia (CCLE) RNA-seq data were
obtained from https://portals.broadinstitute.org/ccle/. Cancer
cell line drug responses, measured as area under the curves
(AUCs) and drug pathways, were obtained from Genomics of
Drug Sensitivity in Cancer (GDSC; https://www.cancerrxgene.
org/downloads). Spearman correlation analysis was applied to
estimate the association between drug sensitivity and RM score.

Comparison of the m6A Score
and the RM Score
The Bayesian information criterion (BIC) as well as Akaike
information criterion (AIC) was applied to compare the two
models. A model with lower BIC and AIC values was identified
as a better model.

RM Score Among Clinical Traits in
Pan-Cancer
Univariate Cox regression analysis was used to investigate the
time-dependent prognostic value of RM score in Pan-cancer.
Overall survival (OS) and progression-free survival (PFS) were
selected to study the relationship between RM score and
January 2022 | Volume 12 | Article 809808
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prognosis. In addition, the correlation between RM score and 22
immune cell infiltration was calculated in 33 cancers, respectively.

Statistical Analysis
The statistical analyses were generated by R-4.0.1. Distance and
Spearman correlation analyses were applied to calculate 32 RNA
modification expression correlation coefficients. Kruskal–Wallis
and one-way ANOVA tests were applied to appraise difference
comparisons of more than three collections. To assess the
relationship between patient survival and the RM score, the
optimal cutoff point for survival information for each dataset was
determined using the survminer package. The log-rank test and
Kaplan–Meier analysis were applied to assess survival among
different clusters as well as RM score groups. The hazard ratio
(HR) of DEGs was calculated via a univariate Cox regression
model. To evaluate whether the RM score serves as an independent
predictor for survival, sex, age, and isocitrate dehydrogenase (IDH)
status were considered variables in the multivariate Cox regression
model analysis. Statistical analysis was two-sided, as well as p <0.05
was regarded as statistically significant.
RESULTS

Landscape of Genetic Variations in Non-
m6A RNA Modification Regulators in GBM
A total of 32 non-m6A RNA modification regulators (Table S1)
were included in the current study.Figure1A shows that these non-
m6A RNA modification regulators can dynamically and reversibly
add, remove, and recognize non-m6A RNA-modified sites and
potentially change biological functions, such as splicing, stability,
export, translation, and degradation of RNA.We first summarized
the somaticmutation prevalence of 32 non-m6ARNAmodification
regulators among GBM. Among 390 samples, 24 showed genetic
alterations of non-m6A RNA modification regulators, with a
frequency of 6.67% (Figure 1B). These mutations were
multifarious and included splicing-related mutations, missense
mutations, and deletions (Figure 1B). The mutation frequency of
ADARB2 was the highest, while PABPN1, TRUB1, TRUB2,
NAT10, PUS1, and TRMT61A showed no mutations among the
390 GBMpatients (Figure 1B). Further analyses revealedmutation
co-occurrence relationships among YTHDF2, YTHDF1,
TRMT61B, THUMPD1, METTL1, FTO, FBL, YTHDF3, and
UPP1 (Figure S1B). Moreover, the investigation of 32 non-m6A
RNA modification regulators exhibited that CNV-related
mutations were widespread. METTL1, CPSF6, PUS1, ADARB2,
ADAR, and UPP1 showed widespread CNV amplification, while
PABPN1, FBL, ALKBH1, and TRUB1 had CNV deletions
(Figure 1C). The CNV alteration locations of 32 non-m6A RNA
modification regulators on chromosomes are presented in
Figure 1D. To determine whether genetic variations affected non-
m6ARNAmodification regulator expressionamongGBMcases,we
analyzed the expression of these regulators between GBM and
normal samples to determinewhetherCNValterations could result
in perturbations in non-m6A RNA modification regulator
expression. Non-m6A RNA modification regulators with CNV
Frontiers in Immunology | www.frontiersin.org 5
amplification demonstrated substantially higher expression in
GBM tissues than in normal brain tissues, while those with
deletions exhibited the opposite trend (Figures 1C, E). Moreover,
we determined that the regulator expression patterns significantly
varied among the three subgroups (Figure 1F). O6-methylguanine
DNA methyltransferase (MGMT) methylation, isocitrate
dehydrogenase 1 (IDH1) mutation, and chromosomal 1p/19q
codeletion have been found to confer a favorable prognosis in
GBM (70). The same phenotypes were investigated in groups
classified based on molecular subtypes (Figures S1D–F). Based
on the expression of 32 non-m6ARNAmodification regulators, we
distinguished patients with GBM from normal controls (Figure
S1G). The analyses revealed high genetic and transcriptomic
landscape heterogeneity among non-m6A regulators between
GBM and normal cases, indicating that genetic variations and
expression alterations among non-m6A RNA modification genes
play an essential role in GBM progression and occurrence.

Non-m6A RNA Modification Patterns
Mediated by 32 Regulators
To obtain an overall understanding of the expression pattern,
539 GBM cases from the TCGA and CGGA datasets that
contained clinical information and OS data were enrolled. A
univariate Cox regression model revealed that 10 of 32 non-m6A
regulators were associated with the survival of GBM patients
(Figure S1C).

To investigate the relationships among regulators, we
calculated pairwise correlations among the expression of the 32
regulators in the GBM cases (Figure S2A). We identified that the
expression of DKC1, YBX1, TRMT6, and PUS7 was positively
correlated with that of many other regulators, while the
expression of UPP1 and ALKBH3 was negatively correlated
with that of other regulators (Figure S2A). In addition, the
protein–protein interactions between non-m6A RNA
modification regulators are shown in Figure S1H. The
comprehensive landscape of the intricate associations between
non-m6A RNA modification regulators and the prognostic value
for GBMs was visualized with the non-m6A RNA modification
regulator network (Figure 2A; Figure S2A). We identified
significant correlations among 32 non-m6A RNA modification
regulators, which revealed that the crosstalk between the
regulators of erasers, writers, and readers might participate in
the formation of various non-m6A RNA modification patterns.

Next, we used ConsensusClusterPlus to sort patients with three
non-m6A RNA modification patterns based on the expression
profiles of 32 selected non-m6A RNA modification regulators.
After unsupervised clustering, 144 cases were termed Cluster_A,
227 cases were identified in Cluster_B, and the other 168 cases were
termed Cluster_C (Figures 2B, S2B). The expression of the
32 regulators in different clusters is shown in Figure 2C. In the
survival analysis of non-m6A RNA modification patterns, a
dominant survival disadvantage was found for the Cluster_B
non-m6A RNA modification pattern (Figure 2D). To identify
the biological functions of the three non-m6A RNA modification
patterns, GSVA was performed. As exhibited in Figure 2E,
Cluster_B was markedly enriched in pathways associated with
January 2022 | Volume 12 | Article 809808
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the formation of the immunosuppressive TME andMES transition,
such as extracellular matrix (ECM) receptor interaction, TGF b,
JAK STAT, WNT, and NOTCH signal paths. In addition,
Cluster_A was prominently enriched in pathways regulating the
cell cycle, cell aging, and DNA damage, while Cluster_C was
markedly related to apoptosis processes (Figure S2C).
Frontiers in Immunology | www.frontiersin.org 6
TME Cell Infiltration and MES Transition
Characteristics in Distinct Non-m6A RNA
Modification Patterns
SsGSEA was used to assess TME-infiltrating cells in GBM tissues.
According to the abundance of infiltrating immune cells, we
classified the GBM samples into high and low infiltration groups
A B

C

E F

D

FIGURE 1 | Expression and mutational data landscape of 32 non-m6A RNA-modified regulators in glioblastoma (GBM). (A) Landscape of this study workflow.
(B) Mutation frequency of 32 non-m6A RNA modification genes in 390 GBMs from The Cancer Genome Atlas (TCGA) database. (C) CNV variation frequency of non-
m6A RNA modification genes in TCGA-GBM. (D) The location of non-m6A RNA modification genes on 23 chromosomes in TCGA-GBM. (E) Expression of 32 non-
m6A RNA modification genes between normal and GBM patients. (F) Expression of 32 non-m6A RNA modification genes in different TCGA GBM subtypes. * means
P<0.05; ** means P<0.01; *** means P<0.001; ns means P>0.05.
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FIGURE 2 | Three RNA modification patterns of non-m6A genes and relative biological functions. (A) Network plot showing the interaction between non-
m6A RNA modification genes in GBM. The size of the circle represents the p-value of each gene for the survival prognosis. Black dots represent hazard
survival factors, and green dots represent favorable survival factors. The thickness of the lines represents the correlation value between genes. The red
and blue lines represent positive and negative correlations, respectively. Ten RNA modification types are marked with different colors. (B) Heatmap
showing the unsupervised clustering of 32 non-m6A RNA modification regulators in 539 GBM patients. Each column represents a patient, and each row
represents a non-m6A RNA modification regulator. (C) Expression of 32 non-m6A RNA modification genes between three non-m6A RNA modification
patterns. (D) Kaplan–Meier curves showing the survival information of three non-m6A RNA modification patterns. (E) Heatmap showing the results of
GSVA enrichment between different non-m6A RNA modification patterns. * means P<0.05; *** means P<0.001.
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(Figure 3A). Patients with 1p19q codeletion status or IDH
mutation status were mainly enriched in the low infiltration
group (Figure 3A). Analyses of TME cell infiltration via the
CIBERSORT algorithm confirmed that Cluster_B was obviously
enriched in innate immune cell infiltration, including the
infiltration of mast cells, natural killer (NK) cells, macrophages,
and dendritic cells (DCs) (Figure 3B; Table S2). In addition,
abundant stromal elements in the TME are associated with
immunosuppression (71). We uncovered that the stromal score
of Cluster_B was the highest among the three clusters via the
ESTIMATE algorithm (Figure 3B).Whenwe investigated theMES
andPN scores, we found that theMES scorewas the highest and the
PN score was the lowest in Cluster_B (Figure 3C). The MES-
subtype GBM tended to exhibit an immunosuppressive TME.
Previous studies demonstrated that there were abundant immune
cells in tumors with an immune-excluded group, and immune cells
participated in the formation of an immunosuppressive TME (72,
73).We found that threenon-m6ApatternspossesseddefiniteTME
infiltration characteristics. Cluster_B was termed an immune-
excluded group, characterized by abundant innate immune cell
infiltration, stromal activation, and a high MES score; Cluster_A
was termed an immune-inflamed group, marked by abundant
immune cell infiltration; and Cluster_C was termed an immune-
desert phenotype, characterized by rare immune cell infiltration
(Figures 3A–C and S3A). In addition, GBMs with an immune-
excluded subtype had the worst prognosis (Figure 2D).
Furthermore, to analyze the immune tolerance as well as activity
condition of each pattern, we selected LGALS9, LAG3, ICOS,
IL23A, LDHA, CTLA4, CD274, PTPRC, PDCD1, IL12A,
ICOSLG, CD28, TNFRSF4, VTCN1, PDCD1LG2, TNFRSF18,
TNFSF18, TNFSF4, CD80, CD86, CD8A, B2M, TNFSF9,
YTHDF1, PVR, FGL1, CD40, SIGLEC15, LAMA3, CD40LG,
HAVCR2, TNFRSF9, JAK2, JAK1, and LDHB as immune
checkpoint-related molecules (74, 75). We uncovered that diverse
immune checkpoint-related genes were significantly overexpressed
in Cluster_B and Cluster_A (Figure S3C). In addition, we chose
CD44, CHI3L1, FN1, SERPINE1, and TIMP1 asMESmarkers and
OLIG2, DLL3, NCAM1, ASCL1, and SOX2 as PNmarkers (69, 76,
77). The expression of MES markers was high in Cluster_B, while
the expression of PNmarkers was high in Cluster_C (Figure S3D).
In addition, ssGSEA revealed that the immunosuppressive TME
andMES transitionpathways, such as theNF-kB and STAT3 signal
paths, were obviously enriched inCluster_B,whereas themonocyte
andmacrophage chemotaxis pathways were enriched in Cluster_A
(Figure 3D).Figure S3B illustrates the proportionofGBMpatients
with the indicated clinical status and molecular traits in the three
groups with different non-m6A RNA modification patterns.
Patients over 60 years old and those who were alive at the last
follow-up were primarily in Cluster_C, while patients with IDH
wild-type status and noMGMTmethylation were mainly found in
Cluster_B (Figure S3B).

We analyzed the specific relationship between the TME-
infiltrating cell type as well as non-m6A RNA modification
regulators (Figure S3E). Patients were classified into low or
high immune infiltration, MES, and PN score groups. Thirty-two
non-m6A RNA modification regulator expression levels in
Frontiers in Immunology | www.frontiersin.org 8
different groups are shown in Figures S3F–H. We focused on
UPP1, a U regulator, which had a significant positive correlation
with numerous TME-infiltrating immune cells (Figure S3E).
Patients were classified into low and high UPP1 expression
subgroups, and a beneficial prognosis was presented in patients
with low UPP1 (Figure S4A). We used ESTIMATE to assess the
overall levels of immune cell infiltration as well as the stromal
score. The results showed that patients with a high expression of
UPP1 exhibited high immune and stromal scores (Figure S4B).
The specific difference in TME-infiltrating levels between
patients with low and high UPP1 expression was explored. We
observed that tumors with high UPP1 showed obviously
increased infiltration of Treg T cells and M2 macrophages
(Figure S4B). We uncovered that increased UPP1 resulted in
the overexpression of immune checkpoint-related genes (Figure
S4C). In addition, the expression of MES markers was higher,
while that of PN markers was lower in patients with high UPP1
expression (Figure S4D). Subsequent pathway enrichment
analyses showed that high UPP1 samples exhibited an obvious
enhancement of the immunosuppressive TME and MES
transition-related pathways, including the NF-kB, STAT3, and
epithelial–mesenchymal transition (EMT) signal paths (Figure
S4E). From the above results, we speculated that UPP1-mediated
U may promote the formation of an immunosuppressive TME
and facilitate MES transition. In addition, we investigated the
characteristics of one m1A and m6Am eraser, FTO, which was
negatively associated with various TME-infiltrating immune
cells (Figure S3E). Patients with a high FTO exhibited a
better prognosis (Figure S5A). We then found that a high
expression of FTO was related to low immune and stromal
scores (Figure S5B). We also discovered that a low FTO was
related to the overexpression of a few immune checkpoint-
related genes (Figure S5C). MES marker expression was
higher, while PN marker expression was lower in patients with
low FTO expression (Figure S5D). In addition, patients
with low FTO expression showed prominent enrichment of
the hypoxia pathway, STAT3 signaling pathway, and EMT
signaling pathway (Figure S5E). Thus, FTO may inhibit the
formation of an immunosuppressive TME and the process of
MES transition.

To assess the role of UPP1 and FTO in diverse cellular
processes of GBM cells, several experiments were performed.
Downregulation of UPP1 or overexpression of FTO resulted in a
significant decrease in the EdU-positive cell percentage
(Figures 4A, B). In addition, the results of the Transwell
assays revealed that UPP1 silencing and FTO overexpression
reduced the number of GBM cells migrating to the membrane
(Figure 4C). Interestingly, we found that UPP1 knockdown or
FTO overexpression significantly inhibited the capability of
conditioned medium from GBM cells to recruit THP1-
differentiated macrophage (Figure 4D).

Non-m6A RNA Modification Phenotype-
Related DEGs in GBM
To characterize the potential biological behavior of the three
non-m6A patterns, we confirmed 243 RNA phenotype-related
January 2022 | Volume 12 | Article 809808
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FIGURE 3 | Tumor microenvironment (TME), subtypes, and clinical information in three non-m6A RNA modification clusters. (A) Unsupervised clustering of GBMs
using ssGSEA scores from 28 immune-related gene sets. Two significant immune infiltration patterns are presented. The non-m6A RNA modification patterns and
other clinical characteristics were used as patient annotations. (B) The abundance of tumor-infiltrating immune cells, stromal scores, and immune scores in three
non-m6A RNA modification patterns. (C) Differences in mesenchymal/proneural (MES/PN) scores quantified by ssGSEA among the three non-m6A RNA modification
patterns. (D) Differences in the TME infiltration and MES transition pathways among three non-m6A RNA modification patterns. * means P<0.05; ** means P<0.01;
*** means P<0.001; ns means P>0.05.
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DEGs (Figure S6A). Then, a univariate Cox regression model
was applied to perform prognostic analysis for each DEG in the
signature (Table S3). The DEGs with significant prognostic value
were extracted for further analysis. To further corroborate this
regulatory mechanism, unsupervised clustering methods were
executed according to 150 DEGs (Figure S6B). The marked
enriched biological functions of these DEGs are presented in
Figure S6C. The unsupervised clustering algorithm sorted the
cases into two subtypes: gene.cluster_1 and gene.cluster_2
(Figure 5A). The two patterns were identified in gene.cluster_1
Frontiers in Immunology | www.frontiersin.org 10
and gene.cluster_2, marked by different signature genes
(Figure 5A). Patients with 1p19q codeletion status or IDH
mutation status were mainly concentrated in gene.cluster_2
(Figure 5A). In addition, in the two non-m6A RNA
modification DEG clusters, noticeable differences in non-m6A
RNA modification regulator expression were analyzed
(Figure 5B). A total of 242 patients with GBM were termed
gene.cluster_2, which was validated to be correlated with a
favorable prognosis (Figure 5C) . To our surprise ,
gene.cluster_1 was remarkably abundant in several immune
A

B

C

D

FIGURE 4 | UPP1 knockdown and FTO overexpression inhibit cell proliferation, migration, and macrophage recruitment. (A) Western blot analysis was performed to
assess the expression levels of UPP1 and FTO. ACTIN was used as a loading control. (B) EdU was performed in U-118 MG and LN-229 transfected si-control,
si-UPP1#1, si-UPP1#2, vector, and ov-FTO cells (scale bar = 100 mm). (C) Transwell assay performed in U-118 MG and LN-229 transfected si-control, si-UPP1#1,
si-UPP1#2, vector, and ov-FTO cells (scale bar = 100 µm). (D) Transwell assays showed the ability of growth media of different GBM cells to recruit macrophages
(scale bar = 100 µm). * means P<0.05; ** means P<0.01; *** means P<0.001.
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FIGURE 5 | Generation of a non-m6A RNA modification-related gene set. (A) Unsupervised clustering of 150 DEGs dividing patients into two gene.clusters, named
gene.cluster_1 and gene.cluster_2. Cluster, gender, age, platform, IDH status, and 1p19q status were applied for sample annotation. (B) The expression of 32 non-
m6A RNA modification regulators in two gene.clusters. (C) Survival analyses for the gene.cluster_1 (292 cases) and gene.cluster_2 (233 cases) cohorts (p = 0.02,
log-rank test). (D) The proportion of immune infiltration in the two gene.clusters. (E) The abundance of each TME-infiltrating cell, stromal scores, and immune scores
in the two gene.clusters. (F) Differences in MES/PN scores among the two gene.clusters. (G) Differences in the TME infiltration and MES transition pathways between
the two gene.clusters. * means P<0.05; ** means P<0.01; *** means P<0.001; ns means P>0.05.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 80980811

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. GBM Non-m6A Epitranscriptome Patterns
cell infiltrates (Figures 5D, E). In addition, the immune cell
infiltration of gene.cluster_1 was stronger than that of
gene.cluster_2 (Figures 5D, E). However, we found that the
stromal score of gene.cluster_1 was higher than that of
gene.cluster_2 (Figure 5E). In addition, gene.cluster_1
possessed a higher MES score and lower PN score than
gene.cluster_2 (Figure 5F). These results indicate that patients
in gene.cluster_1 had a highly immunosuppressive TME, which
is related to a poor prognosis. Moreover, we determined that
diverse immune checkpoint-related genes were significantly
overexpressed in gene.cluster_1 (Figure S6D). In addition, the
expression of MES markers was high in gene.cluster_1, while the
expression of PN markers was high in gene.cluster_2 (Figure
S6E). Moreover, ssGSEA revealed that the immunosuppressive
TME and MES pathways were significantly enriched in
gene.cluster_1, whereas T-cell receptor signaling pathways
were enriched in gene.cluster_2 (Figure 5G).

Generation of the RM Score and Analysis
of Clinical Traits
The above results showed that non-m6A plays an essential role in
shaping different TME landscapes as well as facilitating MES
transition. However, these analyses only assessed the
characteristics of the population and could not correctly
evaluate the detailed information of non-m6A RNA
modification of each GBM case. Taking into account the
complexity and individual heterogeneity of non-m6A RNA
modifications, we generated a scoring model to assess the non-
m6A RNA modification patterns of individual GBM patients
according to phenotype-related DEGs; this system was termed
the RM score. The relationships among the non-m6A RNA
modification patterns, MES score, gene.cluster, and RM score
were visualized in an alluvial diagram and in Table S4
(Figure 6A). The Wilcoxon test revealed an obvious difference
in the RM score between the gene.clusters. Gene.cluster_2
showed a lower median score than gene.cluster_1, which
indicated that a high RM score could be closely linked to the
immunosuppressive TME and MES transition signatures
(Figure 6B). Moreover, Cluster_B showed a significantly
increased RM score compared with Cluster_A and Cluster_C
(Figure 6B). In addition, patients with stronger immune cell
infiltration possessed higher RM scores (Figure S7A).

We investigated the value of the immune, MES, and PN
scores in predicting patient prognosis. A high immune score,
high MES score, or low PN score indicated a poor prognosis
(Figure S6F). In addition, we observed a significantly negative
relationship between the MES score and PN score (Figure S6G).
Next, we evaluated the significance of the RM score in predicting
GBM outcomes. With a cutoff value of −10.21, GBMs were
classified into high or low RM score groups. GBMs with lower
RM scores presented a significantly prolonged survival time
(Figure 6C). To evaluate the stability of the RM scoring
system, we used the RM score in other independent GBM
databases to verify its prognostic significance, and the results
indicated that a low RM score was correlated with better clinical
benefit (Figures S8A, B). We analyzed whether the RM score
Frontiers in Immunology | www.frontiersin.org 12
could be regarded as an independent factor of survival for GBM.
Multivariate Cox regression analysis was performed, confirming
that the RM score was an independent and robust factor for
predicting GBM patient outcomes [Figure S8C; HR (low RM
score) = 0.53 (0.39–0.73)]. We also examined the survival
prediction efficiency for the combination of RM score with
immune score, RM score and MES score, and RM score and
PN score. The results presented that the low RM and low
immune score groups showed the best OS among the groups
(Figure S7B). Furthermore, we observed that patients with low
RM and MES scores or low RM scores and high PN scores had
the most significant survival benefits (Figures S8D, E). We
assessed the value of the RM scoring feature to evaluate the
efficacy of radiotherapy or chemotherapy in GBMs. Among the
patients who received adjuvant radiotherapy or chemotherapy at
the same time, those with low RM scores exhibited the most
significant therapeutic benefit (Figure S7C). Furthermore,
patients over 60 years old, patients alive at the last follow-up,
and patients with IDH mutations, 1p/19q codeletion, and
MGMT methylation were mainly found in the low RM score
group (Figures S8F, G).

Further analysis showed that the immune cell infiltration of
patients with high RM scores was significantly higher than that
of patients with low RM scores, while patients with high RM
scores had higher stromal scores (Figure S7D). In addition,
patients with high RM scores had higher MES scores and lower
PN scores (Figure S7E). GBM patients with the MES subtype
were characterized by higher TME levels, whereas GBM
patients with the PN subtype were associated with lower
TME levels. To exclude the influence of phenotypic and
tumor immune infiltration correlations on the analysis
results, we analyzed the correlation between RM scores and
TME levels in patients with PN and MES subtypes (Figure S9).
Moreover, to reveal the significance of the RM score in
estimating the level of TME immune infiltration and MES
transition, we studied the expression of immune checkpoint-
related genes and MES/PN marker genes in different RM score
groups. We found that most immune checkpoint-related genes
were upregulated in the high RM score group (Figure S7F). In
addition, the expression of MES markers was higher in high RM
score patients, while the expression of PN markers was higher
in low RM score patients (Figure S7G). We examined the
relationship between the RM score and known biological
signatures using Spearman analysis. A heatmap of the
association matrix exhibited that the RM score was positively
related to immunosuppressive TME and MES transition
signatures (Figure S7H).

To verify the role of the RM score in evaluating the
characteristics of TME infiltration and MES transition, IF staining
was performed. The proportions of M2macrophages (CD163+) and
FoxP3+ Tregs infiltrated in tumors with high RM scores were higher
than those in tumors with low RM scores (Figure 6D). Moreover,
CD44 expression was also markedly increased in the high RM score
group, while SOX2 expression was decreased (Figure 6D). These
results further validated that tumors with high RM scores showed
an immunosuppressive phenotype.
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The Correlation Between the RM Score
and TMB
Increasing evidence has demonstrated a significant correlation
between responsiveness to immunotherapy and tumor
mutat ion burden (TMB) (78) . Taking the c l in ica l
significance of TMB into account, we further analyzed the
relationship between the RM score and the TMB. By
comparing the TMB values for patients with high and low
RM scores, we concluded that the RM score was negatively
associated with the TMB value (Figure 7A). Patients with
higher RM scores exhibited a lower TMB than patients with
Frontiers in Immunology | www.frontiersin.org 13
lower RM scores (Figure 7B). We divided the patients into
different groups according to the immune setting of the TMB,
as described previously (79). As shown in Figure 7C, we
observed that patients with a high TMB had prolonged
survival times compared with those with a low TMB.
Considering the contrary survival significance of the TMB
and RM score, we analyzed the cross-influence of these scores
on the prognosis of patients with GBM. Stratified survival
analyses revealed that patients with low RM scores together
with high TMB scores had the most significant survival
benefits (Figure 7D). Furthermore, we evaluated the somatic
A B C

D

FIGURE 6 | Calculation of regulator score (RM) score. (A) Sankey plot showing the changes in non-m6A RNA modification patterns, MES scores, gene.clusters, and
RM scores. (B) Differences in RM scores among the two gene.clusters and three non-m6A RNA modification patterns. (C) Survival analyses for the high RM score
and low RM score patient groups. (D) IF staining in GBM tissues showed the expression of CD44, SOX2, CD163, and FoxP3. Histogram representing relative
fluorescence intensity (scale bar = 15 mm). ** means P<0.01; *** means P<0.001.
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variant distribution of GBM driver genes among the high and low
RM score groups using the maftools package. As shown in
Figures 7E, F, the low RM score group presented more
extensive TMB than the high RM score group. An increasing
number of studies have shown that patients with a high TMB are
more sensitive to anti-PD-1/PD-L1 immunotherapy (80). In
addition, the alteration frequency of various genes was different
between the low and high RM score groups (Figures 7E, F). In
conclusion, the above findings corroborated that the difference in
non-m6A RNA modification patterns could be an important
factor that predicted response efficiency to anti-PD-1/PD-L1
immunotherapy. These results might lead to novel strategies for
exploring the mechanism of non-m6A RNA modification
composition and gene mutation in ICB therapy.
Frontiers in Immunology | www.frontiersin.org 14
The Predictive Value of the RM Score in
Predicting ICB Therapy Response
Significant efforts have been made to screen biomarkers that
predict ICB treatment response; some previously studied
biomarkers include the TMB as well as the PD-L1 expression
level (81). Considering that the RM score is related to the TME,
we examined the value of the RM score in predicting the
response of GBMs to immunotherapy. The exploration was
based on two independent immunotherapy studies
(Figures 8A–H). We observed that patients who had lower
RM scores exhibited obviously prolonged OS in the anti-PD-
L1 research (IMvigor210; Figure 8A) and anti-PD-1 research
(GSE78220; Figure 8G) (74, 82). The patients in the IMvigor210
cohort exhibited diverse degrees of response to anti-PD-L1
A B C
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FIGURE 7 | The correlation between the RM score and TME infiltration, MES transition, and somatic variants. (A) Scatterplots indicating the negative relationship
between RM score and TMB in TCGA-GBMs (r = −0.18, p < 0.028, Spearman correlation analysis). (B) TMB difference in the low and high RM score cohorts.
(C) KM curves for the low and high TMB GBMs. H, high; L, low. (D) Survival analyses for subgroup GBMs stratified by RM score and TMB. (E, F) Waterfall plot
showing tumor somatic mutations presented by those with high RM scores (E) and low RM scores (F).
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blockers, including partial response (PR), progressive disease
(PD), complete response (CR), and stable disease (SD). We
explored the differences in RM scores for patients with diverse
responses to ICB therapy and concluded that the proportion of
patients in the response groups (CR and PR) was significantly
lower in the high RM score group than in the low RM score
group, while the proportion of patients in the no/limited
response groups (SD and PD) showed the opposite trend,
indicating that the RM score could reveal the response of
patients to ICB therapy (Figure 8B). The expression of PD-L1
on tumor cells (TCs) was substantially related to the RM score.
The TC1 group exhibited the lowest RM score and was obviously
different from the TC0 as well as TC2+ groups (Figure 8C).
Moreover, we observed that the PD-L1 level of immune cells
(ICs) was positively related to the RM score, with IC0 exhibiting
the lowest RM score and IC2 exhibiting the highest RM score
(Figure 8D). By analyzing the relationship of the RM score with
tumor neoantigen burden, we observed that patients with low
RM scores together with a high neoantigen burden exhibited
the most prolonged survival time (Figure 8E). In addition,
patients with high RM scores showed significantly high levels
of PD-L1 (Figure 8F). Finally, we confirmed the significant
clinical response and therapeutic advantages of anti-PD-1
immunotherapy in patients with low RM scores versus those
with high RM scores (Figures 8H, S8H). The RM score was also
negatively correlated with the TMB in the GSE78220 cohort
(Figure S8I).

Exploration of the Therapeutic
Significance of the RM Score
To investigate the value of the RM score in predicting drug
sensitivity, we calculated the correlation between the RM score
and the AUC for drugs in multiple cancer cell lines. According to
Spearman correlation analysis, we selected 68 drugs for which
the RM score and drug sensitivity were significantly correlated in
the GDSC database (Figure 8I) (83). The RM score was
positively correlated with sensitivity to 12 drugs, including
picolinic acid, chromatin histone methylation inhibitor
EPZ5676, EGFR inhibitor AZD3759, gefitinib, erlotinib, and
WNT inhibitors MN.64 and XAV939; the RM score was
negatively correlated with drug sensitivity (and this positively
correlated with drug resistance) for 56 drugs (Figures 8I, J).
Furthermore, we explored the signal path targeted by the selected
drugs. We observed that drugs whose sensitivity was positively
related to the RM score targeted the EGFR and WNT signaling
pathways. In contrast, drugs whose sensitivity was negatively
related to the RM score targeted the cell cycle and apoptosis
signal path (Figure 8J). In conclusion, these results revealed that
the RM score model might serve as a potential factor for
exploring proper therapy strategies.

Construction of the m6A Score and
Comparison of the m6A and RM Scores
A total of 20 m6A RNA modification regulators were enrolled in
this study. Next, we classified patients into different m6A RNA
modification patterns according to the expression profiles of 20
Frontiers in Immunology | www.frontiersin.org 15
selected m6A RNA modification genes. After unsupervised
clustering, 199 cases were termed m6A Cluster_A, 197 cases
were termed m6A Cluster_B, and the other 143 cases were
identified in m6A Cluster_C (Figure 9A). In the survival
analysis of m6A RNA patterns, m6A Cluster_B exhibited a
particularly outstanding survival benefit (Figure S10A;
p = 0.0018). In addition, we identified 295 DEGs using the
limma package. Then, univariate Cox regression analysis was
applied to determine the prognostic value for each DEG (Table
S5), and the DEGs with significant prognostic value were
extracted for further analysis. To further corroborate this
regulatory information, an unsupervised clustering method was
used according to the 172 DEGs. The patients were divided into
two groups, m6A gene.cluster_1 and m6A gene.cluster_2, using
the unsupervised clustering algorithm (Figure 9B). A total of 272
patients with GBM were termed m6A gene.cluster_2, which was
validated to be associated with a better prognosis (Figure S10B).
Based on these DEGs, we generated a scoring system to assess the
m6A RNA modification pattern of each GBM patient. The
relationships among m6A RNA modification patterns, MES
score, m6A gene.cluster, and m6A score were visualized in
an alluvial diagram and in Table S6 (Figure 9C). Patients
with low m6A scores demonstrated a prolonged survival
time (Figure 9D). The Wilcoxon test revealed a significant
difference in the m6A score between the m6A gene.clusters.
M6A gene.cluster_2 showed a lower median score than
gene.cluster_1, which indicated that a high m6A score could be
closely linked to poor prognosis (Figure S10C). Moreover,
compared with the other clusters, m6A Cluster_B showed a
significantly decreased m6A score (Figure S10D). In addition,
patients with high RM scores exhibited higher immune, stromal,
and MES scores and lower PN scores (Figures 9E, F).

The value of the RM and m6A scores in predicting patient
outcomes and the TME was compared using the BIC and AIC
values. With lower BIC and AIC values, the RM scoring model
exhibited a better description of TME infiltration and MES
transition than the m6A scoring model (Figure 9G). There was
no obvious difference between the RM and m6A scores in
predicting prognosis (Figure S10E).

RM Score Correlates With Immune
Infiltration and Survival Prognosis in
Pan-Cancer
According to the forest plots, a positive association was obvious
between RM score and OS in KIRC, LGG, and LAML (Figure
S11A). In addition, the PFS forest plot confirmed the role of RM
score as a risk factor in KIRC and LGG (Figure S11A). As
presented in Figure S11B, RM score is positively related to the
TMB in BRCA, KIRC, LIHC, and THCA, whereas a negative
association was observed in LAML and THYM. For
microsatellite instability (MSI), a positive association in BRCA,
DLBC, HNSC, PRAD, SKCM, and THCA, as well as a negative
association in ACC, CESC, COAD, KUAD, LUSC, and UCEC,
was identified (Figure S11B). In terms of immune cell
infiltration, RM score was positively associated with regulatory
T-cell content in BRCA, COAD, KIRC, KIRP, LGG, SKCM,
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FIGURE 8 | The relationship between RM score and response to immunotherapy and drug sensitivity. (A) Survival analysis of the low and high RM score patient
groups in an immune checkpoint blockade (ICB) therapy cohort. (B) The proportion of patients who responded to ICB therapy in the low or high RM score groups.
(C) Differences in RM scores among the three tumor cell (TC) levels. (TC levels, level of IHC-assessed PD-L1 staining of tumor cells. TC0, <1%; TC1, ≥1% but <5%;
TC2+, ≥5% of tumor cells with staining for PD-L1, p = 0.092). (D) Differences in RM scores among the three immune cell (IC) levels. (IC levels, level of IHC-assessed
PD-L1 staining of immune cells. IC0, <1%; IC1, ≥1% but <5%; IC2+, ≥5% of immune cells staining for PD-L1, p = 0.00058). (E) Survival analyses of patients
receiving ICB therapy stratified by RM score and TMB. (F) Differences in PD-L1 expression between the high and low RM score patients. (G) Survival analyses of the
high and low RM score patient groups in another ICB therapy cohort (GSE78220). (H) Proportion of patients who responded to ICB therapy in the low or high RM
score groups. (I) The relationship between RM score and drug AUC value. (J) Signal paths targeted by drugs whose AUC values are positive (red) or negative (blue)
with RM score.
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FIGURE 9 | Construction of the m6A score and comparison of the m6A and RM scores. (A) Heatmap showing unsupervised clustering for 20 m6A RNA
modification genes in 539 GBM patients. Each column represents patients, and each row represents an m6A RNA modification regulator. (B) Unsupervised
clustering of 172 DEGs dividing patients into two m6A gene.clusters, termed m6A gene.cluster_1 and m6A gene.cluster_2. The m6A gene.cluster, m6A cluster, sex,
age, platform, IDH status, and 1p19q status were applied for patient annotation. (C) Sankey diagram showing the distribution of m6A RNA modification patterns,
MES scores, m6A gene.clusters, and m6A scores. (D) KM curve showing survival analysis results of the high m6A score and low m6A score patient groups.
(E) Differences in immune/stromal scores among GBMs with low m6A scores and high m6A scores. (F) Differences in MES/PN scores among GBMs with low m6A
scores and high m6A scores. (G) Comparison of RM and m6A scores using BIC and AIC values.
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UCEC, and UCS (Figure S11C). In BLCA, CESC, KICH, LAML,
and TGCT, RM score was positively associated with M2
macrophage infiltration (Figure S11C).
DISCUSSION

Increasing evidence has demonstrated that various RNA
epigenetic modifications have an important effect on infection,
the TME, and antitumor proliferation by interacting with several
regulators. However, most studies have focused on a single
regulator or a single kind of RNA modification, such as m6A,
and the mutual relationships and effects of regulators of various
non-m6A RNA modifications in cancer are not fully understood.
Few studies have demonstrated that a given non-m6A RNA
modification influences tumorigenesis in GBM, probably
because non-m6A RNA modifications are not as abundant as
m6A modifications.

Here, we revealed global non-m6A RNA alterations at the
genetic as well as transcriptional levels and showed mutual
correlations in GBMs. Surprisingly, there are complicated
associations among 32 non-m6A RNA alteration regulators. We
constructed three non-m6A RNA modification patterns based on
32 regulators. Cluster_A was characterized by abundant immune
cell enrichment and classified as an immune-inflamed subtype;
Cluster_B was characterized by the suppression of immune
function as well as MES transition, corresponding to the
immune-excluded subtype; and Cluster_C was marked by rare
immune cell infiltration, corresponding to the immune-desert
subtype. Although the immune-excluded subtype was related to
abundant immune cell infiltration, the immune cells were inactive
because of the distribution of effective immune cells in the tumor
stroma. The stroma could permeate the tumor itself or might be
confined to the tumor envelope, making immune cells appear to
be inside the tumor (84). In addition, the MES score was the
highest and the PN score was the lowest in Cluster_B. The
immunosuppressive TME and MES transition pathways, such
as the NF-kB and STAT3 signaling pathway, were markedly
enriched in Cluster_B. The MES-subtype GBM tends to exhibit
an immunosuppressive TME, while an immunosuppressive TME
promotes GBM malignant progression via MES transition (62,
64). Our data demonstrated that there may be a positive feedback
loop between the immunosuppressive TME and MES transition,
resulting in a poor prognosis.

Furthermore, the mRNA expression differences among non-
m6A RNA modification patterns have been confirmed to be
significantly related to RNA modification-, immune-, and MES-
related biological signaling pathways. The DEGs were considered a
non-m6A RNA modification-related gene set. Similarly, two non-
m6A-related gene subtypes were identified based on the DEGs,
which were obviously related to the immunosuppressive TME as
well as MES transition signaling pathways. The MES subtype is
particularly aggressive among these three subtypes, while the PN
subtype has the best prognosis (85). This demonstrated again that
the various non-m6A RNA modifications were of great
significance in the formation of TME patterns. In conclusion, a
systematic evaluation of the non-m6A RNA modification patterns
Frontiers in Immunology | www.frontiersin.org 18
will improve our understanding of TME cell infiltration and MES
transition characterization.

Considering the heterogeneity of non-m6A RNA
modifications across individual tumors, a method for
quantifying the non-m6A RNA modification patterns of
individual tumors is urgently needed. Accordingly, we
developed a scoring model, the RM score, to evaluate the non-
m6A RNA modification pattern of individual GBMs. Patients
with low RM scores demonstrated a prominent survival benefit.
Patients in Cluster_B, characterized by an immune-excluded
phenotype, exhibited a higher RM score. In addition, the RM
score was s ign ificant ly pos i t ive ly as soc ia ted wi th
immunosuppressive TME and MES transition signatures.

Immunotherapy is a developing field but is far from reaching
clinical expectations in GBM patients because of the
immunosuppressive TME. The MES transition not only
promotes radiochemotherapy resistance but also shapes the
immunosuppressive TME in GBM. Numerous studies have
emphasized the non-negligible interaction between non-m6A
RNA regulators, the TME, and the MES transition. The RM
scoring model could predict patient prognosis and sensitivity to
radiochemotherapy as well as immunotherapy. Patients who
were sensitive to radiochemotherapy and ICB therapy were
mainly enriched in the low RM score group. In addition, the
RM score was markedly posit ive ly correlated with
immunosuppressive TME and MES transition signatures.

Our findings also revealed a significantly negative association
between the RM score and TMB. Increasing evidence has
demonstrated that patients with a high TMB present acceptable
responses to immunotherapy. A high TMB status was correlated
with a favorable prognosis. In addition, RM score could predict
the response of a patient to anti-PD-1/L1 immunotherapy.
Patients receiving ICB therapy in the IMvigor210 and
GSE78220 cohorts were assessed, and we identified that the RM
score was markedly decreased in patients responding to ICB,
which validated the predictive significance of the RM score model.
Overall, this study showed that patients with low RM scores had
more obvious benefits from immunotherapy.

In addition, we investigated the possible treatment outcome
of non-m6A RNA modification regulators in GBMs. The RM
score was positively correlated with the resistance of drugs that
targeted the cell cycle and apoptosis signaling pathways and
negatively correlated with the sensitivity of drugs that targeted
the EGFR and WNT signaling pathways. These findings
indicated that patients with higher RM scores might be more
suitable for drugs targeting the EGFR and WNT signal paths
instead of drugs targeting the cell cycle or apoptosis signaling
pathways. Thus, non-m6A RNA modification patterns could be
used as a qualified predictor that can be used to predict the
clinical outcome of targeted therapies or chemotherapy. Our
findings reveal novel possibilities for improving the efficacy of
ICB treatment, revealing different TME phenotypes as well as
MES subtypes and suggesting the potential for personalized and
precise immunotherapy for GBM.

Increasing evidence has demonstrated that the m6A
modification pattern is closely associated with the TME,
prognosis, and other clinical characteristics. We constructed an
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RM scoring system to evaluate the potential roles of RNA
modifications beyond m6A in the TME, MES transition,
immunotherapy, and drug sensitivity. To further evaluate the
superiority of the RM scoring model compared with the m6A
modification pattern, we constructed an m6A scoring model and
compared two models using the BIC and AIC algorithms. Finally,
we confirmed that the RM scoring system is better than the m6A
scoring system in assessing TME and GBM subtypes.

In this study, we systematically assessed the non-m6A RNA
modification patterns of 539 GBMs on the basis of 32 regulator
genes and associated these patterns with TME infiltration as well
as MES transition characteristics. We constructed the RM score
model to predict patient prognosis and the response to
immunotherapy and targeted therapy. The systematic
assessment of non-m6A RNA modification patterns could not
only improve our knowledge of the crosstalk of RNA
modifications but also contribute to the development of more
personalized and precise immunotherapy regimens.
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