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Abstract: Genome-wide transcriptome analysis is a method that produces important data on plant
biology at a systemic level. The lack of understanding of the relationships between proteins and
genes in plants necessitates a further thorough analysis at the proteogenomic level. Recently, our
group generated a quantitative proteogenomic atlas of 15 sweet cherry (Prunus avium L.) cv. ‘Tragana
Edessis’ tissues represented by 29,247 genes and 7584 proteins. The aim of the current study was to
perform a targeted analysis at the gene/protein level to assess the structure of their relation, and the
biological implications. Weighted correlation network analysis and causal modeling were employed
to, respectively, cluster the gene/protein pairs, and reveal their cause–effect relations, aiming to assess
the associated biological functions. To the best of our knowledge, this is the first time that causal
modeling has been employed within the proteogenomics concept in plants. The analysis revealed the
complex nature of causal relations among genes/proteins that are important for traits of interest in
perennial fruit trees, particularly regarding the fruit softening and ripening process in sweet cherry.
Causal discovery could be used to highlight persistent relations at the gene/protein level, stimulating
biological interpretation and facilitating further study of the proteogenomic atlas in plants.

Keywords: causality; DAG; PC algorithm; proteogenomics; sweet cherry; WGCNA

1. Introduction

Among the numerous research areas of biology, the interactions of proteins and genes
of an organism as well as the expression of genes and proteins are a topic of paramount
importance [1]. A popular method that aims to analyze the diversity of different biological
samples is large-scale transcriptome profiling. Most transcriptome analyses focus on
specific organs or entire organizations, such as plants. Moreover, new trends in research
aiming at better understanding of gene function, have lead to an undiminished interest in
the study of transcriptome profiles of specific tissues or cells [2].

Proteogenomics is a new approach that opens new horizons in the analysis of pro-
teomic and genomic data [3]. The goal of proteogenomic analysis is to combine changes
at the protein level with changes at the genetic level (e.g., mutations, polymorphisms,
insertions/deletions) [4]. Proteogenomic databases essentially use transcriptional and
proteomic data to link gene expression to proteins in order to further understand gene
models [3,5,6]. A worthwhile application of proteogenomics in humans resulted in the
creation of a global expression atlas that revealed gene/protein expression data in dif-
ferent tissues [7,8]. Recently, in the context of the Human Protein Atlas (HPA) project, a
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comprehensive map of transcripts and proteins of a plethora of healthy human tissues
(18,072 transcripts and 13,640 proteins) was created [9]. The development of a plant tissue
atlas containing a combination of transcriptomic and proteomic data has been recently
reported in sweet cherry (Prunus avium L.) tree [10]. Sweet cherry is a perennial fruit tree of
the Rosaceae family, whose economic value occupies a high position in the international
economic ranking [11–13]. The non-climacteric ripening behavior of sweet cherry fruit are
different from several other Prunus species such as peach and apricot, making its study of
high interest [14]. Remarkably, cherries are harvested and marketed with their stem, which
exhibits tissue specific physiological and metabolic differences to that of the edible fruit
part across the whole fruit development and ripening [13]. In addition, the simple sweet
cherry genome (2n = 2x = 16, genome size of ∼380 Mb) makes it an ideal tree species for
the deciphering of various biological phenomena, notably the fruit ripening process [15].

In a recent study [16], the authors used data from both the transcriptome and the
proteome to assess and study the changes from a proliferating myeloid progenitor cell in
the bone marrow into a mature non-dividing polymorphonuclear blood cell. Based on
2429 transcript–protein pairs that were differentially expressed during the five developmen-
tal stages in neutrophil development, they performed weighted gene co-expression network
analysis (WGCNA) [17], and identified 12 modules/clusters. In addition, a neutrophil
differentiation module network was developed, where modules (network nodes) were
pairwise linked with undirected edges when the Pearson correlation coefficient was larger
than 0.6. This network revealed that modules with similar functions were connected [16].

Although the Pearson correlation coefficient is a standard approach to assess the asso-
ciation, it has the disadvantage that it can only account for the existence of linear relation.
On the other hand, causal discovery justifies the causal nature of an association between
two variables on the basis of its persistence [18]. Persistence is the main characteristic of a
causal relationship, and the test of a causal relationship involves all other variables of a data
set and considers all circumstances [19]. In other words, the causal nature of association is
expected to exist in all situations without being affected by the values of other variables.
Consequently, the causal relationships tend to be less spurious or volatile than statistical
associations, such as correlation [18]. An additional benefit in causal model development is
the existence of direction in the causal relations between variables, determining the cause
and the effect in each relation [18].

The aim of this study was to employ the dynamics of causal models at a proteogenomic
level to in-depth characterize the gene/protein interaction models, notably in the context
of sweet cherry fruit development and ripening. The proposed methodological approach
initially involved WGCNA to identify the consensus gene/protein modules (clusters).
Then, causal discovery was used to evaluate the causal relations among the modules and
their associated biological functions. To the best of our knowledge, causal models are used
for the first time in this framework and could possibly result in more persistent relations
compared to other association measures. Furthermore, the direction of the identified causal
relations in the estimated causal network of modules will reflect the cause and the effect
in the pairwise module relations. Such an analytical approach may provide valuable
insight between functions associated with the gene/protein modules and could reveal new
knowledge related to sweet cherry biology, especially in fruit ripening syndrome.

2. Materials and Methods
2.1. Data Description

Fifteen sweet cherry tissue samples from the cultivar ‘Tragana Edessis’ were collected,
covering most organs (leaves, shoot, bud, flowers, stem/pedicle, and fruit) across selected
developmental stages, as recently reported [10]. Briefly, we sampled annual sweet cherry
shoot (annual shoot), light green leaves (‘young leaves’), mature leaves (‘mature leaves’),
flower and vegetative buds (ecodormancy stage), and flowers at both sepal-open stage
(‘flower closed’) and full flowering phase (‘flower open’). Sweet cherry fruit (exocarp plus
mesocarp) were sampled during four developmental stages (FS) by freezing whole fruit and
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removing the endocarp. The first stage (8 days after full bloom [DAFB]; 1st fruit stage; FS1
stage) corresponds to the fruit set; the second stage (20d DAFB]; 2nd fruit stage; FS2 stage)
was at the beginning of fruit coloring; the third stage (34d DAFB; 3rd fruit stage; FS3 stage)
was the coloring advanced; the fourth stage (44d DAFB; 4th fruit stage; FS4 stage) referred
to the fruit ripe for harvesting stage (17.5◦ Brix). Along with fruit, the corresponding
stems were collected at the same developmental stages (1–4 stages; SS1–SS4 stages). The
transcript and protein expression abundances were retrieved from SweetBiOmics database
(www.GrCherrydb.com, data accessed on 1 November 2021).

2.2. PC Algorithm

The constrained-based PC algorithm (named after its inventors Peter Spirtes and Clark
Glymour, [20,21]) is the method used to learn the causal structure induced by a causal
Bayesian network. Particularly, for each pair of variables (X, Y) with a dataset, the PC
algorithm assesses their conditional independence given the remaining variables, and
it claims the nonexistence of a causal relationship between X and Y, i.e., no edge to be
drawn between X and Y in the corresponding graph, when X and Y are independent given
some other variables. Essentially, the PC algorithm examines the association of X and Y,
conditioning on all subsets of all the remaining variables, in order to determine whether
their association is persistent [18]. A relationship is causal when the association exists given
each of the conditioning sets. The output of the PC algorithm is a network with a structure
consistent with the results of the tests of independence. It is assumed that causal sufficiency
holds [21]. Specifically, this condition implies that for every pair of measured variables,
all their common direct causes are also measured. In other words, there are no hidden,
unmeasured confounders for any pair of variables.

The network is represented by a Markov equivalence class of the Directed Acyclic
Graph (DAG). All DAGs in an equivalence class describe the same conditional inde-
pendence relationships since they have the same skeleton (adjacencies) and the same
v-structures. Assume G is a DAG, then the skeleton of G is the undirected graph formed by
removing directions of all the edges in the DAG. A v-structure in G is an ordered triplet of
nodes (x, y, z), such that G contains the directions of x→ y and y← z, and also the nodes x,
z are not connected with an edge in G. However, some edges may have an undetermined
direction (i.e., bidirected edges), which means that they have the opposite direction from
one DAG in the equivalence class to another DAG in the equivalence class. There is an
edge (directed or undirected) between x and y, if and only if, the variables are conditionally
dependent given S, for all possible subsets S of the remaining nodes [22].

2.3. Statistical Analysis

The statistical analysis was based on the protein abundances and the transcript FPKMs.
It involved a stepwise approach including four main steps aiming to provide valuable
biological insight in sweet cherry. These steps are briefly depicted in the first four panels of
the flowchart in Figure 1.

Initially, the pre-processing of the proteogenomics data was performed as described in
Xanthopoulou et al. [10]. Additionally, only gene/protein pairs with valid values for all
tissues at both proteomic and transcriptomic level were selected (n = 7244). Of these, only
the gene/protein pairs with values greater than 1 in at least 5 tissues (one out of three) at
both protein and transcriptomic levels were further assessed, resulting in 6332 cases.

The next step was to use both the proteomic and transcriptomic datasets and identify
clusters of gene/protein pairs at a proteogenomic level. To this end, the weighted gene
co-expression network analysis, which is widely used with high-dimensional data sets
for studying biological networks, was employed (with the “WGCNA” package in R) [17].
Particularly, the R function “goodSamplesGenes” was initially employed to remove un-
qualified genes and samples (missing entries and zero variance across the two datasets
criteria apply). The function “pickSoftThreshold” was then used to select an appropriate
soft-thresholding power based on the criterion of approximate scale-free topology. Then,
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the “blockwiseConsensusModules” function was applied to identify the consensus mod-
ules (clusters) across the proteomic and transcriptomic datasets. In all cases, the minimum
module size was set to 30, the module detection sensitivity was set to 2, and the cut height
for merging of modules to 0.25.
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Next, based on the consensus modules detected, the “plotEigengeneNetworks” R
function was employed to develop consensus eigengene network heatmaps and visualize
the inter-module relationships (adjacency/correlation). These eigengene network heatmaps
use the relations between the consensus eigengenes, which are basically representatives
of the consensus modules, and defined as the first principal component of the expression
matrix of the corresponding module. Plots depicting the pairwise preservation measures
between the consensus eigengene networks heatmaps in the proteomic and transcriptomic
datasets were constructed as well. Furthermore, heatmaps depicting the values of the
consensus eigengenes at the tissues of interest were constructed using the “pheatmap”
function. For these heatmaps, hierarchical clustering was performed for the consensus
modules, using the Euclidean distance measure and the complete clustering method.

Then, the constrained-based PC algorithm was employed with the R package “pcalg” [22]
to produce an estimate of the underlying causal structure among the consensus modules,
using their representative eigengenes. In particular, the “pc” function was used to estimate
the equivalence class of a directed acyclic graph from observational data, under the Markov
assumption that the distribution of the observed variables is faithful to a DAG [22]. Since all
eigengenes (variables) were continuous, the function “gaussCItest” was used to compute
the conditional independence tests. The required corresponding sufficient statistic consisted
of the correlation matrix of the consensus eigengenes, and their sample size. For the
visualization of the resulting causal structure, the R packages “dagitty” [23], and “ggplot2”
were employed [24]. The standard Pearson correlation coefficient was used as well to
pairwisely assess the linear relation among the different modules (represented by the
corresponding eigengenes). The analysis was performed with R Version 4.1.0 [25].
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3. Results and Discussion

Sweet cherries are highly appreciated fruits for their taste, color, nutritional value, and
beneficial health effects [11–13]. Although a large number of studies have been conducted
to better understand sweet cherry ripening and quality, no causal-based proteogenomic in-
formation is available regarding the fruit ripening up to now. Here, we initially investigated
the protein accumulation and gene expression interaction model in 15 samples covering
key important tissues, including leaves, shoot, bud, flowers, stem/pedicle and fruit, of the
cherry tree. In addition, we further examined fruit and stem tissue-specific causal models in
respect to their proteogenomic profile, which is known to interfere with the cherry ripening
process [10]. This experimental approach provides a better understanding of sweet cherry
ripening at the molecular levels, which will help to improve fruit quality traits.

3.1. Causal Model-Based Network of Co-Expression Proteogenomic Modules in 15 Sweet Cherry Tissues

The proteogenomics data from the 15 sweet cherry tissues created 6332 mRNA-protein
pairs that were expressed/accumulated in both RNA and protein datasets. The correlation
between RNA and protein was measured [10] within each pair with the Spearman correla-
tion. It was found to be overall positive, exhibiting a mean correlation value of 0.23 with
more than 75% positive correlations (4796 out of 6332). All gene/protein pairs were as-
sessed and qualified for the weighted gene co-expression network analysis (WGCNA). The
soft-thresholding power was set to 9 based on the scale-free topology criterion (Figure 2A).
WGCNA resulted in a network consisting of 32 modules (MEs; ME0-ME31). Modules
1–31 ranged in size from 52 to 716 transcript–protein pairs (see Supplementary Table S1).
Module 0 (size 1404) consisted of pairs that were outside of the other 31 modules.

The consensus eigengene network heatmaps in proteomics data (Figure 2B) showed
that the modules appeared to cluster within several small blocks, e.g., modules ME11,
ME10, ME15, ME1, and ME22 constitute a block and exhibit high pairwise adjacencies. On
the other hand, with the transcriptomics data, the modules clustered in two small clusters
(top left), and a very large cluster in the bottom right of the transcriptomics heatmap.

The causal structure of the inter-consensus module relations is depicted in Figure 2C.
Both directed and bidirected edges are present in the estimated causal graph. The directed
edges depict both the presence and direction of direct causal effects. The bidirected edges
represent the undetermined direction, i.e., they have an opposite direction from one DAG
in the equivalence class to another DAG in the equivalence class. Four pairs of modules
were connected via bidirected edges (ME16 <–> ME23, ME19 <–> ME26, ME31 <–> ME10,
and ME9 <–> ME17). The number of directed edges was 15, connecting 20 modules in
total within five subgraphs. Five modules constitute the direct or indirect effect of other
modules, without being the cause of another module (V-structure), specifically modules
ME27 (directly caused by ME5, ME6, ME7 and indirectly by ME20), ME1 (directly caused by
ME11, ME15, ME22 and indirectly by ME21), ME14 (directly caused by ME24, and ME28),
ME8 (directly caused by ME12 and ME29), and ME4 (directly caused by ME3, and ME18).

To retrieve the functional biological processes of 15 sweet cherry tissues, we performed
pathway analysis and Gene Ontology (GO) enrichment analysis and annotated highly
significant terms to a causal model-based module network (Figure 2C). Gene/protein lists
and gene functional descriptions of all 32 modules are presented in Supplementary Table S2.
Noticeably, several modules with similar expression patterns were enriched in the same
GO terms. For instance, the genes in modules ME1, ME5, ME8, ME9, ME11, ME14,
ME18, ME20 and ME24 were enriched in “protein amino acid binding” terms. Closely
clustered modules ME3, ME28 and ME30 were enriched in “ATP binding”, while modules
ME6, ME10, ME12 ME23, ME29 and ME31 were enriched in “catalytic activity” terms.
Additionally, modules ME13, ME19, ME25 and ME 26 were enriched in “protein kinase
activity” terms, whereas two modules with relative far distributions (ME17 and ME27)
were enriched in “nucleotide binding” terms. The majority of genes enriched in ME16 are
involved in developmental regulation processes, supporting the importance of these genes
and the associated processes in the developmental stages. Genes in ME0 showed GO term
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enrichment in organism developmental processes while genes in ME3 depicted GO term
enrichment in calmodulin binding.

Figure 2. (A). Summary network indices are displayed as functions of the soft threshold power. The
plots indicate that approximate scale-free topology is achieved around the soft-threshold power
of 9. (B). Consensus eigengene networks are displayed and their differential analysis, based on
all the 15 tissues considered (leaves, shoot, bud, flowers, stem/pedicle, and fruit). The first two
plots show the eigengene network heatmaps in the proteomic and transcriptomic datasets (labeled
Transcript and Protein). In the heatmaps, the red color represents high adjacency between modules
(i.e., positive correlation), and the blue color denotes low adjacency (i.e., negative correlation) between
the corresponding modules. The preservation heatmap (3rd plot) shows the preservation network,
defined as one minus the absolute difference of the two eigengene networks. The barplot (4th plot)
shows the mean preservation of adjacency for each of the eigengenes to all other eigengenes (column
means of the preservation heatmap). (C). The completed partially directed acyclic graph (CPDAG)
is displayed. Both directed and bidirected edges are present in the causal graph. The description
corresponding to the modules is based on the most frequent gene ontology term, observed within
each module.
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3.2. Causal Model-Based Network of Co-Expression Proteogenomic Modules across Various Sweet
Cherry Fruit and Stem Developmental Stages

In a second scenario, we considered only the eight tissues that refer to the sweet cherry
fruit and stem developmental stages (FS1–FS4 and SS1–SS4) in order to identify putative
hub genes/proteins that are involved in the molecular mechanism of fruit ripening.

All gene/protein pairs were assessed for eligibility in the weighted gene co-expression
network analysis. There were four genes/proteins in total that did not qualify for the
WGCNA analysis and were excluded from further assessment, thus reducing the total
number of genes/proteins to 6328. The soft-thresholding power was set to 16, based on the
scale-free topology criterion (data not shown). WGCNA resulted in a network consisting
of 37 modules (MEs; ME0–ME36). Modules 1–36 ranged in size from 50 to 931 transcript-
protein pairs (see Supplementary Table S1). Module 0 (size 771) consisted of pairs that were
outside of all the 36 other modules.

The consensus eigengene network heatmaps (Figure 3A) revealed that with the pro-
teomics data, most of the modules appear to cluster within three large blocks, e.g., modules
ME10, ME36, ME2, ME25, ME16, ME30, ME23, ME27, ME34, ME19, ME7, and ME18 exhibit
high pairwise adjacencies and form a large block on the top left of the proteomics heatmap.
On the other hand, with the transcriptomics data, modules cluster in smaller clusters, and
additionally modules within a cluster may exhibit high adjacency with modules within
another cluster, e.g., ME13, ME14, ME22, ME1, ME3, ME24, and ME17 form a small high
adjacency block on the bottom right of the transcriptomics heatmap, and at the same time
exhibit high adjacency values with the block consisting of the modules ME7, ME18, ME8,
ME29, ME6, ME5, ME9, and ME20.

In the heatmap involving the values of the consensus eigengenes at the eight tissues
of interest (Figure 3B), the hierarchical clustering performed for the consensus modules
revealed four main clusters. In Figure 3C, the Pearson-based correlation between the
consensus eigengenes of the modules are displayed, revealing, among else, small blocks of
modules that are positively linearly correlated (e.g., ME29, ME6, ME5, and ME9).

The causal structure of the inter-consensus module relations is depicted in Figure 3D.
Both directed and bidirected edges are present in the estimated causal graph. Four
pairs of modules were connected via bidirected edges (ME11 <–> ME23, ME1 <–> ME2,
ME31 <–> ME35, ME8 <–> ME16). The number of directed edges was eight, connecting
in total eleven modules within three subgraphs. Three modules constitute the direct or
indirect effect of other modules, without being the cause of another module (V-structure).
Particularly, modules ME15 (directly caused by ME21, ME12 and indirectly by ME4), ME18
(directly caused by ME10, ME7 and indirectly by ME19), and ME30 (directly caused by
ME20, and ME27).

By focusing on the identified modules by WGCNA analysis that were included in the
causal graph, three main gene ontology (GO) categories were found in the intra-module
that dominated based on the biological process of each gene or protein. These categories
included (i) protein phosphorylation, (ii) metabolic process, and (iii) carbohydrate metabolic
process (Figure 4A). Of particular biological interest was the direct causal effect between
modules, especially when a V-structure scheme was observed. The focus was on ME30 that
was directly caused by ME20 and ME27 and their relations across the various sweet cherry
fruit development stages.

Initially, the gene/protein pairs exhibited similar patterns within each of the three
modules (ME30, ME20, and ME27), based on z-scores in proteins and transcripts across
the fruit and stem developmental stages (Figure 4B). On top of that, these patterns were
distinct among the three modules. To further analyze the ME30 concerning the direct causal
relationship with the ME20 and ME27, genes/proteins that may have caused this direct
effect were targeted (Figure 4C).
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Figure 3. (A). Consensus eigengene networks are displayed and their differential analysis, based on
the 8 tissues considered (FS1–FS4 and SS1–SS4). The first two plots show the eigengene networks
heatmaps in the proteomic and transcriptomic datasets (labeled Transcript and Protein). In the
heatmaps, the red color represents high adjacency between modules (i.e., positive correlation),
and the blue color denotes low adjacency (i.e., negative correlation) between the corresponding
modules. The preservation heatmap (3rd plot) shows the preservation network, defined as one
minus the absolute difference of the two eigengene networks. The barplot (4th plot) shows the mean
preservation of adjacency for each of the eigengenes to all other eigengenes (column means of the
preservation heatmap). (B). Heatmap depicting the values of the consensus eigengenes (representing
the consensus modules) at the 8 tissues considered (FS1–FS4 and SS1–SS4). The eigenegenes were
clustered (by row) with hierarchical clustering. The distance measure used was the Euclidean distance
and the clustering method was “complete”. The columns (tissues) were given in the same sequential
order for the proteomic and transcriptomic (no clustering was performed by column). (C). Global
correlation analysis (Pearson coefficient) for the 36 modules. The magnitude of the correlation is
depicted in both the color and size of the spheres. Correlations which were not statistically significant
at the 0.01 level were marked with an “x”. (D). The completed partially directed acyclic graph
(CPDAG) is displayed. Both directed and bidirected edges are present in the causal graph.
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Figure 4. (A). Gene ontology (GO) categories regarding biological processes (BP) of 19 modules
that were displayed in at least four transcripts/proteins. Parentheses indicate the number of unique
genes/proteins that are classified in BP-GO. (B). Z-score trend lines of proteins and transcripts across
four fruit (FS) and stem (SS) stages in modules ME27, ME30, and ME20. (C). Specific genes/proteins
of ME27, ME30, and ME20 that are classified in ripening related groups. Arrows indicate direct effects
between modules. Data provided in Supplementary Tables S3 and S4.

Based on the literature [26–35], these observed direct cause-effect relations can be justi-
fied. For instance, the Ca2+ signaling category of ME20 (PaCDPK7; Pav_sc0001218.1_g200.1.mk)
and ME27 (PaCDPK5; Pav_sc0002962.1_g130.1.mk, PaCDPK1; Pav_sc0000869.1_g430.1.mk,
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PaCAMTA2; Pav_sc0000334.1_g570.1.mk) may be linked to the synthesis of phenylpropanoids,
notably anthocyanins during fruit ripening (ME30, PaAGT5; Pav_sc0000348.1_g1140.1.mk) [26].
In addition, caffeoyl shikimate esterase of ME27 (PaCSE; Pav_sc0000130.1_g1060.1.mk),
which is included in phenylpropanoid biosynthesis, participates in the process of the
endocarp lignification in stone fruits [27]. Moreover, leucoanthocyanidin reductase of
ME20 (PaLAR; Pav_sc0003685.1_g130.1.mk) has been found to increase when gibberel-
lic acid (GA3) was exogenously applied in sweet cherries during fruit development [28].
This protein was associated with delayed fruit coloring due to inhibition of anthocyanin
biosynthesis in sweet cherry [28] and apple [29] fruit.

Another interesting biological example regarding the function of the identified mod-
ules referred to the fruit softening process. It is known that sweet cherry fruit softening
results in changes in cell wall structure and composition due to cell-wall-modifying en-
zymes [30]. Herein, several cell wall-related enzymes, such as PaBGLC12; Pav_sc0000449.1
_g310.1.br, PaBGLC12; Pav_sc0001101.1_g010.1.mk, PaGBGL1; Pav_sc0000910.1_g180.1.mk
of ME20, and PaBGLC12; Pav_sc0001831.1_g060.1.mk of ME27, are directly involved in the
degradation of cellulose through splitting the cellulose chain into cellobiose and glucose or
cellobiose into glucose [30]. Furthermore, the identified β-galactosidase enzymes of ME20
(PaBGAL10; Pav_sc0000479.1_g010.1.mk) and ME27 (PaBGAL17; Pav_sc0000689.1_g090.1.mk)
are involved in cell wall degradation of pectin and hemicellulose [30]. Probably, cell
wall loosening-related protein activities that were found in ME20 and ME27 may affect
PaXTH2; Pav_sc0003915.1_g020.1.mk of ME30 through cleaving primary cell wall xyloglu-
can polymers. It was recently shown that PaXTH2 is tightly linked to ethylene production
in apples via activation of PaACO; Pav_sc0000027.1_g350.1.br (ME30) resulting in fruit
softening [30]. In parallel, starch biosynthesis enzymes of ME27, such as PaGLGCS3;
Pav_sc0001878.1_g090.1.mk [31,32] may act at PaFK1; Pav_sc0003434.1_g180.1.mk of ME30,
since it was found that it regulates plastid differentiation into chloroplasts, instead of
storage plastids, such as amyloplast [33,34].

The current analytical approach provided further information about fruit and stem de-
velopment that has not been clarified until now. A characteristic paradigm was the transcrip-
tion factors (TFs) PaBEL1H1; Pav_sc0000713.1_g640.1.mk and PaBEL1H9; Pav_sc0001794.1
_g370.1.mk of ME27 that regulate chloroplast development and chlorophyll synthesis [35].
These TFs may influence PaBEL1H7; Pav_sc0001518.1_g260.1.mk of ME30 (Figure 4C)
that were found to be involved in the chlorophyll degradation via ethylene production
during fruit ripening [36]. The ME30 was characterized by the presence of FERONIA recep-
tors since four of them (PaFERL; Pav_sc0000661.1_g020.1.br; Pav_sc0000681.1_g020.1.br;
Pav_sc0004547.1_g070.1.br; Pav_sc0004547.1_g060.1.br) were contained in this module.
It has been suggested that Feronia receptor kinases modulate multiple signaling path-
ways through phytohormone regulation across fruit development [37], indicating a pos-
sible module for causal reactions into the ripening process (Figure 4C). Previous studies
also documented that post-translational modifications of histones influence chromatin or-
ganization and contribute to the epigenetic regulation of gene expression during fruit
development and ripening [38,39]. The analysis herein has shown that PaHDAC14;
Pav_sc0000216.1_g410.1.mk and PaH2B7; Pav_sc0005603.1_g080.1.br of ME27 and PaHTA;
Pav_sc0000983.1_g350.1.mk; Pav_sc0001623.1_g150.1.mk of ME20 directly affected PaH-
TAX; Pav_sc0000704.1_g210.1.mk of ME30 (Figure 4C), showing that sweet cherry fruit
ripening was accompanied by chromatin reprogramming and epigenetic modification.

4. Conclusions

Causal discovery may boost molecular data exploration and the characterization of
key biological processes in plants. Herein, using causal models in a large proteogenomic
data set obtained from different sweet cherry tissues, cause–effect relations between the
consensus gene/protein modules were uncovered that reflect important biological functions
related to the ripening process. These results could be used as a reference for either
experimental validation (e.g., functional analysis in other species) and/or to set future



Cells 2022, 11, 92 11 of 12

biological questions. The application of causal models in the proteogenomic era might
be combined with all available modern molecular tool practices, such as bioinformatics
and innovative decision-making systems, to create novel approaches in fruit tree biology
and cultivation.
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Module classification and selected genes/proteins across fruits and stems.
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