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Abstract: The evolution of modern automobiles to higher levels of connectivity and automatism has
also increased the need to focus on the mitigation of potential cybersecurity risks. Researchers have
proven in recent years that attacks on in-vehicle networks of automotive vehicles are possible and
the research community has investigated various cybersecurity mitigation techniques and intrusion
detection systems which can be adopted in the automotive sector. In comparison to conventional
intrusion detection systems in large fixed networks and ICT infrastructures in general, in-vehicle
systems have limited computing capabilities and other constraints related to data transfer and the
management of cryptographic systems. In addition, it is important that attacks are detected in a
short time-frame as cybersecurity attacks in vehicles can lead to safety hazards. This paper proposes
an approach for intrusion detection of cybersecurity attacks in in-vehicle networks, which takes in
consideration the constraints listed above. The approach is based on the application of an information
entropy-based method based on a sliding window, which is quite efficient from time point of view,
it does not require the implementation of complex cryptographic systems and it still provides a very
high detection accuracy. Different entropy measures are used in the evaluation: Shannon Entropy,
Renyi Entropy, Sample Entropy, Approximate Entropy, Permutation Entropy, Dispersion and Fuzzy
Entropy. This paper evaluates the impact of the different hyperparameters present in the definition
of entropy measures on a very large public data set of CAN-bus traffic with millions of CAN-bus
messages with four different types of attacks: Denial of Service, Fuzzy Attack and two spoofing
attacks related to RPM and Gear information. The sliding window approach in combination with
entropy measures can detect attacks in a time-efficient way and with great accuracy for specific
choices of the hyperparameters and entropy measures.

Keywords: Controller Area Network (CAN); cybersecurity; information entropy; in-vehicle network;
Intrusion Detection System (IDS)

1. Introduction

With the evolution of the automotive industry to increased levels of connectivity and automation,
the potential for cybersecurity attacks is growing as the vehicle is more exposed to digital attacks.
A modern vehicle today is implemented with various electronic components including sensors,
actuators, Electronic Control Unit (ECU) and communication devices, which are connected to different
types of in-vehicle networks. The use of sensors to perceive the surrounding environment (e.g.,
camera, LiDARs) will be even more important with increasing levels of automation. In general,
each ECU in a vehicle performs a specific function and groups of ECUs are usually connected into a
common sub-network (e.g., powertrain). One of the most common in-vehicle network standards in the
automotive industry is the Controller Area Network - bus (CAN-bus), which has such a widespread
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use due to its characteristics of low cost, relatively high reliability and fault tolerance. On the other
hand, the CAN-bus was designed in times where the potential for cybersecurity threats was minimal
due to the physical isolation of the vehicle from the outside world. Although tampering of specific
functions was reported, this was usually implemented on specific components of the vehicle rather
than the in-vehicle network. Because the automotive vehicles are increasingly connected, the potential
for cybersecurity attacks grows from the technical point of view. Researchers have demonstrated the
feasibility of various remote attacks starting with the seminal work by Checkoway described in [1],
which has shown that the remote exploitation of a vehicle is possible via a broad range of attack vectors
to the point that remote control of the vehicle can be achieved. Although the drivers for such attacks
can vary and it may be related or not related to infringements of automotive regulations, the research
community has started to investigate in-vehicle cybersecurity threats and potential countermeasures
in detail. Although the connectivity of the vehicle and its dependency on quite sophisticated digital
components does widen the risk of cybersecurity threats, the growing levels of automation of the
vehicle increase the potential impact of a cybersecurity threat from a safety point of view as the driver
may be absent or s(he) may not be able to react in due time. In the ICT domain, one of the primary
techniques to mitigate cybersecurity threats is Intrusion Detection System (IDS) where the objective is
to detect an attack in the shortest time possible so that an appropriate countermeasure (e.g., isolation
of a section of an in-vehicle network) can be implemented. As mentioned above, the most important
assets in the automotive vehicles are ECU, sensors and actuators, which are connected through various
in-vehicle networks like CAN-bus, FlexRay and LIN. Then, a remote attack is likely to be conducted
by injecting or manipulating messages in the in-vehicle network and this is the area where most of
the research literature has focused (see Related Work Section 2). The advantage of IDS based on the
analysis of in-vehicle traffic is that it does not rely on the implementation of cryptographic solutions
in the in-vehicle network, which may be expensive to deploy or unfeasible to implement in existing
standards or technologies because of technical limitations [2,3]. In this paper, we focus specifically on
attacks on the CAN-bus, at it is the most widely deployed in-vehicle network standard in the world and
it is mainly used to connect the most critical assets (e.g., ECUs) of the automotive vehicle. This paper
proposes an approach based on the application of an information entropy-based method based on a
sliding window, which is quite efficient from time point of view, it can be flexible to adapt to changes in
the operational context of the vehicle and it provides a very high detection accuracy as demonstrated
by the results presented in this paper. The approach is based on the calculation of the entropy of the
CAN-bus messages transmitted on the CAN-bus network and it is based on the hypothesis that attacks
modify the entropy of the CAN-bus traffic so that variation of the calculated entropy may indicate a
cybersecurity threat. This idea is not new in the literature and recent studies have demonstrated its
potential in comparison to other IDS techniques based on machine learning and deep learning (mostly
from a time efficiency point of view), but in some cases the entropy-based approach has provided
a low detection accuracy or the analysis of the attacks was limited to one or two cases. This paper
proposes an extensive analysis of a wide variety of entropy measures, which explains the reason for
the weak results presented in the literature (e.g., the selected entropy measures did not have significant
discriminating power) and support the identification of the entropy measures, which provide the
highest classification performance. Different entropy measures are used in the evaluation: Shannon
Entropy, Renyi Entropy, Sample Entropy, Approximate Entropy, Permutation Entropy, Dispersion
and Fuzzy Entropy. The paper evaluates the impact of the different hyperparameters present in the
definition of entropy measures on a very large public data set of CAN-bus traffic with millions of
CAN-bus messages with four different types of attacks: Denial of Service, Fuzzy Attack and two
spoofing attacks related to RPM and Gear information. The sliding window approach in combination
with entropy measures can detect attacks in a time-efficient way and with great accuracy for specific
choices of the hyperparameters and entropy measures

This paper is organized as follows: Section 2 provides a state of art of the related work in two main
areas: (a) intrusion detection systems in in-vehicle networks with a specific focus on the application of
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entropy measures and (b) application of the entropy measures used in this paper in various domains
for problems of identification and classification. Section 3 describes the overall methodology for
intrusion detection including the definition of the entropy measures used in the analysis and the
materials (i.e., public data set for in-vehicle attacks) on which the measures are applied. Section 4
provides the results of the evaluation for the different attacks and the different entropy measures in
relation to the values of the hyperparameters and the size of the sliding window. Section 5 draws
conclusions and describes future developments.

2. Related Work

As mentioned before, this related work section focuses on two different areas: (a) intrusion
detection systems in in-vehicle networks with a specific focus on the application of entropy measures
and (b) the application of the entropy measures used in this paper for identification problems in
other domains.

2.1. Intrusion Detection in In-Vehicle Networks

The basic principle of an IDS for an in-vehicle detection system is the same as that of an IDS
for general communication networks, where the research literature is already quite extensive and in
many cases, research outputs have led to commercial developments. There are already surveys in
the literature, which extensively identify and catalog the different IDS for in-vehicle networks [4–6].
One simplistic classification of the methods to design and implement the IDS divides the literature
in two main categories. The first category of methods is based on the pre-storing of pre-specified
signatures of external attacks, inspection of the transmitted packets, and analyzing whether any
pattern matches with the stored signatures. In this context, machine learning approaches based on the
creation of a training data set of known attacks and normal/legitimate traffic are widely used and some
examples can be found in [7], which uses one-class Support Vector Machine (SVM) or deep learning
approaches as in [8]. Although these methods have achieved very high accuracy, they suffer from
high computational costs to create the training set of the library of signature/patterns. The second
method detects abnormalities using statistical characteristics of the normal range of the data generated
by the components in the vehicle and transmitted in the in-vehicle network. This approach is more
time-efficient than the approaches in the previous category because the extraction of the features from
the network traffic lead to a significant dimensionality reduction in the data analysis process. On the
other side, this method can be less accurate if the features and the related detectors are not chosen
properly. The second method (adopted in this paper) can benefit from the specific characteristics of
in-vehicle automotive networks. As highlighted in [9], one of the most relevant differences between
conventional communication networks and vehicular networks in the viewpoint of IDS is that messages
generated and transmitted in in-vehicle networks have uniform and regular characteristics, because the
traffic usually conveys control or status information of the vehicle, unlike those made by network
users over general networks. Because the estimation is made by determining whether the abnormal
phenomenon is normally deviated from the specific pattern of normal traffic, the probability of error
can be reduced, compared to general communication networks. It should also be noted that the
computational power of the ECUs used in vehicles is generally limited compared to the processing
power of the computing platforms in generic communications networks (e.g., Software Defined
Networks), and thus, the implementation and execution of complicated classification algorithms
(e.g., Deep Learning) may be difficult to implement in the vehicle. For this reason, this paper proposes
an approach belonging to the second category where the detection of the in-vehicle attacks is done
using features (i.e., the entropy measures in this case) extracted from the in-vehicle network traffic.
It is noted that there are other approaches for IDS (as described in [4]) based on the physical layer
fingerprinting of the ECU in the network to identify masquerade attacks when a malicious ECU
replaces a legitimate one [10,11], but these techniques are out of scope of the approach proposed in
this paper.
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One of the first papers to adopt an entropy-based approach for in-vehicle detection is [12].
Although this can be considered a seminal paper in this area, their experimental evaluation in [12]
was limited, and spans over just 15 s of CAN-bus traffic including only a single class of CAN-bus
messages that are not safety-relevant.

This paper is mostly based on the approach proposed in [3,13], but the scope of this paper is
considerable wider than each of the two papers. The first paper in the literature, which used entropy
to detect in-vehicle attacks was [3], where the authors have used Shannon Entropy to detect two types
of attacks: a replay attack and a fuzzy attack. A sliding window where the entropy is calculated
and evaluated against a threshold k is used and a similar approach is used in this paper. This initial
study was based on the timing of the messages and the detection accuracy suffered when the rate
of attacks is relatively low. It was demonstrated in subsequent papers [13] (see paragraph below for
further details) that an approach based on the counting of the messages is more effective than the
timing of the messages. For this reason, this paper uses the number of received CAN-bus messages,
while maintaining the information theoretic approach based on entropy measures.

In addition to [3], the most similar paper in the literature to this paper is [13], where a sliding
window approach is used to detect two different types of attack: a DoS Attack and an injection attack.
The impact of different window types is evaluated as well as the threshold used to determine when an
attack is implemented or not. In comparison to [3] where a time-based approach was used, the authors
in [13] use the number of received CAN-bus messages, which is shown to be more effective than the
time-based approach. This paper benefits greatly from the description of the approach presented
in [13] as it basically adopts a similar methodology but this paper expands considerably the analysis
in [13] as it evaluates four attacks and uses a much wider set of entropy measures in comparison to the
single use of Shannon Entropy. In addition, this paper uses a public data set, which is much larger
than the one used in [13] (about 3.5 million CAN-bus messages). The data analysis is dependent on
the choice of various hyperparameters, which include the choice of the entropy measures, the size
of the sliding window and the threshold to distinguish a statistical anomaly (i.e., which points to an
attack) from the previous calculated normal range. The last two hyperparameters are optimized using
a simulated annealing algorithm. Instead, this paper opts for a description of the results according to
the variation of the hyperparameter values to provide a more transparent view of the impact of each
hyperparameter on the classification performance.

A very recent paper, which adopts a different entropy measure from the previous papers is [9]
where the Renyi Entropy of order 2, 3 and 4 is used to detect a DoS and Fuzzy attack for different
values of the sliding window. This paper is also based on a similar methodology to [9], but it takes in
consideration a much larger set of entropy measures including Renyi Entropy.

Another significant difference of this paper in comparison to the previous references [3,9,13] is
that the analysis is performed on the payload rather than the CAN-ID. This approach is proposed both
to address a gap in the literature (mostly focused on the analysis of the CAN-ID) and to evaluate if
the information theory approach can be applied to payload analysis and to address the threat where
an attacker masquerades the injected traffic using a legitimate ID already present in the in-vehicle
network. Although it is acknowledged that different vehicle models may have different semantics of
the payload data (but they must be conforming to the CAN-bus standard specifications), the approach
proposed in this paper is agnostic to the payload data semantics as it is based on a data analysis of
the in-vehicle CAN-bus traffic and it needs to be executed only on a specific vehicle model or even a
specific vehicle. See also Section 2.3 for additional details.

2.2. On the Application of Entropy Measures to Classification and Identification Problems

Most of the entropy measures used in this paper have never been used for in-vehicle attacks
and there is an absence of related literature. On the other side, entropy measures are often used
for identification problems in other domains. Thus, this subsection reviews the literature on the
application of the entropy measures used in this paper (e.g., Sample Entropy, Approximate Entropy,
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Permutation Entropy, Dispersion Entropy and Fuzzy Entropy) for the purpose of detection and
identification in different domains. Please note that the definitions of the different entropy measures
are only briefly introduced in this section as they are described in detail in Section 3.5 of this paper.
Permutation Entropy (PeEn) was initially introduced by Bandt and Pompe in [14] and it has been used
for many different applications since then. In [15], it has been used for the detection of stealthy attacks
on industrial control systems. The approach is based on the consideration that stealthy attacks present
some sort of regularity besides the magnitudes, which prompted the adoption of PeEn in this paper
as well because industrial control systems and in-vehicle networks shares some similarities. In the
biomedical sector, PeEn is used in [16] to distinguish between normal and pathological gait with very
good accuracy.

Sample Entropy (SaEn) and Approximate Entropy (ApEn) has been extensively used in the
analysis of physiological signals, where it has often demonstrated superior performance. Even if there
are many papers in the literature using SaEn and ApEn, we select the two following works since they
are similar to our approach as they compare the discriminating power of different entropy measures
for classification purposes. The authors in [17] have used approximate entropy with other entropy
measures for the identification of focal electroencephalogram signals. The entropy measures are
applied to the intrinsic mode functions generated by the application of empirical mode decomposition,
while in this paper, the Fourier Transform is used. SaEn and other entropy measures have also been
used in automatic sleep classification [18].

Dispersion Entropy (DiEn) has been recently introduced by the authors in [19] and it is suggested
as an improvement both to PeEn and SaEn. Since its introduction, it has been applied for identification
problem in different domains. In particular, for the identification and authentication of wireless
communication devices, DiEn has demonstrated an improvement in the classification performance
and robustness in the presence of noise [20]. DiEn has also been used to detect and identify gear faults
in mechanical related applications, where it has shown its superior performance in comparison to
PeEn and ApEn with the additional advantage of a faster computational time [21].

Fuzzy Entropy has been used in [22] in combination with the empirical Wavelet Transform for the
monitor and diagnose of faults of motor bearing, where it has demonstrated its high identification
performance. Fuzzy Entropy has been applied in combination with ant colony optimization in [23] to
a problem similar to the one presented in this paper: intrusion detection in communication networks,
which have different characteristics than in-vehicle network traffic.

In the same context of intrusion detection in communication networks, Renyi Entropy has been
compared to Shannon Entropy in [24,25] to classify the traffic as normal or suspicious and to select
the most appropriate attributes of the network traffic. Renyi Entropy has demonstrated a superior
detection performance, which is the reason it was included in the set of entropy measures used in
this paper.

2.3. Main Contributions of This Paper in Comparison to Related Work

To summarize, the key aspects of the proposed approach are identified in the following list:

• This paper extends significantly the number and types of entropy measures used (Shannon, Renyi,
Sample, Approximate, Permutation, Dispersion and Fuzzy Entropy) to perform the information
theory analysis in comparison to the limited number of entropy measures adopted in the literature.
Some of these entropy measures (e.g., dispersion entropy) were introduced only recently in the
literature in different domains than automotive cybersecurity. The rational for their use is that
such entropy measures have demonstrated their discriminating power in classification problems
and this paper evaluates their application to this specific domain. In addition the impact of specific
hyperparameters (e.g., embedding dimension) present in the definition of some of the entropy
measures is evaluated.
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• Four different type of attacks (identified as DoS, Fuzzy, RPM and Gear in the rest of this paper)
are analyzed in comparison to the literature on a published data set containing millions of
CAN-bus-messages.

• The analysis is performed on the CAN-bus message payload rather than the CAN-bus message
ID as commonly done in the literature because the ID could subject to masquerading attacks.
As highlighted in [26], the analysis of the payload rather than the CAN-bus IDs presents the
issue that a large amount of data must be processed, especially if machine learning of deep
learning approaches are used. This is the reason an efficient sliding window approach is instead
used in this paper where a large set of entropy measures is applied to reduce the dimensionality
of the CAN-bus payload data. It can be remarked that different vehicle manufacturers have
different semantics of the payload content in the CAN-bus messages, but the objective of this
paper is not to support portability of the attack detection approach across different vehicle
manufacturers. The intrusion detection system can be specific to each vehicle or to a vehicle model
where the payload format and semantic is the same. Then the payload-based IDS is based on the
consideration that the IDS algorithm identifies the key values of the hyperparameters using a data
derived approach and it is agnostic to the implementation/format of the CAN-bus payload in the
vehicle model.

3. Materials and Methods

3.1. Description of the Controller Area Network Protocol

CAN-bus protocol was invented by Robert Bosch GmbH and officially released in 1991. It is a
message-based protocol, which was designed to allow robust communication among microcontrollers
in a vehicle and meet the specific requirements of in-vehicle environment, such as real-time processing,
strong robustness, and cost effectiveness. CAN-bus protocol uses broadcast communication to
transmit messages.

A description of the standard CAN-bus (CAN 2.0) frame structure with the identification of the
specific fields is provided in Figure 1.
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Figure 1. Standard CAN-bus message frame.

As mentioned before, the focus of this paper is on the analysis of the Data segment of the frame,
which can be composed up to 8 bytes. Because of the increasing data exchange in in-vehicle networks,
in most of the cases, all the 8 bytes are used and the data set used in this paper (described in Section 3.2)
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has all the CAN-bus messages set to 8 bytes. As described before, it can be remarked that different
vehicle manufacturers have different semantics of the payload content in the CAN-bus messages,
but the objective of this paper is not to support portability of the attack detection approach across
different vehicle manufacturers. The intrusion detection system can be specific to each vehicle or to a
vehicle model where the payload format and semantic is the same.

3.2. Data Sets and Attack Scenarios

This paper uses the data set created by Hacking and Countermeasures Research Lab described
in [26,27]. The data has been extracted from a Hyunday YF Sonata through a Y-cable plugged into the
OBD-II port through a Raspberry Pi3 as described in [26,27]. The recorded CAN-bus traffic matches
the specification of CAN 2.0 with a CAN-bus message interpretation based on the Hyunday YF
Sonata model.

The datasets contain each 300 intrusions of message injection. Each intrusion performed for in
time ranging from 3 to 5 s, and each dataset has total 30 to 40 min of the CAN-bus traffic, then the data
sets are quite extensive and they contains millions of messages as described in the following Table 1:

Table 1. Data set used in this paper from [26,27].

Attack Type Number
of
Messages

Number
of Normal
Messages

Number
of Injected
Messages

DoS Attack 3,665,771 3,078,250 587,521

Fuzzy Attack 3,838,860 3,347,013 491,847

Spoofing the drive Gear 4,443,142 3,845,890 597,252

Spoofing the RPM gauge 4,621,702 3,966,805 654,897

The four attacks scenarios are described below:

• In the Denial of Service (DoS) attack, messages of ‘0000’ CAN-bus ID were inserted in the in-vehicle
network every 0.3 ms.

• In the Fuzzy attack, totally random CAN-bus ID and DATA values of the CAN-bus message were
injected every 0.5 ms.

• In the Spoofing attack of type RPM, messages related to the RPM information were injected every
1 ms.

• In the Spoofing attack of type Gear, messages related to the Gear information were injected every
1 ms.

The Dataset were created by logging CAN-bus traffic (from 30 to 40 min of CAN-bus traffic) via
the OBD-II port from a real vehicle while message injection attacks were performing. Additional details
are provided in [26,27].

3.3. Workflow

The description of the workflow for the processing of the data is described in this section.
As described in the introduction, a sliding window approach is implemented where a set of CAN-bus
messages is used to generate a sample for the data analysis process. The number of CAN-bus messages
used to create the sample is defined by the parameter Ws in the rest of this paper. Ws is the window size
used for the analysis. For example, a window value of Ws = 24 generates a sample of size 192 bytes
because each CAN-bus message in the data set has a data payload of 8 bytes. On the basis of the results
from literature [13], which provides an indication of the suitable range of window size, we identified
four different values of the window size Ws: 24,72,120 and 168. The trade-off is that a larger Ws

may decrease the reaction time while a smaller window size may provide a lower detection accuracy.
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These assumptions are evaluated in Section 4. In a similar way to what it has been done in the literature,
a sample of size Ws is considered normal/legitimate (Note: the terms legitimate traffic and normal
traffic have the same meaning in the rest of this paper.) if the sample contains only normal CAN-bus
messages. The sample is considered malicious (e.g., an attack is being implemented) if it contains even
a single CAN-bus message labeled as malicious in the data set. The use of a moving window allows a
faster detection of the attack as the CAN-bus messages are processed in ‘batches’ (i.e., the samples)
rather than a single CAN-bus message at the time. In this paper, the choice is to avoid overlapping
among samples: no CAN-bus message belongs to two samples at the same time. The reason for this
choice is to foster time efficiency as overlap would obviously increase the detection time. On the other
side, the proposed approach can be easily extended to overlapping samples, where the percentage of
overlapping become an additional hyperparameter in the analysis.

There are three main phases in the application of the approach proposed in this paper: the normal
traffic estimate, the training phase and the operational detection phase. This paper is mainly focused
on the normal traffic estimate and the training phase, but the evaluation of the detection phase is also
performed. The evaluation of the classification performance of the different hyperparameters is quite
similar to the workflow presented in [13] with the difference that the analysis is performed on the
payload rather than the CAN-ID and no meta-heuristics algorithms are used to identify the optimal
hyperparameters as it is preferred to present the graphs showing the impact of each hyperparameter
and leave the choice of the optimal values to the IDS designer. Each phase and the related steps are
described in the following paragraphs.

The workflow of the normal traffic estimate is described in Figure 2. This phase is executed only
on data labeled as normal. The workflow is composed by the following steps.

• Step 1. The normal traffic portion of the data set is split in non-overlapping windows.
Each window is composed by several CAN-bus messages equal to Ws.

• Step 2. For each window, the value of each Entropy Measure H(j)i is calculated where j is the
identifier of the window and i is the identifier of the Entropy Measure. This step is repeated until
all the data set has been analyzed.

• Step 3. For each Entropy Measure i, the mean ui and standard deviation σi is extracted from all
the values of H calculated in the previous step.

Normal Traffic estimate

Extract 
Payload data 
with Sliding 
Window Ws

Apply 
Entropy 

Measures
on windowed

Data j and 
calculate H(j)i

Windowed
Data

Recalculate with 
new window

1

2

3

CAN-bus 
Message 
Data set

Calculate
ui and σi

Figure 2. Estimate of the normal traffic entropy values.

The training phase is described in Figure 3 and it is composed by the following steps:
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• Step 1. The labeled data set is split in non-overlapping windows. Each window is composed
by several messages equal to Ws. In the rest of this paper, the set of Ws messages is also called
a sample.

• Step 2. Each sample is labeled as malicious if it contains at least a CAN-bus message, which was
initially labeled as malicious. If all the messages are labeled as legitimate, then the sample is
labeled as legitimate.

• Step 3. For each sample j and each Entropy Measure i, the value H(j)i is calculated.
• Step 4. For each sample j and each Entropy Measure i, the value of H(j)i is compared against the

mean ui and standard deviation σi. If the difference between H(j)i and ui in absolute value is
less than a threshold, the sample is predicted as legitimate, otherwise, it is considered malicious.
These conditions are formally defined in Equations (1) and (2) below in Section 3.4. Steps 3 and 4
are repeated for all the samples in the data set.

• Step 5. Steps 1–5 are repeated for different values Ws and for different values of the
threshold Facthr.

Initial Training Phase

Labelled 
CAN-bus 
Message
Data Set

Extract 
Payload data 
with Sliding 
Window Ws

Calculate 
Entropy 

Measure H(j)i

on Window 
sample j

Windowed
Data Identify the optimal Entropy 

Measure, window size Ws and 
threshold Facthr

Recalculate with new window

1

2

3

4

5

Check 
against 
normal 
range

Figure 3. Training phase and hyperparameters optimization.

The operational Detection phase is described in Figure 4. It is based on the previous phases as
it is the phase where the IDS in the vehicle monitors the in-vehicle network traffic to detect attacks.
This phase is composed by the following steps:

1. Step 1. The payload data is extracted from the CAN-bus message data set from a set of
sequential messages.

2. Step 2. Samples are generated by collecting a set of Wo CAN-bus messages. Wo is the optimized
window size.

3. Step 3. The entropy measures identified as optimal are used to calculate H(j)o from each sample j.
4. Step 4. It is checked if H(j)o is within the range defined by the optimized threshold Fac(o)thr as

described in Section 3.4.
5. Step 5. If the previous step 4 shows that H(j)o is out of the threshold range, an attack is reported

and logged.
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Detection Phase

CAN-bus 
Message 
Data set

Read CAN-bus 
Message and 

extract payload

Windowed 
Payload data with 

Optimal window Wo

Apply Entropy  
Measures on 

windowed sample

Entropy 
Values
H(j)o

Entropy 
values 

inside the 
threshold ?

Attack
Detected

Notify and log
attack

1 2 3

4

5

Figure 4. Detection phase of the traffic.

A significant design choice is related to the portion of the data set, which are used to estimate
the mean and the standard deviation (i.e., the Normal Traffic Estimate described in Figure 2) against
the training phase where the optimal values of the hyperparameters are calculated (i.e., described
in Figure 3). Although other papers in the literature identify a specific ratio (e.g., half for training
and half for testing), this paper evaluates the impact of the size of the training and test set, which is
expressed with the parameter RTT , which is defined as the ratio of the portion of the data set used for
Normal Traffic Estimate against the overall data set (in this case, it is used only the traffic labeled as
normal). Then, the training/hyperparameters evaluation and the detection phase is performed using
the remaining (1− RTT) fraction of the entire data set. The potential trade-off (to be evaluated in the
Results Section 4) is that a larger training set requires more training time but it may lead to a more
accurate detection of the malicious traffic.

3.4. Performance Metrics

The performance metrics to detect an attack are similar to what is used in the literature: Accuracy,
Precision and Recall related to a binary classification problem between legitimate traffic and attacks.
Then, a True Positive (TP) is when a traffic sample (i.e., set of CAN-bus messages in a window of size
Ws) is predicted by the algorithm as legitimate and it is true that it is legitimate. A False Positive (FP)
is when a traffic sample is predicted to be legitimate, but it is actually malicious (i.e., part of an
attack). A False Negative (FN) is when a traffic sample is predicted to be malicious, but it is actually
legitimate. Finally, True Negative (TN) is when a traffic sample is predicted to be malicious and it is
indeed malicious.

A traffic sample of size Ws is considered normal/legitimate or malicious respectively on the
condition defined in the following equations:

Normal 7−→ |H(j)i − ui| < Facthr × σi (1)

Malicious 7−→ |H(j)i − ui| > Facthr × σi (2)

where i is the identifier of the Entropy Measure and Facthr is one of the hyperparameters to define the
threshold factor, which discriminate between normal and malicious traffic.
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The main goal is to maximize the number of correctly predicted traffic samples on the overall
data set, which leads to the definition of accuracy as:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(3)

Another goal is to minimize the number of FP and FN (or maximize their inverse) and in particular
FP as it is more dangerous that the algorithm wrongly predicts legitimate samples as malicious than
the reverse. This leads to the other two metrics used in this paper:

Precision =
(TP)

(TP + FP)
(4)

Recall =
(TP)

(TP + FN)
(5)

These metrics are used to evaluate the proposed algorithm in relation to the variation of the
various hyperparameters described in the previous sections and subsections: RTT , Ws, Facthr, type of
attack and the parameters defined for the entropy measures.

3.5. Entropy Measures

This section describes the entropy measures, which are adopted for the analysis presented in this
paper. Beyond the classical or textbook definition of the entropy measures, the focus of this section is
to identify the key hyperparameters in the definition of the entropy measure, which could impact the
detection of the attack. In addition, in some cases, there are constraints on the length of the time series
on which the entropy measure must be applied, which are discussed in detail in Section 3.13.

3.6. Shannon Entropy

ShEn = −
N

∑
i

p(xi)log(p(xi)) (6)

where p(xi) is the probability p(x = xi).
For reproducibility of the results presents in this paper, the entropy MATLAB function from

MATHWORKS was used.

3.7. Renyi Entropy

ReEn =
1

1− α
log

(
N

∑
i

p(xi)
α

)
(7)

where p(xi) is the probability p(x = xi). The limit for α −→ 1 is the Shannon Entropy defined above.
In this paper, we adopt the values of α = 2, 3, 4 as these are the range of values used in the literature [9].

For reproducibility of the results presents in this paper, the MATLAB implementation of the Renyi
Entropy available at [28] was used.

3.8. Permutation Entropy

PeEn was introduced by Bandt and Pompe in their seminal paper [14]. The concept is to define an
entropy measure, which takes into account the time causality of the time series (causal coarse-grained
methodology) by comparing neighboring values in a time series. Then, PeEn is the Shannon Entropy
of a sequence of ordinal patterns—the latter being discrete symbols that encode how consecutive
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time series entries relate to one another in terms of position and value and it is defined by the
following equation:

PeEn = −
N!

∑
i

p
′
i log(pi

i) (8)

where p
′
i represents the relative frequencies of the possible patterns of symbol sequences, termed

permutations. The permutation is related to a sequence of m (embedding dimension) values of the
original series. A time delay τ can be used in the generation of the permutations from the original series,
but for simplicity we set the value of τ = 1 in this paper, while the value of m is an hyperparameter to
be optimized. Additional details on the definition of the PeEn are provided in [14].

For reproducibility of the results presented in this paper, the MATLAB implementation of the
Permutation Entropy provided by the authors in [29] was used in this paper.

3.9. Dispersion Entropy

DiEn was recently introduced in [21] and it addresses the potential weakness of PeEn where the
mean value of amplitudes and differences between amplitude values are not considered in its definition.
In dispersion entropy, the initial series X = xi, xi+1, ..., xN is mapped to c classes. Although this
mapping can be implemented with various linear or non-linear approaches, the authors in [21]
propose to use Normal Cumulative Distribution Function (NCDF) to map × to the c classes. Then,
the implementation of the DiEN is similar to PeEn, with the generation of dispersion patterns rather
than permutations and with the calculation of the probabilities p(πj) on the basis of an embedding
dimension m and the time delay τ. As in the case of PeEn, we set τ = 1 for simplicity. Then,
the Shannon Entropy (ShEn) is applied to the probabilities of the dispersion patterns in a similar way
to the implementation of PeEn where permutations are used:

DiEn = −
cm

∑
j

p(πj)log(p(πj)) (9)

It is important to note that the number of possible dispersion patterns that can be assigned to
each time series is set to cm as this links two main hyperparameters in the application of DiEn and
creates a constraint on such values because cm < N (where N is the number of CAN-bus messages
payload bytes in a sample in our specific problem). This is further discussed in Section 3.13.

For reproducibility of the results presented in this paper, the MATLAB implementation of the
Dispersion Entropy provided by the authors in [19,29] was used in this paper.

3.10. Approximate Entropy

ApEn was initially proposed by Pincus in [30] and it is related to the predictability or regularity of
a time series. It was devised as an approximation of the Kolmogorov entropy of an underlying process.

The algorithm to define ApEn is a search for the repetitive patterns of length m commencing at
sample i in which the distance induced by the maximum norm differs up to an error threshold r.

Then, ApEn is defined by the following equation:

ApEn(m, r, N) = Φm(r)−Φm+1(r) (10)

where:

Φm(r) =
1

(N −m + 1)

N−m+1

∑
i=1

log(Cm
i (r)) (11)

with Ci
m(r) is the number of vectors xi ∈ <m such that the distance d(xi, xj) < r and xi =

xi, xi+1, ..., xi+m−1;
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For reproducibility of the results presented in this paper, the MATLAB implementation of the
Approximate Entropy provided by the authors in [31,32] was used in this paper.

3.11. Sample Entropy

SaEn was defined as an evolution of ApEn with the objective to solve the bias of ApEn due to
counting self-matches and it was shown to exhibit better statistical properties than ApEn in many
cases [33]. It is computed in a similar fashion than ApEn described in the previous Section 3.10, but the
final step of calculating SaEn becomes:

SaEn(m, r, N) = −log
(

Am(r)
Bm(r)

)
(12)

where Bm(r) is defined as the mean of the number of vectors xi ∈ <m such that the distance d(xi, xj) < r
with i 6= j divided by (N −m + 1). The value of Am(r) is defined in the same way with xi ∈ <m+1.

For the reproducibility of the results presented in this paper, the MATLAB implementation of the
Sample Entropy provided by the authors in [33,34] was used in this paper.

3.12. Fuzzy Entropy

This paper also applies the Fuzzy Entropy (FzEn) defined by the authors in [35], where is reported
that even if SaEn is slightly faster than FzEn, the latter is more consistent and less dependent on the
data length of the series where it is applied. Fuzzy Entropy is based on similar concept of SaEn and
ApEn but the number of vectors which satisfy the distance condition in comparison to the tolerance r
is calculated using a fuzzy function of this form:

µ = e−dp/r (13)

where p is set to 1 in the analysis done in this paper.
Then the FzEn is calculated as:

FzEn(m, p, r, N) = −log
(

αm(r)
βm(r)

)
(14)

where α is related to <m+1 and β is related to <m

For reproducibility of the results presented in this paper, the MATLAB implementation of the
Fuzzy Entropy provided by the authors in [34] was used in this paper.

3.13. Choice of the Hyperparameters for the Entropy Measures

Each entropy measure identified above is based on the definition of hyperparameters. This section
discuss the choice of the value of the hyperparameters in relation to the length N of the sequence of
windowed data. In this specific proposal, the value of N in a sample is defined by Ws × 8 because all
the CAN-bus messages in the data set have a full payload of 8 bytes. Apart from ShEn, all the other
entropy measures are based on various hyperparameters: α for ReEn, the embedding dimension m for
PeEn, DiEn, SaEn, ApEn and FzEn, the parameter r for SaEn, ApEn and FzEn and the parameter c for
DiEn. In general, the studies presented in the literature [14,30,36] recommend that N >> m, to have a
significant number of patterns to estimate the entropy. DiEn is also based on the parameter c or number
of classes. In [19], the authors recommend that N > cm. An increase on the value of m does also
increase the computing time in the application of entropy features, which goes against the principle of
this paper to make the detection process time-efficient. The values of m = 2, 3 are used as shown in
the Results Section 4. Then, ApEn, SaEn and FzEn are also based on the tolerance or threshold value
r. In literature [33], it is recommended to use values of r > 0.1 ∗ σ(XN) where σ(XN) is the standard
deviation of the series XN of payload bytes in a sample, but such value of r may change depending on



Entropy 2020, 22, 1044 14 of 34

the specific characteristics of XN . Then, in this paper, the value of r is determined using the approach
presented in [36] and a similar analysis has been conducted to evaluate when the maximum values of
the Approximate Entropy are reached in relation to the ratio between the r and the standard deviation.
One example on the application of the Approximate Entropy with window size Ws = 72, RTT = 3/4
and the Gear attack is shown in Figure 5. Similar results are obtained for the other attacks and the
other window sizes. Then, the values of r/σ in the range (0.01, ..., 0.04) are used for the Approximate
Entropy. A similar approach is used for SaEn and FzEn and a value of r/σ > 0.1 is used. Finally,
the values of α for ReEn are (1–4) as they are the same values adopted in [9] and it was experimentally
found that values of α greater than 4 did not significantly improve detection.
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Figure 5. Approximate Entropy for m = 2 and m = 3 with varying r in the GEAR attack with Ws = 72
and RTT = 3/4.

Then, on the basis of the previous definitions of the entropy measures, we identify in Table 2 the
list of the features used in the study with the related hyperparameters. As it can be seen by Table 2,
a total of 34 features are defined and used to calculate the results presented in Section 4. This is a much
larger set of entropy measures than what it is used in the literature for in-vehicle detection attacks.

Table 2. List of features used in the analysis (σ is the standard deviation of the sample).

Feature Id Description of the Feature Hyperparameter

1 Shannon Entropy None

2 Renyi Entropy α = 2

3 Renyi Entropy α = 3

4 Renyi Entropy α = 4

5 Dispersion Entropy m = 2, c = 3

6 Dispersion Entropy m = 2, c = 4

7 Permutation Entropy m = 2

8 Approximate Entropy m = 2, r = 0.01 × σ

9 Approximate Entropy m = 2, r = 0.02 × σ

10 Approximate Entropy m = 2, r = 0.03 × σ

11 Approximate Entropy m = 2, r = 0.04 × σ

12 Sample Entropy m = 2, r = 0.1 × σ
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Table 2. Cont.

Feature Id Description of the Feature Hyperparameter

13 Sample Entropy m = 2, r = 0.2 × σ

14 Sample Entropy m = 2, r = 0.3 × σ

15 Sample Entropy m = 2, r = 0.4 × σ

16 Fuzzy Entropy m = 2, r = 0.1 × σ

17 Fuzzy Entropy m = 2, r = 0.2 × σ

18 Fuzzy Entropy m = 2, r = 0.3 × σ

19 Fuzzy Entropy m = 2, r = 0.4 × σ

20 Dispersion Entropy m = 3, c = 3

21 Dispersion Entropy m = 3, c = 4

22 Permutation Entropy m = 3

23 Approximate Entropy m = 3, r = 0.01 × σ

24 Approximate Entropy m = 3, r = 0.02 × σ

25 Approximate Entropy m = 3, r = 0.03 × σ

26 Approximate Entropy m = 3, r = 0.04 × σ

27 Sample Entropy m = 3, r = 0.1 × σ

28 Sample Entropy m = 3, r = 0.2 × σ

29 Sample Entropy m = 3, r = 0.3 × σ

30 Sample Entropy m = 3, r = 0.4 × σ

31 Fuzzy Entropy m = 3, r = 0.1 × σ

32 Fuzzy Entropy m = 3, r = 0.2 × σ

33 Fuzzy Entropy m = 3, r = 0.3 × σ

34 Fuzzy Entropy m = 3, r = 0.4 × σ

4. Results

The aim of this section is to provide the results on the approach for the four different attacks (DoS,
Gear, Fuzzy, RPM) present in the data set based on the different hyperparameters. Most of the analysis
is conducted for the normal traffic estimate and the training phase with the objective to identify the
optimal hyperparameters (i.e., Facthr, RRTT and feature id) over the entire data set. This objective is
the focus of the first three subsections of this Section: Sections 4.1–4.3. In detail, Section 4.1 evaluates
the classification performance of each entropy measure for all the four attacks. Section 4.2 provides the
precision and recall for each entropy measure for a specific values of the threshold Facthr by changing
the values of the window size Ws and the ratio RTT . An example of the obtained values for False
Positives and False Negatives is also provided. Section 4.3 analyzes the impact of Ws and RTT on the
classification performance of the Approximate Entropy, which is identified in the previous section as
an optimal feature from the classification performance point of view. Then, the Section 4.4 provides the
results for the detection phase, where the entire data set for all the four attacks is split in three portions
for each phase on the basis of the ratio value RTT : (1) the first portion, which is equal to the fraction
RTT of the entire data set is used for Normal traffic estimate, (2) half of the (1− RTT) portion of the
entire data set is used for Training and (3) the remaining half of the (1− RTT) portion of the entire data
set is used for the Detection phase. Finally, the last subsection 4.5 describes the computing resources
used in the analysis and provide the computing time for each of the three phases.
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4.1. Evaluation of the Accuracy for Each Entropy Measure

In an initial step, it was evaluated how the entropy measures change when an attack is executed.
It was found that some entropy measures provides more discriminating power in comparison to
other entropy measures. In the proposed approach, this means that the range of values reported
by the application of the specific entropy measure is significantly different in the legitimate traffic
in comparison to the malicious traffic. An example is shown in Figure 6a,b respectively for the
Dispersion Entropy and the Approximate Entropy in the presence of the Gear attack for Ws = 72
and for RTT = 3/4. The figures only show a small segment of the overall in-vehicle traffic, which
has been evaluated. The pink (or light gray in a b/w representation of this paper) bars represent
the set of messages when the attack is implemented (i.e., malicious traffic), while the plot shows the
calculated entropy measure. It can be seen that these two specific entropy measures have a significant
discriminating power because the range of values is significantly different in the legitimate traffic from
the malicious traffic: the mean of the entropy measure in the presence of legitimate traffic is quite
different from the mean of the entropy measure in the presence of malicious traffic. Then, an high
detection accuracy is possible even for relatively small values of Facthr.

(a) Entropy value for Dispersion Entropy in the presence and absence of the GEAR attack.

(b) Entropy value for Approximate Entropy in the presence and absence of the GEAR attack.

Figure 6. Entropy values for different entropy measures in the presence and absence of the GEAR
attack with Ws = 72 and RTT = 3/4.
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Not all the entropy measures provide the same clear visual distinction between legitimate and
malicious traffic. Then, an extensive analysis of all the 34 entropy measures for the four attacks was
performed. Figure 7a,b show the accuracy of the proposed approach at the variation of the parameter
Facthr between 0 and 4 in 0.1 steps of σi for the DoS attack and RTT = 3/4. Because of the large number
of features, two pictures were created: Figure 7a for entropy measures feature id from Id = 1 to 19
and Figure 7b for entropy measures feature id from Id = 20 to 34. The results are consistent with the
literature where a low value of the threshold Facthr leads to a limited detection performance. It can
be seen that for Facthr approaching 4, the detection accuracy is very high, and it eventually reaches
almost 100% detection accuracy. This is also consistent with literature because DoS attacks impact
significantly the entropy values calculated on the in-vehicle traffic. The figures shows also that most
of the entropy measures exhibit a similar detection performance with the significant difference of
the Dispersion Entropy with c = 4 both with m = 2 (Feature Id = 6 in Figure 7a) and m = 3 (Feature
Id = 21 in Figure 7b). A potential explanation of this deviation is that with C = 4 the calculation of the
Dispersion Entropy is noisier than with c = 3 thus leading to a divergent behavior.
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(a) DOS Attack. Accuracy obtained using entropy measures from Id = 1 to 19 for different values
of Facthr.
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Figure 7. Accuracy obtained using different entropy measures for the DOS attack with Ws = 72 and
RTT = 3/4.
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Because the accuracy values reported in Figure 7a,b are quite similar, the following Figure 8
provides a more detailed view of the accuracy obtained for each feature id (in this type of attack,
the accuracy values are nevertheless quite near) for three selected values of Facthr.
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Figure 8. Accuracy in relation to the feature id for values Facthr equal to 3.0, 3.5 and 4.0 for the DOS
attack with Ws = 72 and RTT = 3/4.

Similar results to the ones obtained for the DoS attack are also obtained with the Fuzzy attack as
shown in Figure 9a,b respectively for the entropy measures from Id = 1 to 19 and from Id = 20 to 34.
We see a similar behavior than the one obtained for the DoS attack where for high values of Facthr, it is
possible to obtain a very high detection accuracy near 100% and most of entropy measures performs in
a similar way at the increase of the value of Facthr. As with the DoS attack, the Dispersion Entropy
with c = 4 has a different behavior from the other entropy measures, obtaining a high value of detection
accuracy for relative (in comparison to the other entropy measures) limited values of Facthr but
eventually converging to the other entropy measures for very high values (i.e., Facthr approaching 4).
For high values of thresholds both DoS and Fuzzy attacks can be detected with almost 100% accuracy
obtaining similar results to ones obtained on the same data set with more sophisticated techniques like
Deep Learning [27]. The reason is that both attacks generate traffic, which is significantly different
from the normal in-vehicle CAN-bus traffic and entropy measures are able to detect such anomalous
behavior if the threshold is large enough.
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(a) FUZZY Attack. Accuracy obtained using entropy measures from Id = 1 to 19 for different values
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Figure 9. Cont.
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Figure 9. Accuracy obtained using different entropy measures for the FUZZY attack with Ws = 72 and
RTT = 3/4.

In a similar way to the DoS attack, the values of accuracy for each feature id are reported for three
selected values of Facthr in Figure 10 for the Fuzzy attack.

As shown in the following results, the detection of spoofing attacks is more challenging because
the injected malicious messages are quite similar to legitimate operations (e.g., related to the functioning
of the gear).
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Figure 10. Accuracy in relation to the feature id for values Facthr equal to 3.0, 3.5 and 4.0 for the FUZZY
attack with Ws = 72 and RTT = 3/4.

This assumption can be validated by the results presented in Figure 11a,b for the Gear attack.
One initial observation is that increasing the threshold value Facthr to the limit of 4 does not always
lead to the optimal detection accuracy for all the entropy measure as some entropy measures presents
an optimal values well below Facthr = 4. Then, these results are significant, because they show that
the value of Facthr must be chosen in an appropriate way. The second and more important observation
is that the detection performance of each entropy measure is significantly different from each other.
In particular, Approximate Entropy with values of m = 2 and r = 0.02 and r = 0.03 (respectively Id = 9
and Id = 10) and Approximate Entropy with values of m = 3 and r = 0.02 and r = 0.03 (respectively
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Id = 24 and Id = 25) are able to reach almost 100% detection accuracy for Facthr = 4 (which is also
their optimal value) while the proposed approach based on specific entropy measures is not able
to reach an high detection accuracy. The Dispersion Entropy measures are able to reach an higher
classification accuracy than the other entropy measures for low values of Facthr, but then they reach
a plateau around 90% detection accuracy even if the values of Facthr is increased to the maximum
value of 4. The classification based on Sample Entropy provides the worst results among all for this
specific type of attack in particular for values of m = 2. The Shannon Entropy and Renyi Entropy used
in the literature [9] are in the middle of a ranking of the entropy measures and they exhibit an optimal
detection accuracy for a value of the threshold Facthr slightly above 2. It is noted that the Dispersion
Entropy has the best accuracy for relatively low values of Facthr, but then it reaches a peak and the
accuracy decreases for increasing values of Facthr as many other features. The reason for the behavior
that the accuracy reaches a maximum and then decrease of higher values of Facthr is that an increase
of the value of Facthr forces the algorithm to include samples containing CAN-bus messages of the
RPM and Gear attacks. Because Facthr is related to the standard deviation of the legitimate in-vehicle
CAN-bus traffic, this behavior can be explained by looking again at the example of entropy measures
of Dispersion Entropy and Permutation Entropy shown in Figure 6. In particular, Figure 6a shows
the large variation of the values of Dispersion Entropy in normal traffic. Then, larger values of Facthr
may include sample related to attacks causing the algorithm to lose accuracy as the number of FP may
increase. This may explain why the accuracy plot in Figure 11 reaches a maximum and then slowly
degrades. On the other side, Figure 6b for the Approximate Entropy shows that the values of the
calculated entropy are in tight range (i.e., small values of standard deviation). Then, even when Facthr
is approaching the value of 4, the algorithm can discriminate with high accuracy legitimate samples
from samples containing malicious CAN-bus messages.
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Figure 11. Accuracy obtained using different entropy measures for the GEAR attack with Ws = 72 and
RTT = 3/4.

The detailed values of the accuracy for Facthr equal to 3.0, 3.5 and 4.0 are shown for each feature
in Figure 12.
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Figure 12. Accuracy in relation to the feature id for values Facthr equal to 3.0, 3.5 and 4.0 for the GEAR
attack with Ws = 72 and RTT = 3/4.

Similar results are obtained for the other spoofing attack: the RPM attack as shown in Figure 13a,b.
The choice of the entropy measure affects significantly the accuracy performance, with the Fuzzy
Entropy measures performing worse than the other entropy measures and the Approximate Entropy
providing the best accuracy.

To summarize, the Gear and RPM attacks are more difficult to identify in comparison to the
DoS and Fuzzy attack. In addition, Gear and RPM attacks require tuning and careful choice of the
entropy measure and the optimization values of Facthr because some entropy measures are never able
to reach very high accuracy (e.g., 99%) even for high thresholds and not necessarily the highest value
of Facthr is able to provide the optimal detection accuracy. To highlight more these significant results,
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Table 3 presents the optimal values for each entropy measure and the corresponding value of Facthr
where the optimal accuracy value is obtained. We note that these results were obtained with Ws = 72
and RTT = 3/4. Similar results were obtained with the other values of Ws and RTT but they are not
provided here for lack of space. The impact of Ws and RTT is investigated in the next subsections.

Table 3. Optimal Accuracy results for GEAR and RPM attacks in relation to Facthr with Ws = 72.

Feature Id GEAR
Accuracy

GEAR
Facthr

RPM
Accuracy

RPM
Facthr

1 0.916 2.9 0.885 3.4

2 0.935 2.5 0.998 3.9

3 0.936 2.4 0.997 4.0

4 0.948 2.2 0.918 4.0

5 0.967 2.4 0.997 4.0

6 0.915 1.8 0.918 1.3

7 0.948 2.8 0.882 3.2

8 0.915 3.5 0.998 3.4

9 0.994 3.8 0.995 3.3

10 0.981 3.8 0.949 3.2

11 0.914 3.2 0.997 3.5

12 0.913 3.2 0.878 4.0

13 0.913 3.4 0.879 4.0

14 0.909 4.0 0.912 3.3

15 0.911 3.9 0.881 3.7

16 0.915 3.6 0.878 3.9

17 0.916 3.4 0.878 3.8

18 0.920 3.2 0.887 2.9

19 0.931 3.1 0.933 2.5

20 0.975 2.4 0.995 4.0

21 0.913 1.8 0.918 1.2

22 0.928 2.6 0.930 2.6

23 0.910 3.4 0.995 3.1

24 0.996 3.7 0.996 3.3

25 0.988 3.9 0.956 3.1

26 0.914 3.8 0.997 3.5

27 0.919 2.9 0.878 3.7

28 0.932 2.7 0.878 4.0

29 0.908 4.0 0.878 4.0

30 0.910 3.9 0.878 4.0

31 0.920 2.9 0.878 3.8

32 0.922 2.9 0.879 2.9

33 0.931 2.7 0.933 2.1

34 0.951 2.5 0.967 2.3
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(a) RPM Attack. Accuracy obtained using entropy measures from Id = 1 to 19 for different values
of Facthr.
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(b) RPM Attack. Accuracy obtained using entropy measures from Id = 20 to 34 for different values
of Facthr.

Figure 13. Accuracy obtained using different entropy measures for the RPM attack with Ws = 72 and
RTT = 3/4.

As for the previous results, Figure 14 shows the detailed values of the accuracy for Facthr equal to
3.0, 3.5 and 4.0 for the RPM attack.
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Figure 14. Accuracy in relation to the feature id for values Facthr equal to 3.0, 3.5 and 4.0 for the RPM
attack with Ws = 72 and RTT = 3/4.

4.2. Recall and Precision for the Gear Attack

The aim of this subsection is to analyze how the recall and precision changes at the variation of
Ws and RTT for each of the entropy measures for the specific value of the threshold Facthr = 2.

The Bar Figure 15a,b provide respectively the recall and precision for the Gear attack for each of
the entropy measures for Facthr = 2 and Ws = 72 at the variation of the parameter RTT . Please refer
to Table 2 for the description of each entropy measure associated with the specific Id appearing
on the X axis of Figures. Both Figures show different bars for each value of ratio RTT . The result
confirms the previous accuracy Figures (e.g., Figure 11), which shows that precision and recall can
vary greatly among the entropy measures and the specific entropy measure must be carefully selected.
The Figure 15a,b show that the balance between the size of the training set and the test set impacts
both metrics but in particular the precision. It can be seen from Figure 15b that a larger training
set (e.g., increasing value of RTT) provides higher values in a consistent way across all the entropy
measures. This result indicates an important design decision as a larger value of RRTT may provide
more stable values of ui and σi to support a more stable choice of the hyperparameters and an improved
detection accuracy. In particular, the precision (as indicated before) is probably more relevant than
the recall in this particular detection problem, as the goal is to minimize the FP where an intrusion
is wrongly detected an legitimate traffic thus allowing the attacker to implement the cybersecurity
threat. On the other side, Figure 15a shows that such trend is not the same across all the entropy
measures. For example, the accuracy obtained with Feature Id = 10 (ApEn, m = 2 and r/σ = 0.03)
does not change significantly. In addition, as shown more in detail in Section 4.3, the improvement in
classification performance due to the RTT depends both on the entropy measure but also the value of
the threshold Facthr. Then, all these factors should be taken in consideration.
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Attack Type=GEAR, W
s
=72

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334

Feature Id

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

R
TT

=1/8

R
TT

=1/4

R
TT

=1/2

R
TT

=3/4

R
TT

=7/8

(b) GEAR Attack. Precision obtained for each feature for different values of RTT .

Figure 15. GEAR Attack. Precision and recall for different values of the ratio RTT with Facthr = 2.

In another phase of the study presented in this paper, the impact of the window size was evaluated.
As in the previous case, only one specific attack is presented for space reasons. The Bar Figure 16a,b
provide respectively the recall and precision for the Gear attack for each of the entropy measures
for Facthr = 2 and RTT = 3/4 and by changing the size of the window Ws. The size of window
size is another important hyperparameter: a small sample size may require more time for training
as the data set is segmented in a greater number of segments on which the entropy measure must
be calculated (thus requiring more time), but it may provide higher detection accuracy because the
CAN-bus messages related to a cybersecurity attack would have in percentage more weight in the
sample. The latter aspect is confirmed by the Figure 16a,b because the recall is significantly higher
for Ws = 24 rather than the larger values of Ws. On the other side, the precision is slightly better with
larger values of Ws.
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(a) GEAR Attack. Recall obtained for each feature id for different values of the window WS with RTT = 3/4.
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(b) GEAR Attack. Precision obtained for each feature id for different values of the window WS with RTT = 3/4.

Figure 16. GEAR Attack. Precision and recall for different values of the window WS with RTT = 3/4
with Facthr = 2.

To complement the previous Figure 16a,b and to provide an independent evaluation of FN and FP,
the following Figure 17a,b provide respectively the number of False Positives (FP) and False Negatives
(FN) over all the samples.
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(a) GEAR Attack. Ratio of FP over all the samples obtained for each feature id for different values of the window
WS with RTT = 3/4.
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(b) GEAR Attack. Ratio of FN over all the samples obtained for each feature id for different values of the window
WS with RTT = 3/4.

Figure 17. GEAR Attack. Ratios of FP and FN over all the samples for different values of the window
WS with RTT = 3/4 and Facthr = 2.

4.3. Evaluation of Accuracy in Relation to RTt and Ws at the Variation of FacThr

This subsection shows the impact of the value of the threshold Facthr both for RTT and Ws.
Two specific entropy measures (Id = 5 and Id = 10) are selected in relation to the specific GEAR attack.

The following Figure 18a,b provide the plots respectively for the Feature Id = 5 (Dispersion
Entropy) and Feature Id = 10 (Approximate Entropy) for different values of the ratio RTT and Ws = 72.
Two main observations can be derived from Figure 18a,b. The first one is that the optimal value
of Facthr changes considerably with the value of RTT for both entropy measures (similar results are
obtained for the other entropy measures but they are not displayed here for lack of space). Then,
the combination of RTT and Facthr must be carefully identified. The second observation confirms the
previous results that the optimal detection accuracy is obtained with high values of RTT . The larger
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is the portion of the data set is used to calculate mean and standard deviation and more accurate is
the detection.
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and Ws = 72.

Figure 18. Impact of Facthr on Accuracy for features Id = 5 and 10 for different values of RTT and
Ws = 72 for the GEAR attack.

The following Figure 19a,b provide the graphs respectively for the feature Id = 5 (Dispersion
Entropy) and feature Id = 10 (Approximate Entropy) for different values of the window size WS and
RTT = 3/4. In this case, the results shows that the impact of the Ws can be different across entropy
measures and the optimal values are obtained through a proper combination of Ws with the entropy
measure. In fact, in Figure 19a a smaller window size Ws = 24 provides less detection accuracy than
larger windows (e.g., Ws = 168) for all the values of Facthr. For Figure 19b, a small window size of
Ws = 24 is able to provide the best accuracy for most of the values of Facthr apart from values near 4,
where larger windows sizes are more effective. A potential explanation for this behavior is related
to the characteristics of each entropy measure. In particular Dispersion Entropy requires longer time
series related to the Cm condition to provide correct results while Approximate Entropy can correctly
estimate entropy with shorter time series.
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(a) GEAR Attack. Accuracy for different values of the window size WS for
Dispersion Entropy RTT = 3/4.
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Figure 19. Impact of Facthr on Accuracy for features Id = 5 and 10 for different values of Ws and
RTT = 72 for the GEAR attack.

4.4. Detection

This section provides the results for the detection phase. Although the previous sections on the
training was conducted on the entire data set, the evaluation of the detection phase is performed by
splitting in half the remaining of the data set (1− RTT of the entire data set), which is not used for the
normal traffic estimate (RTT of the data set). For example, if a value of RTT = 1/2 is used, the first half
of the data set is used for the normal traffic estimate, one quarter is used for training and one quarter
is used for detection. The calculation has been performed for all the different attacks (i.e., DoS, Fuzzy,
Gear, RPM), for all the different sizes (Ws = 24, 72, 120, 168) and for different values of RTT .

The results of the analysis are provided in Figure 20, while the values of the reported accuracy
for all the attacks and Ws = 72 are shown in Table 4 together with the optimal feature id and the
optimal Facthr from the Training Phase. In particular, Figure 20a–d show the accuracy respectively
for the DoS, Fuzzy, Gear and RPM attacks at the variation of RTT . The results are consistent with the
results presented in the previous subsections of this section where lower values of RTT can provide a
relatively low accuracy for the detection of the in-vehicle attack. When the amount of data used for the
normal traffic estimate is larger (e.g., values of RTT higher than 0.5) the accuracy increases significantly.
This trend is similar for all the attacks. It is noted that the accuracy has a sharp increase in particular
for the Gear and RPM attacks (Figure 20c,d), which are more difficult to detect. Although this is
consistent with the other results, it can also be based on the consideration that for such high values
of RTT , the driving circumstances were very similar for the training and the detection phases; then it
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is easier for the algorithm to detect attacks because the optimal features and thresholds used for the
detection were calculated in similar driving circumstances, thus explaining the very high accuracy.
When the training and detection phase are based on the analysis of a relative large set of data (lower
values of RTT), the driving circumstances may be different thus lowering the detection accuracy.
Future developments of the research presented in this paper, could evaluate methods of statistical
analysis, which take in consideration and identify different optimal features and thresholds for different
driving circumstances. Such analysis could be quite complex because it must take in consideration
the range of different driving circumstances, identify in which driving circumstances the detection is
currently executed and it must choose the appropriate optimal features and thresholds. This complex
analysis is out of the scope of this paper and it is reserved for future developments (see Conclusions
Section 5).

Table 4 provides additional information to the Figure 20 as it identifies the optimal feature ids
and values of Facthr from the training phases, which are used for the detection phase. The results are
consistent with the previous sections where Approximate Entropy (feature Id = 24) and Dispersion
Entropy (feature Id = 21) provides optimal results. Shannon Entropy is also the optimal feature id for
the DoS and Fuzzy attacks. The optimal values of Facthr are generally high (more than 2.9), which is
also consistent with the previous results show in Section 4.1.
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(a) Detection accuracy for DOS attack.

FUZZY Attack

1/8 2/8 3/8 4/8 5/8 6/8 7/8

R
TT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

W
s
=24

W
s
=72

W
s
=120

W
s
=168

(b) Detection accuracy for FUZZY attack.
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(c) Detection accuracy for GEAR attack.
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1/8 2/8 3/8 4/8 5/8 6/8 7/8

R
TT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

W
s
=24

W
s
=72

W
s
=120

W
s
=168
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Figure 20. Detection accuracy for all different attacks and different values of RTT and Ws.
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Table 4. Accuracy obtained in the Detection phase for different attacks and different values of RTT .

Attack (Ratio), (Window size) Accuracy Precision Recall Optimal
Feature
ID from
Training
Phase

Optimal
Facthr
from
Training
Phase

DOS (RTT = 1/4), (Ws = 72) 0.817 0.812 0.995 1 3.9

DOS (RTT = 2/4), (Ws = 72) 0.904 0.895 0.995 1 3.5

DOS (RTT = 3/4), (Ws = 72) 0.995 0.996 0.998 34 3.9

FUZZY (RTT = 1/4), (Ws = 72) 0.822 0.822 0.996 21 3.9

FUZZY (RTT = 2/4), (Ws = 72) 0.809 0.809 0.994 1 4.0

FUZZY (RTT = 3/4), (Ws = 72) 0.992 0.996 0.994 1 3.6

GEAR (RTT = 1/4), (Ws = 72) 0.719 0.719 0.995 24 2.9

GEAR (RTT = 2/4), (Ws = 72) 0.716 0.716 0.996 24 3.5

GEAR (RTT = 3/4), (Ws = 72) 0.996 0.998 0.997 24 3.7

RPM (RTT = 1/4), (Ws = 72) 0.709 0.708 0.993 4 3.5

RPM (RTT = 2/4), (Ws = 72) 0.703 0.703 0.997 9 3.2

RPM (RTT = 3/4), (Ws = 72) 0.991 0.998 0.997 24 3.7

4.5. Computing Resources Used to Perform the Study

This section describes the computing resources used to perform the analysis and the time needed
for each of the three phases for three specific ratios of the used data set. The computing platform used
in the study is a mass market laptop with processor unit i7 8550U CPU 1.8 GHz with 8 Gigabytes of
RAM. Table 5 shows the computing time for selected attacks and parameters (RTT = 1/4) (Ws = 72).
The provided times in Table 5 are based on the processing of the entropy features already calculated
on the CAN-bus messages. The calculation of the entropy measures is estimated to be 40 s for 10,000
CAN-bus messages for the Normal Traffic estimate and Initial Training phase, while it is in range
0.45 s to 1.6 s for 10,000 CAN-bus messages in the Detection phase because a single entropy measure
(the optimal entropy measure calculated from the Training phase) has to be calculated in this phase.
From these values and the values reported in Table 5, it can be concluded that the Detection phase can
be quite fast even using a mass market processor unit, while the Training phase can take considerable
time because of the need to calculate the performance of all the potential entropy measures across a
wide range of thresholds. From a practical deployment point of view, the Normal Traffic estimate and
Training phase could be performed by a powerful cloud computing facility, while the detection phase
must be performed in the vehicle itself.

Table 5. Processing time for GEAR differeand RPM attacks fornt phases in seconds (s).

Attack (Ratio) and (Window Size) Normal
Traffic
Estimate

Initial
Training
Phase

Detection
Phase

GEAR (RTT = 1/4) (Ws = 72) 0.0414 s 94.95 s 0.0523 s

RPM (RTT = 1/4) (Ws = 72) 0.04 s 230.11 s 0.08 s

GEAR (RTT = 3/4) (Ws = 72) 0.0496 s 22.06 s 0.0024 s

RPM (RTT = 3/4) (Ws = 72) 0.0628 s 32.78 s 0.002 s
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5. Conclusions

This paper has evaluated the application of different entropy measures using a sliding window to
the analysis of the payload of CAN-bus messages to identify in-vehicle attacks. Even if this approach
has already been proposed in the literature where it has shown to be very time-efficient in comparison
to other approaches, literature results have mostly focused on specific attacks or specific entropy
measures. The analysis presented in this paper is based on an extensive range of entropy measures
and different values of hyperparameters: window size, threshold range and the parameters, which are
part of the definition of the entropy measures themselves (e.g., embedding dimension). The results
show than an adequate selection of the entropy measures and the value of the hyperparameters can
provide a very high detection accuracy. The results are based on a public data set with millions of
records and four different attacks and they can be used to support further research in this area.

Future developments will investigate a more complex analysis, which takes in consideration the
specific driving circumstances and identify different sets of the parameters (mean, standard deviation,
feature and thresholds) for each driving circumstance, which are then applied to the detection phase.
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The following abbreviations are used in this manuscript:

CAN Controller Area Network
CAN-bus Controller Area Network-bus
ECU Electronic Control Unit
DiEn Dispersion Entropy
IDS Intrusion Detection System
FP False Positives
FN False Negatives
ICT Information and Communication Technologies
IDS Intrusion Detection System
LiDAR Light Detection and Ranging
NCA Neighborhood Component Analysis
NCDF Normal Cumulative Distribution Function
PeEn Permutation Entropy
RBF Radial Basis Function
SaEn Sample Entropy
ShEn Shannon Entropy
SVM Support Vector Machine
TN True Negatives
TP True Positives
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