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Abstract

Background: The molecular mechanisms leading to sporadic medullary thyroid carcinoma (sMTC) and juvenile
papillary thyroid carcinoma (PTC), two rare tumours of the thyroid gland, remain poorly understood. Genetic studies
on thyroid carcinomas have been conducted, although just a few loci have been systematically associated. Given
the difficulties to obtain single-loci associations, this work expands its scope to the study of epistatic interactions
that could help to understand the genetic architecture of complex diseases and explain new heritable components
of genetic risk.

Methods: We carried out the first screening for epistasis by Multifactor-Dimensionality Reduction (MDR) in
genome-wide association study (GWAS) on sMTC and juvenile PTC, to identify the potential simultaneous
involvement of pairs of variants in the disease.

Results: We have identified two significant epistatic gene interactions in sMTC (CHFR-AC016582.2 and C8orf37-RNU1-55P)
and three in juvenile PTC (RP11-648k4.2-DIO1, RP11-648k4.2-DMGDH and RP11-648k4.2-LOXL1). Interestingly, each
interacting gene pair included a non-coding RNA, providing thus support to the relevance that these elements are
increasingly gaining to explain carcinoma development and progression.

Conclusions: Overall, this study contributes to the understanding of the genetic basis of thyroid carcinoma
susceptibility in two different case scenarios such as sMTC and juvenile PTC.

Keywords: Sporadic medullary thyroid carcinoma, Juvenile papillary thyroid carcinoma, Epistasis, Multifactor-
dimensionality reduction, Genome-wide association study

Background
Thyroid carcinoma is the most common endocrine
malignancy, which account for more than 1 % of all
new malignant tumors [1]. There are several histo-
logical types and subtypes according to the endocrine

thyroid cells from which thyroid carcinomas are de-
rived. Medullary thyroid carcinoma (MTC) arises from
calcitonin-producing parafollicular cells (thyroid C
cells) and constitutes around 2–5 % of all thyroid neo-
plasias [2]. Approximately 25 % of MTC cases present
an autosomal dominant inherited disorder named
Multiple Endocrine Neoplasia type 2 (MEN 2), which
includes three different clinical phenotypes: MEN 2A,
MEN 2B, and familial MTC (FMTC) [3]. In >95 % of
the cases, the three forms of MEN 2 are caused by
specific gain-of-function germline mutations of the
RET proto-oncogene [3, 4]. The remaining 75 % of
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MTC occurs as a non-inherited sporadic lesion
without associated endocrinopathy (sporadic MTC,
sMTC). Unlike hereditary forms, very little is known
about the genetic basis of sMTC. So far, studies have
been focused on the analysis of specific single nucleo-
tide polymorphisms (SNPs)/haplotypes and significant
associations to sMTC have been described for differ-
ent susceptibility genes, suggesting that this phenotype
may be caused by a combination of multiple common
genetic variants [5–7]. However, most of them have
failed to be replicated in other populations, maybe due
to the difficulty in collect enough patients to reach the
necessary statistical power [6].
Nonmedullary thyroid carcinoma (NMTC) comprises

thyroid carcinomas of follicular cell origin and among
them papillary thyroid carcinoma (PTC) and follicular
thyroid carcinoma represent the two most common sub-
types (85 and 10 %, respectively) [8]. Regarding PTC, the
age is considered as one of the most important prognos-
tic factors. Juvenile PTC (jPCT), a rare disease in chil-
dren and adolescents, presents with an aggressive initial
manifestation, though patients have an excellent overall
prognosis, showing longer periods of survival and a
lower incidence of recurrence [9, 10]. However, PTC re-
mains under-reported in children and adolescents and
there is still disagreement about the standard treatment
and optimal type of follow-up needed [9, 11]. The few
pathologic studies carried out in jPTC point to exposure
to ionizing radiation as the only known environmental
risk factor [12, 13]. Although it have reported several
SNPs associated with the risk of PTC in the absence of
radiation, most of them were carried out with older
patients (mean age around 45 years) and/or using som-
atic rather than germline DNA [6]. As in the case of
sMTC, the molecular mechanisms that account for jPTC
or explain the development of this tumour remain
largely unknown.
Despite the success of GWAS [14] in the identifica-

tion of hundreds of genetic variants associated to
different diseases [15], its application to rare and
multifactorial diseases still presents major drawbacks.
Conventional GWAS approaches, based on single
markers, require of large cohorts, typically unavailable
in rare diseases. In fact, the prevalence of sMTC is approxi-
mately 7/100,000, according to Orphanet (see http://
www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_
rare_diseases_by_alphabetical_list.pdf) and there are no
data available for PTC. Additionally, the complex genetic
nature of some diseases make single marker approaches
quite inefficient, while suggest taking approaches based on
systems biology [16].
We carried out a GWAS in two thyroid carcinoma

types (sMTC and jPTC) followed by the detection of epi-
static interactions to identify the potential simultaneous

involvement of pairs of variants in both diseases. The
determination of genome-wide epistasis encompasses
statistical and computational challenges [17]. Here, we
have used the Multifactor-dimensionality reduction
(MDR) method to detect gene-gene interactions (GxG)
in GWAS, which has already successfully been used in
the detection of multiple and joint genetic factors associ-
ated with complex traits [18].
We report here the first study that combines a screen-

ing for epistasis by MDR in GWAS on these two rare
thyroid carcinoma types.

Methods
Patients and controls
Two different series of Spanish patients were recruited
for this study: one with 66 sMTC patients, with absence
of personal or family history suggestive of MEN 2 and
absence of traditional germline MEN 2-defining RET
mutations and another with 38 jPTC (range from 5 to
24 years of age) with no history of head and/or neck
irradiation (see Additional file 1: Table S1) and no famil-
iar aggregation. Additionally, 129 healthy controls com-
prising unselected, unrelated, race, age, and sex-matched
individuals without previous thyroid-related disease
history were recruited and used as controls of both car-
cinoma types.
All subjects underwent peripheral blood extraction for

genomic DNA isolation using MagNA Pure LC system
(Roche, Indianapolis, IN) according to the manufac-
turer’s instructions.
A written informed consent was obtained from all the

participants for clinical and molecular genetic studies.
The study was approved by the Ethics Committee for
clinical research in the University Hospital Virgen del
Rocío (Seville, Spain) and complies with the tenets of
the declaration of Helsinki.

Genome-wide genotyping
DNA derived from peripheral blood was hybridized to
Affymetrix Genome-Wide Human SNP 6.0 arrays. CEL
files were processed using Affymetrix Power Tools (APT
v1.15.0) and genotypes were obtained using the Birdseed
(v2) calling algorithm.

Data quality control
Quality control was carried out using PLINK software
[19]. Individuals with more than 7 % of missing rate as
well as those with excessive or reduced heterozygosity
(+/-2 times the standard deviation of the mean) were
removed. The data were also checked for duplicates
and related individuals. Finally, divergent ancestry was
checked using EIGENSTRAT [20] to detect possible
population stratification.
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Markers with excessive missing rate (>5 %) were
discarded. SNPs with minor allele frequency < 1 % and/
or not in Hardy-Weinberg equilibrium (in unaffected
samples; P < 1 × 10−5) were also excluded.
The data discussed in this publication have been

deposited in NCBI’s Gene Expression Omnibus
[GEO:GSE67047].

Association and gene-gene interaction tests
We carried out a conventional GWAS in our series of
patients of jPTC and sMTC. In the analysis strategy
followed we have used a Quantile-quantile plot (QQplot) to
decide the most appropriate measures of association and
relevance of disease models as well as the most suitable test
of association [21]. Thus, QQplots and Manhattan plots
were generated for each of the models to assess their valid-
ity. PLINK permits the GWAS analysis using two different
approaches. Models were adjusted by sex and age and no
significant differences were found with the unadjusted
models. For the best fit model, the final p-value estimations
were corrected using the Benjamini and Hochberg’s FDR
adjustment [22].
We have reduced the number of SNPs to those

representatives of genomic blocks in linkage disequi-
librium by searching for tag SNPs using the Tagger
software [23]. The study of possible epistatic interac-
tions between pairs of genes was carried out with the
Multifactor-dimensionality reduction (MDR) method
[18]. MDR allows reducing the dimensionality of SNP
data improving the identification of combinations of
polymorphisms associated with disease risk. MDR is
nonparametric, model-free and can directly be applied
to case–control [18]. MDR implements a 10-fold
cross-validation value (CVV) which is taken as an in-
dicator of detection of pairs of SNPs showing an as-
sociation to the disease significantly over the random
expectation. Only tag SNPs mapping in genes were
used in this study. In addition to coding genes we in-
cluded in the study any ncRNA and pseudogenes.
Despite the dimensionality reduction produced by
using tag SNPs, the study of all the interactions still
constitutes a challenge. Then, a parallelized version of
the MDR method was developed. Our implementation
uses all cores in a machine and also distributes the
work among the nodes in a cluster. The multi-core
part has been implemented using OpenMP directives
and SSE instructions. Task distribution across proces-
sors is managed by the MPI applications program-
ming interface [24]. The software is open and can be
found at https://github.com/opencb/variant.
The main SNPs on the relevant interacting genes

detected in sMTC and in jPTC were validated by
Taqman technology using 7900HT Fast Real-Time PCR

System (Applied Bio- systems, Foster City, California,
USA)

Functional interpretation of the results
Functional evidences for the identified epistatic gene in-
teractions were exhaustively analysed using a number of
available annotation repositories and functional analysis
tools. Gene functionality was assessed using the follow-
ing resources: DAVID v6.7 [25], canSAR 2.0 [26], and
COSMIC [27] databases. Gene-phenotype relationships
were explored with VarElect (phenotype assignation tool
from GeneCards) [28] and GeneMANIA [29]. Informa-
tion on gene expression localization was taken from the
Human Protein Atlas [30] and the GEO repository [31].
Finally, information about non-coding RNAs was ob-
tained from neXtProt [32], NONCODE v4.0 [33] and
Ensembl through the CellBase application [34].

Results and discussion
After the quality control process, a total of 158 samples
in the sMTC vs control dataset (49 sMTC and 109 con-
trol with 639,289 SNPs) and 149 samples in the PTC vs
control dataset (38 PTC and 111 control with 640,597
SNPs) remained (Additional file 1: Tables S2 and S3).
After the application of the Tagger software a total of
357,263 tag SNPs in MTC and 344,455 in PTC
remained.
In the last decade, many studies on thyroid carcin-

omas have been conducted but only a few loci have
been systematically associated to the disease. The
study of epistatic interactions could overcome some of
the limitations of the conventional GWAS studies,
helping to understand the genetic architecture of the
disease and explain new heritable components of gen-
etic risk [16].

Individual SNP associations to the diseases
The results of the conventional GWAS analysis render no
significant associations (after multiple testing adjustments)
for jPTC and only 21 SNPs with marginally significant
associations for MTC (see Additional file 1: Table S4).
Among these SNPs, 6 appear in intergenic regions.

The rest of them map in genes or around genes, al-
though, none of them was previously associated to MTC
[6]. This is expectable given that most of the known as-
sociations are gene or pathway-driven associations and
have thus more statistical power, although less reprodu-
cibility [6].

Epistastic interactions in sMTC
Epistatic analysis of the sMTC samples genotypes (Table 1;
Fig. 1) by MDR revealed three gene-gene interactions
(LHFPL3-CHFR, CHFR-AC016582.2 and C8orf37-RNU1-
55P) significantly associated with the disease (CVV > 0.5).
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Here we suggest CHFR- AC016582.2 (rs4758915, adjusted
p-value = 0.9812, and rs10402530, adj. p-value = 0.9936,
respectively) and C8orf37-RNU1-55P (rs7835921, adj.
p-value 00.9669, and rs1287079, adj. p-value = 0.9569,
respectively) as interesting potential candidate genes
in sMTC. Table 2 contains the p-values as well as ORs
and frequencies in cases and controls observed for the
SNPs. Next, these SNPs were successfully validated by
Taqman technology. It is more unlikely that LHFPL3 plays
a relevant role in thyroid gland given that it is not
expressed according to the databases of gene expression
(GEO ID: GDS1665, corresponding to “Papillary thyroid
carcinoma”). This does not mean that this gene cannot be
a candidate, given that the expression of cancer-related
genes in total thyroid tissue could be minority and hence

undetectable in the databases, but here we are focusing on
the most likely candidates.
In particular, CHFR gene encodes an E3 ubiquitin-

protein ligase that acts in the mitotic checkpoint and func-
tions as a tumour suppressor [35]. CHFR gene displays a
significant epistatic association with AC016582.2, which is
a novel long intergenic non-coding RNA (lincRNA). To
date, there are no studies that have linked lincRNAs to
sMTC yet.
Regarding C8orf37 gene, it encodes a ubiquitously

expressed protein of unknown function. This gene has
found to be over-expressed in astrocytoma, prostate
carcinoma and undifferentiated sarcoma, as well as
under-expressed in benign prostate hyperplasia (can-
SAR database). Moreover, copy number variation

Table 1 Gene-gene significant interactions in sMTC obtained by MDR

SNP 1 SNP 2 Gene 1 Gene 2 Gene name 1 Gene name 2 CVV

rs7787988 rs4758915 ENSG00000187416 ENSG00000072609 LHFPL3 CHFR 0.709

rs4758915 rs10402530 ENSG00000072609 ENSG00000225868 CHFR AC016582.2 0.706

rs7835921 rs1287079 ENSG00000156172 ENSG00000202380 C8orf37 RNU1-55P 0.548

Selection based on the significant cross-validation value (CVV)

Fig. 1 Gene-gene interactions obtained in sMTC patients by MDR analyses. a a total of 29 GxG interactions were obtained, (b) from which three
were significant based on cross-validation value (>0.5)
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including this gene has been described in a thyroid
carcinoma cell line (Human Protein Atlas database).
C8orf37 gene was found in epistasis with RNU1-55P
(RNA, U1, small nuclear 55, pseudogene). Small
nuclear RNAs (snRNA) are known to act as guide
molecules for pseudouridylation and site-specific
methylation of other RNAs [36]. For example, a novel
snRNA (RN7SK) has been described to interact with
HMGA1 gene, which is overexpressed in thyroid car-
cinoma [37]. RNU1-55P is also a pseudogene, which

can play an important role in physiology and disease
(e.g. as BRAF pseudogene in different thyroid carcin-
omas [38]). It is noteworthy that one of the genes
implicated in each of the two relevant pairs of gene
interactions in sMTC was a type of ncRNA.

Epistastic interactions in jPTC
MDR analysis of jPTC samples (Additional file 1:
Table S5) rendered a total of 133 GxG interactions
related with the disease (with a CVV >0.5) (Fig. 2).

Table 2 SNPs involved in significant interactions. Columns from left to right are: SNP identifier, region in which the SNP is located,
gene, Frequencies in the cases, frequencies in the controls, ORs and 95 % of confidence interval (CI), nominal p-value and adjusted
p-value

Analysis SNP Region Gene Frequency cases Frequency controls OR [95 % CI] P-value Adjusted p-value

sMTC rs4758915 Intronic CHFR 0.03704 0.02586 1.449 [0.4003–5.243] 0.5702 0.9812

sMTC rs10402530 Downstream AC016582.2 0.1944 0.1897 1.031 [0.5782–1.84] 0.9167 0.9936

sMTC rs7835921 Intronic C8orf37 0.4519 0.5086 0.7966 [0.5008–1.267] 0.3365 0.9669

sMTC rs1287079 Downstream RNU1-55P 0.3019 0.3664 0.7479 [0.4567–1.225] 0.2476 0.9569

jPTC rs2235544 Intronic DIO1 0.4667 0.5043 0.86 [0.487–1.519] 0.6032 0.9696

jPTC rs16876356 Intronic DMGDH 0.1167 0.2308 0.4403 [0.1891–1.025] 0.0518 0.9007

jPTC rs17716031 Intronic RP11-648K4.2 0.1034 0.1336 0.7481 [0.2964–1.888] 0.5379 0.9668

jPTC rs10775207 Intronic LOXL1 0.0167 0.0087 1.932 [0.1723–21.67] 0.5868 0.9668

Fig. 2 Gene-gene interactions obtained in jPTC patients by MDR analyses. a a total of 259 GxG interactions were obtained, (b) from which 133
were significant based on cross-validation value (>0.5)
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Among all these interactions, we focused on those
more likely to be related to the disease, according to
their functionalities and gene expression patterns. The
application of the DAVID and Babelomics [39] tools
resulted in several gene clusters, one of them com-
posed of 10 genes associated with thyroid gland. Ac-
cording to the CVV values obtained by MDR analyses,
only five of those 10 genes were significantly associ-
ated with the phenotype (CHST8, DIO1, DMGDH,
LOXL1 and PXDNL). Among these genes, DIO1, in
epistasis with RP11-648k4.2, was directly associated to
the disease by the VarElect genotype-phenotype asso-
ciation tool (Tables 3, 4 and Fig. 3). Available informa-
tion on gene expression in GEO allowed us to discard
CHST8 and PXDNL genes because no difference
among normal and pathologic tissue expression was
reported for them, while both DIO1 and DMGDH
genes were underexpressed and LOXL1 gene was over-
expressed in thyroid carcinoma [31]. In particular,
DIO1 encodes an iodothyronine deiodinase type 1,
which is a protein linked to carcinoma risk and specif-
ically with PTC [40]. This link between DIO1 and PTC
reinforces the validity of epistasis as an optimal strat-
egy to find candidate genes for rare diseases or, in gen-
eral, when large sample sizes are not available.
Regarding DMGDH gene, it encodes a mitochondrial

dimethylglycine dehydrogenase related with oxidative
demethylation of dimethylglycine in vitro with the forma-
tion of sarcosine, hydrogen peroxide and formaldehyde
[41]. LOXL1 gene encodes a lysyl oxidase-like 1 enzyme
involved in the connective tissue biogenesis. It has been
related with different tumour progression and metastasis
[42]. LOXL1 gene is expressed in thyroid tissue and one
registered mutation has been reported in this gene for
PTC, although it remains to be validated (COSMIC
database).
Thereby, we suggest DIO1 (rs2235544, adj. p-value =

0.9696), DMGDH (rs16876356, adj. p-value = 0.9007)
and LOXL1 (rs10775207, adj. p-value = 0.9668) genes, all
of them in epistasis with RP11-648k4.2 (rs17716031, adj.
p-value = 0.9668), a lincRNA which has been scarcely
studied, as candidate genes for jPTC. See also ORs and
frequencies in cases and controls observed for the SNPs
in Table 2. Again, these SNPs were validated using
Taqman technology. It is worth noting that different
lincRNA have recently been linked to PTC. For example,
a novel lincRNA gene (PTCSC2) has been found down-
regulated in PTC tumours [43]. Also, up-regulation of a
BRAF-activated lincRNA, previously associated with
melanoma, has been related to PTC by increasing cell
proliferation and autophagy activation [44]. It is import-
ant to highlight that these three genes, with a clear
relationship with the PTC phenotype, found in jPTC
were in epistasis with the same lincRNA RP11-648k4.2,

which was also present in 181 additional genetic interac-
tions, suggesting the potential involvement of this
LincRNA in PTC. The large number of interactions dis-
played by RP11-648k4.2 suggests a regulatory role for

Table 3 Direct and indirect gene-gene interactions obtained by
GWAS-epistasis analyses in jPTC patients by VarElect

Direct GxG interactions

Significant interaction Not significant interaction

Gene Gene CVV Gene Gene CVV

RP11-648k4,2 DIO1 0.559 ANKRD44 STAT3 0.280

RP11-648k4,2 TPO 0.371

Indirect and significant interactions

Gene Gene CVV Gene Gene CVV

RP11-648K4.2 ARHGAP22 0.559 RP11-648k4,2 PCYT1B 0.650

ARHGEF11 0.555 PLAUR 0.851

ATP8B4 0.748 PRICKLE1 0.557

CA6 0.744 PRICKLE2 0.744

CHST8 0.555 PRKAG2 0.556

CNTN2 0.557 RNF14 0.650

COL19A1 0.651/0.555 ROBO2 0.646

COL24A1 0.747 RYR3 0.559

CRMP1 0.744 SEMA6D 0.558

DMGDH 0.747 SGCG 0.557

EXTL3 0.747 SKI 0.557

FLI1 0.649 SLC5A1 0.654

GALNS 0.650 SLC5A4 0.652

GALNT16 0.555/0.555 SYNE1 0.650

GCN1L1 0.650/0.650 TICRR 0.844

GPR45 0.555 UNC5B 0.744

GRM7 0.740 ZNF529 0.650

H19 0.556 ZNF662 0.653

HDAC9 0.649 ZNF793 0.653

KIFC3 0.937 ANKRD44 DOCK1 0.652

KIR3DL1 0.744 HDAC9 0.652

LOXL1 0.743 PPP2R2A 0.652

MAGED1 0.649 PRKCB 0.558

MAGI1 0.650 SESN1 0.652

NCAM1 0.650 SLC1A1 0.558

NPAS3 0.652 WIPI1 0.942

NUP107 0.649 DCC C6orf100 0.651

OPCML 0.743 ERI3 0.937

OR5AL1 0.744 EXTL3 0.748

PARP1 0.950/0.650/
0.650

GCN1L1 0.558

More than one value in cross-validation value (CVV) cells means more than
one interaction between these genes
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this lincRNA. Our observation reinforces the increas-
ingly important role of ncRNAs in carcinoma.
Given that both thyroid carcinomas are extremely rare,

all the samples were used in this study and, consequently
an independent population to validate the findings is not
available. Future research with other cohorts will reveal
whether our findings are generalizable to other popula-
tions or, on the contrary, different populations will display
different susceptibility variants associated, that probably
represent different facets of the mechanism of the disease,
as it has been observed in other diseases [45].

Conclusions
Here we present the first genome-wide screening to de-
tect epistasis in two thyroid carcinoma entities as sMTC
and jPTC. Among our results, we remark the signifi-
cance of two epistatic interactions in sMTC and three in
jPTC. In addition, it is worth mentioning the presence of
ncRNAs, and especially lincRNAs, among the epistasis
found. Such elements are acquiring an increasingly rele-
vance in carcinoma research in recent years. Although
further studies would be needed to corroborate the
interactions found, our methodological approach has

Fig. 3 Expression profiling for arrays in 18 PTC samples (a) DIO1, (b) DMGD and (c) LOXL1 genes. Figures adapted from GeoDataSets

Table 4 Analyses by DAVID and GeneMANIA of the five significant genes found in jPTC by MDR

CHST8 DIO1 DMGDH LOXL1 PXDNL

MDR Analyses RP11-648k4.2 RP11-648k4.2 RP11-648k4.2 RP11-648k4.2 RP11-648k4.2

Interacting genes according to scientific literature - DIO2 - - -

Interacting genes according to DAVID HS2ST1, TMEM132C,
TMEM182

- - - -

Interactions Analyses by
GeneMANIA

Co-expression - TPO, PXDNL,
DMGDH

DIO1 - DIO1

Co-localization - TPO, DIO2 - - -

Genetic interactions ANKRD44, NNT NNT - ANKRD44,
TPO

-

Shared protein
domain

HS2ST1 DIO2 - - TPO
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demonstrated to be a promising complementary tool
for finding new susceptibility genes in these thyroid
carcinomas.
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