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Background: Although the RNA modification N6-methyladenosine ZC3H13 has been
found to play vital regulatory roles in many types of cancers, its role in predicting the tumor
immune microenvironment (TME) and response to immune checkpoint blockade (ICB) in
kidney renal clear cell carcinoma (KIRC) remains unclear.

Methods: We comprehensively analyzed the expression, prognostic significance and
immunological role of ZC3H13 in pan-cancers and systematically correlated ZC3H13 with
TME cell-infiltration, ICB response and targeted therapy in KIRC. The data were collected
from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Genotype-
Tissue Expression (GTEx), Broad Institute Cancer Cell Line Encyclopedia (CCLE) and
DrugBank database. Also, we performed RNA sequencing (RNA-seq) of 46 renal cell
carcinoma tissues and 11 adjacent normal tissues to validate our result. All analyses were
implemented using R software, version 3.6.3.

Results: ZC3H13 was significantly differentially expressed in most tumors. However, its
expression profiles and prognostic significance were consistent only in KIRC, regardless
of overall survival, progression-free survival and cancer-specific survival. Additionally,
ZC3H13 expression was correlated with clinicopathological factors in KIRC. Furthermore,
we found that ZC3H13 might shape a noninflamed phenotype and could predict a lower
response to ICB in KIRC. These results could be validated in our own RNA-seq data.
Tumor mutation burden (TMB) was significantly higher in the low ZC3H13 group. Finally,
we found that ZC3H13 could predict the sensitivity of targeted therapy for KIRC.

Conclusions: ZC3H13 might shape a noninflamed phenotype in KIRC. Moreover,
ZC3H13 could predict the prognosis and clinical response of ICB and the sensitivity to
targeted therapies in KIRC.

Keywords: ZC3H13, RNA modification N6-methyladenosine, kidney renal clear cell carcinoma, tumor immune
microenvironment, immunotherapy
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BACKGROUND

Kidney renal clear cell carcinoma (KIRC) is one of the most
common cancers of the urinary system (1). The prognosis of
early-stage KIRC is favorable, while advanced KIRC is associated
with an extremely poor prognosis. Targeted therapy is the most
important treatment option for advanced KIRC, but
improvements in its efficacy has encountered bottlenecks in
recent years (1). With the development of anticancer immune
checkpoint blockade (ICB), an increasing number of clinical
trials have suggested that KIRC is sensitive to ICB (2–4). ICB can
significantly improve the overall survival of patients who are
resistant to targeted therapy. Therefore, ICB has also become an
important treatment option for advanced KIRC. However,
similar to other treatment options, only a portion of patients
are sensitive to ICB treatment (5). It is vital to find reliable
predictors of ICB efficacy considering the economic burden and
fatal side effects.

RNA modification of N6-methyladenosine (m6A) is the most
prominent and abundant RNA modification pattern in
eukaryotic cells (6). An increasing number of studies have
shown that m6A has an important regulatory role in tumor
immune regulation and ICB resistance (7). ZC3H13 (zinc finger
CCCH domain-containing protein 13) is an m6A writer gene.
ZC3H13 is a potential regulator of nuclear RNA m6A
methylation and mouse embryonic stem cell self-renewal (8).
The role of ZC3H13 in carcinomas is still not clear. It has been
reported that ZC3H13 could serve as a tumor suppressor gene
that inhibits the proliferation of colon cancer cells by inhibiting
the RAS-ERK pathway (9). However, some studies have shown
that ZC3H13 could act as an oncogene to activate the NF-kB
signaling pathway to promote tumor proliferation and invasion
(10, 11). Currently, there are no studies elaborating the role of
ZC3H13 in KIRC, especially its relationship with tumor
immune characteristics.

In this study, we first explored the expression pattern and
prognostic value of ZC3H13 in pan-cancers and its relationship
with immune characteristics through pan-cancer analysis. Next,
we performed synthetic analysis and then focused on KIRC.
Finally, we further explored the predictive value of ZC3H13 for
immune phenotypes and therapeutic sensitivities in KIRC.
Abbreviations: TME, tumor immune microenvironment; ICB, immune
checkpoint blockade; KIRC, kidney renal clear cell carcinoma; TMB, tumor
mutation burden; m6A, RNA modification of N6-methyladenosine; ZC3H13,
zinc finger CCCH domain-containing protein 13; TPM, transcripts per kilobase
million; MSI, microsatellite instability; DEG, differentially expressed genes; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TIIC, tumor-
infiltrating immune cell; EMT, epithelial-mesenchymal transition; BLCA, bladder
urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous
cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma;
ESCA, esophageal carcinoma; SKCM, skin cutaneous melanoma; KIRP, kidney
renal papillary cell carcinoma; PRAD, prostate adenocarcinoma; THYM,
thymoma; OS, overall survival; PFS, progression-free survival; CSS, cancer-
specific survival; ICI, immune checkpoint inhibitor; MDSC, myeloid-derived
suppressor cell; NK, natural killer cell; Th, helper T cell; Treg, regulatory T cell;
EMT, epithelial–mesenchymal transition; Pan-F-TBRS, panfibroblast TGF-b
response signature; MANTIS, microsatellite analysis for normal-tumor instability.
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METHODS

Data Retrieval and Preprocessing
The R package “TCGAbiolinks” was used to download the RNA
sequencing data (FPKM values) and clinical data of TCGA-KIRC
from the Genomic Data Commons (GDC, https://portal.gdc.
cancer.gov/) (12). Then, we transformed the FPKM values into
transcripts per kilobase million (TPM) values. The pan-cancer
RNA sequencing data (FPKM values), somatic mutation data,
and survival information were downloaded from the UCSC Xena
data portal (https://xenabrowser.net) (13). The TMB data was
calculated by using VarScan2. The microsatellite instability
(MSI) data were collected from the supplementary files of
Bonneville’s study (14). In addition, we also downloaded the
RNA sequencing data of normal tissues in the GTEx (https://
www.gtexportal.org/home/) database and the RNA sequencing
data of cancer cells in the CCLE (https://portals.broadinstitute.
org/ccle) database. To compare the drug sensitivities between
different ZC3H13-expression groups, we collected common
anticancer drugs and their target genes from the DrugBank
database (www.drugbank.ca). The expression matrix of
GSE53757 (15) was downloaded using the “GEOquery”
package and then transformed gene symbols using GPL570.
Single-cell RNA-seq (scRNA-seq) data of six adjacent normal
tissues was downloaded from the supplementary file of
GSE159115 (16). Main clinical information of the included
cohorts was summarized in Supplementary Table 1. Also, we
summarized the clinicopathological characteristics of TCGA-
KIRC patients according to the expression of ZC3H13 in
Supplementary Table 2.

Analysis Procedures of scRNA-seq
Following the guide reported by Luecken et al. (17), we used the
“Seurat” v4.0.1 package to analyze and visualize scRNA-seq data.
For quality control, we filtered out the data with unique molecular
identifiers (UMIs) fewer than 500, or fewer than 250 genes, or
mitochondrial ratio more than 0.20. Then, we normalized and
checked the cell cycle phase based on the filtered data. We chose
the top 2000 variable genes to create anchors using the
“FindIntegrationAnchors” function and integrated the six data
into a new matrix using the “IntegrateData” function. After
integration, we run principal component analysis (PCA) and
chose the top 40 PCs to run UMAP. Finally, we visualized the
clusters with the resolution set as 0.8 and annotated the clusters using
HumanPrimaryCellAtlasData() based on the “SingleR” package.

Functional Analysis of the High and
Low ZC3H13 Groups
First, the empirical Bayesian algorithm in the R package “limma”
was used to identify the differentially expressed genes (DEGs)
between the high and low ZC3H13 groups. Adjusted P value <
0.05 and |logFC| > 1 were set as the significance criteria for
significant DEGs. Then, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
performed by using the “ClusterProfiler” R package based on the
DEGs. In addition, we collected 50 hallmark pathways that could
represent most of the biological functional pathways from the
August 2021 | Volume 11 | Article 718644
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MSigDB database (18). Finally, we calculated the enrichment
scores of these pathways in each sample by using the
ssGSEA algorithm.

Depicting the Tumor Immune
Microenvironment of KIRC
The tumor microenvironment includes tumor cells, tumor-
infiltrating immune cells (TIICs), stromal cells and a series of
tumor-related regulatory factors. Here, we conducted a
comprehensive analysis of immune-related factors in the
tumor microenvironment. First, we described the seven main
steps of the antitumor immune response in the KIRC tumor
microenvironment, including the release and presentation of
cancer cell antigens (Steps 1 and 2), priming and activation of the
immune system (Step 3), trafficking and infiltration of immune
cells into tumors (Steps 4 and 5), and recognition and killing of
cancer cells by T cells (Steps 6 and 7) (19). These seven steps were
called cancer-immunity cycle. The vitality of these steps, which
determines the direction of the antitumor immune response
process in the tumor microenvironment and affects the level of
infiltration of TIICs, was downloaded from the TIP (Tracking
Tumor Immunophenotype) (http://biocc.hrbmu.edu.cn/TIP/)
(20). The TIP is a meta-server using the ssGSEA and
CIBERSORT algorithm based on specific marker gene sets
(Supplementary Table 3), which can analyze the level of anti-
cancer immunity (20). Furthermore, we calculated the
infiltration level of these 22 immune cells using the ssGSEA
algor i thm based on the specific marker gene sets
(Supplementary Table 4) (21).

Calculating the Enrichment Scores of
Immunotherapy Response Signatures
and Stroma Signatures
Mariathsan et al. identified 19 ICB response-related gene
signatures, including 18 positive signatures (such as DNA
replication, Fanconi_anemia_pathway, Homologous_
recombination, MicroRNAs_in_cancer, Mismatch_repair,
Nucleotide_excision_repair, Oocyte_meiosis, p53_signaling_
pathway, Progesterone_mediated_oocyte_maturation) and 1
negative signature (Cytokine_cytokine_receptor_interaction)
(Supplementary Table 5) (22). In addition, we identified four
stromal pathways with immunosuppressive effects from previous
literature, including epithelial-mesenchymal transition (EMT)
markers and the pan-fibroblast TGF-b response signature (Pan-
FTBRS) (22). The ssGSEA algorithm was used to calculate the
enrichment score of these signatures in individuals.

RNA Sequencing of Renal Cell
Carcinoma Samples
Forty-seven renal cell carcinoma tissues and thirteen adjacent
normal tissues stored in liquid nitrogen were collected from our
hospital. We called it Xiangya cohort. All the clinicopathological
data of the patients were included and summarized in
Supplementary Table 6. Total RNA was extracted from the
samples using Trizol (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. Then, the quality of RNA was
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evaluated using NanoDrop and Agilent 2100 bioanalyzer (Thermo
Fisher Scientific, MA, USA). We next constructed the mRNA library.
The RNA was purified using Oligo(dT)-attached magnetic beads and
then fragmented into small pieces. Random hexamer-primed reverse
transcription was used to generate the first and second-strand cDNA.
After adding A-Tailing Mix and RNA Index Adapters by incubating
to end repair, the obtained cDNAwas amplified by PCR and purified
by Ampure XP Beads. The double-stranded PCR products were
heated, denatured and circularized by the splint oligo sequence to get
the final library. There were 46 qualified renal cell carcinoma tissues
among the 47 samples and 11 qualified adjacent normal tissues
among the 13 samples. Finally, the qualified samples were sequenced
on a BGISEQ-500 platform (BGI-Shenzhen, China). The gene
expression levels were calculated using RSEM (v1.2.12).

Statistical Analysis
For the continuous variables, Pearson or Spearman coefficients
were used to explore pairwise correlations. The median ZC3H13
expression (30.25) was applied as a cutoff value. Then, the cohort
was classified into high and low ZC3H13 groups. The t-test was
applied to analyze the difference between groups for variables
with a normal distribution. Otherwise, the Mann-Whitney U test
was applied. The Kaplan-Meier method was used to plot the
survival curves for prognostic analyses, and the log-rank test was
applied to estimate the statistical significance. P < 0.05 indicated
a significant difference. All statistical tests were two-sided.
Finally, all statistical data analyses were implemented using R
software, version 3.6.3 (http://www.r-project.org).
RESULTS

Expression Profiles of ZC3H13
in Pan-Cancers
We found that ZC3H13 was significantly differentially expressed
in most tumors by comprehensively analyzing the expression
data from the TCGA and GTEx databases (Supplementary
Figures 1A, B). This indicated that ZC3H13 may be closely
related to the occurrence and development of tumors. However,
it is worth noting that ZC3H13 had significantly different
expression in different tumors, and its expression might
depend on the different types of tumors and the heterogeneity
of the tumors. For example, the expression of ZC3H13 was
significantly lower in tumor tissues than in adjacent normal
tissues in KIRC, bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC) etc. In contrast, the
expression of ZC3H13 was significantly higher in the tumor
tissues in cholangiocarcinoma (CHOL), esophageal carcinoma
(ESCA), skin cutaneous melanoma (SKCM) etc. For KIRC,
TCGA combined with GTEx also indicated that ZC3H13 was
significantly lower in tumor tissues (Supplementary Figure 1B).
In addition, Supplementary Figure 1C shows the expression
level of ZC3H13 in various normal tissues in the GTEx database.
We found that ZC3H13 had the lowest expression level in blood,
which indicated that as a target for drug therapy, ZC3H13 might
August 2021 | Volume 11 | Article 718644
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have low blood system toxicity and side effects. Finally, we also
explored the expression of ZC3H13 in each tumor cell line in the
CCLE database as shown in Supplementary Figure 1D.

Prognostic Significance and
Immunological Role of ZC3H13
in Pan-Cancers
The differential expression patterns of ZC3H13 in pan-cancers
prompted us to explore its prognostic value. Therefore, we
performed survival analyses in pan-cancers in terms of overall
survival (OS), progression-free survival (PFS) and cancer-specific
survival (CSS) by using the Cox regression model, Kaplan-Meier
analysis and log-rank test. For OS, high expression of ZC3H13 was
associated with favorable prognosis in KIRC and poor prognosis in
CESC (Supplementary Figure 2). For PFS, high expression of
ZC3H13 was also associated with favorable prognosis in KIRC,
kidney renal papillary cell carcinoma (KIRP) and prostate
adenocarcinoma (PRAD) and poor prognosis in CESC
(Supplementary Figure 3). Similarly, for CSS, high expression of
ZC3H13 was still associated with favorable prognosis in KIRC,
KIRP, and thymoma (THYM) and poor prognosis in CESC
(Supplementary Figure 4). There is clear heterogeneity in the
prognostic value of ZC3H13 in different tumors. In CESC, high
expression of ZC3H13 was associated with poor prognosis
regardless of OS, PFS or CSS, which suggested that ZC3H13
might be a carcinogenic factor in CESC. It is worth noting that
the expression analysis from TCGA-CESC data indicated that
ZC3H13 was significantly expressed at lower levels in CESC
tumor tissues (Supplementary Figure 1A). This result suggested
that ZC3H13 was more likely to be a tumor suppressor in CESC.
More importantly, there was no significant difference in the
expression of ZC3H13 between cancer and adjacent tissues when
combining the TCGA-CESC and GTEx databases (Supplementary
Figure 1B). However, high expression of ZC3H13 was associated
with favorable prognosis regardless of OS, PFS or CSS. In line with
this result, ZC3H13 was also significantly expressed at low levels in
KIRC tumor tissues. Therefore, we choose KIRC for
further research.

To explore whether ZC3H13 could be a predictor for
immunotherapy, we analyzed the relationship between
ZC3H13 and multiple immune checkpoint inhibitors (ICIs)
and TIICs. As shown in Supplementary Figure 5A, ZC3H13
was significantly related to the expression level of immune
checkpoint molecules in most tumors. Additionally, ZC3H13
was s ignificant ly re lated to TIICs in most tumor
microenvironments (Supplementary Figure 5B). TMB and
MSI are the most accurate markers for predicting the efficacy
of ICB so far. The higher the TMB and MSI scores are, the more
sensitive the tumor is to the efficacy of ICB. Here, we found that
ZC3H13 was significantly related to the TMB and MSI of many
types of tumors. For example, ZC3H13 was negatively correlated
with the MSI scores of BRCA, THCA, PRAD, HNSC, and DLBC,
but it was positively correlated with the MSI scores of READ, OV
and LUSC (Supplementary Figure 5C). ZC3H13 was
significantly negatively correlated with TMB in KIRC, BRCA,
THCA, STAD, PRAD, LUSC, and LIHC. However, ZC3H13 was
Frontiers in Oncology | www.frontiersin.org 4
significantly positively correlated with TMB in SKCM
(Supplementary Figure 5D). All of these results suggested that
ZC3H13 might have the potential to be a predictor of
ICB efficacy.

The Relationship Between ZC3H13 and
Clinicopathological and Prognostic
Characteristics in KIRC
Based on the previous results, we further analyzed the correlation
between ZC3H13 and some important clinicopathological
characteristics here. In line with the previous results, we found
that the expression of ZC3H13 in tumor tissues, higher grade and
higher stage was significantly lower (Figures 1A–C). In our own
RNA-seq cohort, though without significant difference, there was
a trend that the expression was higher in the normal tissues
(Figure 1D). And this no significant difference may be caused by
the small sample size. To eliminate the influence of sample size,
we chose a large GEO database (GSE53757), which contains 72
KIRC tumor tissues and matched adjacent normal tissues, and
successfully validated this result (Figure 1E). As we found that
ZC3H13 was significantly higher expressed in the normal tissues,
we further explored which cell types ZC3H13 expressed in
adjacent normal tissues using scRNA-seq. To our surprise,
ZC3H13 was almost not expressed in T and NK cells and
expressed abundantly in endothelial cells, macrophage,
neurons and tissue stem cells (Figures 1F, G). The expression
of ZC3H13 of these cells might inhibit T and NK cells from
infiltrating into the tumor microenvironment as ZC3H13 was
negatively correlated with the infiltration of TIICs in KIRC
(Supplementary Figure 5B). Finally, we conducted a single
factor Cox analysis on sex, age, ZC3H13 expression, grade and
stage. The results suggested that older age, higher grade and
stage, and lower expression of ZC3H13 were all unfavorable
prognostic factors (Figure 1H).

Identifying DEGs Between the High and
Low ZC3H13 Groups and Functional
Analyses of DEGs
A heatmap and volcano plot (Figures 2A, B) were used to display
the screened DEGs. Eventually, we identified 271 significant DEGs
(Supplementary Table 7). The results of GO analysis suggested that
these DEGs were enriched in several biological processes, including
organic anion transport, apical part of cell, receptor ligand activity,
apical plasma membrane, collagen-containing extracellular matrix,
and anion transmembrane transporter activity (Supplementary
Figures 6A–C and Supplementary Table 8). The results of
KEGG analysis indicated that these DEGs were enriched in
pathways such as neuroactive ligand-receptor interaction and
cholesterol metabolism (Supplementary Figure 6D and
Supplementary Table 9). Additionally, the enrichment scores of
several hallmark signatures were significantly different between the
high and low ZC3H13 groups. Mitotic spindle, UV response down,
protein secretion, TGF-b signaling, Hedgehog signaling, androgen
response, Wnt-b-Catenin signaling, G2M checkpoint, heme
metabolism, PI3K-AKT-MTOR signaling and Notch signaling
were enriched in the high ZC3H13 group. In contrast,
August 2021 | Volume 11 | Article 718644
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spermatogenesis, p53 pathway, myogenesis, DNA repair, UV
response up, xenobiotic metabolism, coagulation, estrogen
response late, glycolysis, allograft rejection, Kras signaling down,
and reactive oxygen species pathway were enriched in the low
ZC3H13 group (Figure 2C and Supplementary Table 10).
Frontiers in Oncology | www.frontiersin.org 5
ZC3H13 Shaped a Noninflamed Phenotype
and Predicted a Lower Response to
ICB in KIRC
The previous results indicated that ZC3H13 is closely related to
the immune characteristics of a variety of tumors. We further
A B

D E

F G

H

C

FIGURE 1 | The relationship between ZC3H13 and clinicopathological and prognostic characteristics in KIRC. (A) The histogram of log2(TPM) of ZC3H13 between
normal and cancer tissues based on TCGA database. Normal tissue, blue; Cancer tissue, red. (T test, ****P < 0.0001). (B) The histogram of log2(TPM) of ZC3H13
between low and high grade based on TCGA database. Low grade, blue; High grade, red. (T test, ****P < 0.0001).. (C) The histogram of log2(TPM) of ZC3H13 between
low and high stages based on TCGA database. Low stage, blue; High stage, red. (T test, ****P < 0.0001). (D) The histogram of log2(TPM) of ZC3H13 between normal
and cancer tissues in Xiangya cohort. Normal tissue, blue; Cancer tissue, red. (T test, ns, not statistically significant). (E) The histogram of log2(ZC3H13) between normal
and cancer tissues based on GSE53757. Normal tissue, blue; Cancer tissue, red. (T test, ****P < 0.0001). (F) Single-cell atlas of KIRC adjacent normal tissues. UMAP
plot of 6046 cells obtained from GSE159115, which was visualized and annotated using “Seurat” and “Single” R package respectively. CMP, common myeloid progenitor;
DC, dendritic cell. (G) Violin plot of ZC3H13 expression pattern between different cell types in KIRC adjacent normal tissues. (H) Forest figure of single factor Cox analysis on
sex, age, ZC3H13 expression, grade and stage. Calculated using Cox proportional hazard model and visualized using “forestplot” R package.
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compared the different activities of the immune response
between the ZC3H13 high and low groups. As shown in
Figure 3A, the activities of the majority of immune cycles were
downregulated in the high ZC3H13 group, including the
activities of priming, activation and trafficking of immune cells
to tumors (macrophage recruitment, NK cell recruitment, DC
recruitment, and TH17 recruitment). In addition, the activities of
infiltration of immune cells into tumors and recognition of
cancer cells by T cells were also significantly lower in the high
ZC3H13 group. The recruiting ability of CD8 T cells was also
lower in the high ZC3H13 group, although there was no
significant difference. To further verify these results, we applied
the ssGSEA algorithm to calculate the infiltration levels of
various immune cells in the TME. In line with previous results,
the infiltration level of anticancer immune cells, including
activated CD4 T cells, activated CD8 T cells, activated
dendritic cells, CD56 bright natural killer cells, central memory
CD4 T cells, macrophages, type 1 T helper cells, and type 17 T
helper cells, was significantly lower in the high ZC3H13 group.
Additionally, the infiltration level of protumor immune cells,
such as regulatory T cells, plasmacytoid dendritic cells,
neutrophils, and type 2 T helper cells, was significantly higher
Frontiers in Oncology | www.frontiersin.org 6
in the high ZC3H13 group. These results suggested that high
ZC3H13 promoted the formation of a noninflamed phenotype
(Figure 3B). It is well known that significant activation of the
stromal pathway can inhibit tumor immunity and promote the
formation of a noninflamed phenotype. We further found that
the enrichment score of stromal pathways, including EMT1 and
EMT3, was significantly higher in the high ZC3H13 group.
Although there was no significant difference, the enrichment
score of Pan-F-TBRS was also higher in the high ZC3H13
group (Figure 3C).

An inflamed tumor microenvironment (TME) in conjunction
with pre-existing anticancer immunity is necessary for ICB (23–
26). Therefore, we further analyzed the difference in enrichment
scores of ICB efficacy prediction pathways between the high and
low ZC3H13 groups. As expected, the enrichment scores of
pathways that were positively related to the response to ICB
were significantly lower in the high ZC3H13 group, such as
nucleotide excision repair, oocyte meiosis, DNA replication,
mismatch repair, systemic lupus erythematosus, alcohol,
microRNAs in cancer, and the cell cycle (Figure 3D and
Supplementary Figure 6F). Additionally, the enrichment
scores of the cytokine-cytokine receptor pathway, which was
A

B

C

FIGURE 2 | DEGs between the high and low ZC3H13 groups and functional analyses of DEGs. (A) Heatmap drawn based on the 271 DEGs between the high and
low ZC3H13 groups. Lowly expressed DEGs, blue; Highly expressed DEGs, red. (“limma” R package, adjusted P value < 0.05 and |logFC| > 1 were set as the
significance criteria for significant DEGs). (B) Volcano plot drawn based on the DEGs between the high and low ZC3H13 groups. Log2(FC) < -1, blue; Log2(FC) > 1,
red; (“limma” R package, adjusted P value < 0.05 and |logFC| > 1 were set as the significance criteria for significant DEGs). (C) Heatmap drawn based on the GSVA
analysis of biological pathways between the high and low ZC3H13 groups. Inhibition pathways, blue; Activation pathways, red.
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negatively related to the response to ICB, were significantly
higher in the high ZC3H13 group (Figure 3D and
Supplementary Figure 6F). Furthermore, we analyzed the
linear relationship between the expression of ZC3H13 and the
enrichment scores of these immune cycles and ICB efficacy
Frontiers in Oncology | www.frontiersin.org 7
prediction pathways. ZC3H13 was still significantly negatively
correlated with the enrichment scores of the antitumor immune
signatures (Figure 4A left, Supplementary Figure 7 and
Supplementary Table 11) and ICB efficacy prediction
pathways (Figure 4A right, Supplementary Figure 8 and
A

B

DC

FIGURE 3 | Different immunological characteristics between the high and low ZC3H13 groups (A) Activation of cancer immunity cycles between the high and low
ZC3H13 groups; Low ZC3H13 group, blue; High ZC3H13 group, red. MDSC, myeloid-derived suppressor cell; NK, natural killer cell; Th, helper T cell; Treg,
regulatory T cell. (T test, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not statistically significant). (B) The scores of immune cell infiltration in the TME
between the high and low ZC3H13 groups; Low ZC3H13 group, blue; High ZC3H13 group, red; MDSC, myeloid-derived suppressor cell. (T test, *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not statistically significant). (C) Activation of stroma-activated pathways between the high and low ZC3H13 groups; Low
ZC3H13 group, blue; High ZC3H13 group, red; EMT, epithelial–mesenchymal transition; Pan-F-TBRS, panfibroblast TGF-b response signature. (GSVA analysis and
T test, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not statistically significant). (D) Heatmap based on different immunotherapy predicted pathways
between the high and low ZC3H13 groups. The bar plots on the left represent log10 p-values; positive values, activation; negative values, inhibition; the bar plots on
the right represent different pathways.
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Supplementary Table 12). The expression of several critical
immune checkpoints, including CTLA-4, PD-1, LAG-3, LAALS3
and TIGIT, was significantly higher in the low ZC3H13 group
(Figure 4B). Then, we validated these results in our RNA-seq
cohort. ZC3H13 was significantly negatively correlated with the
ICB efficacy prediction pathways (Figure 4C right,
Supplementary Figure 9 and Supplementary Table 13) and
most of the enrichment scores of the antitumor immune
signatures (Figure 4C left, Supplementary Figure 10 and
Supplementary Table 14). Finally, we also validated that
LAALS3 was significantly higher in the low ZC3H13
group (Figure 4D).

In summary, ZC3H13 may be a novel biomarker to predict
the immune phenotypes and clinical response of ICB in KIRC.

The Relationship Between ZC3H13 and
Tumor Mutation Spectrum, TMB,
and MSI in KIRC
Here, we compared the distribution differences of the top 20
somatic mutations between ZC3H13 groups. Notably, VHL,
PBRM1 and TNN were the most frequent mutations in KIRC
(Figure 5A). The overall mutational profiles between the
ZC3H13 groups were comparable (94.5% vs 95.7%). Despite
this, TMB in the low ZC3H13 group was significantly higher
than that in the high ZC3H13 group (Figure 5B). However, there
was no significant difference in the MSI scores between the two
groups (Figure 5C).

Role of ZC3H13 in Predicting the
Sensitivity of Targeted Therapy for KIRC
Targeted therapy is the most important treatment option for
KIRC. We selected 183 drugs for the treatment of solid tumors
and the corresponding target genes from the DrugBank database.
Then, we compared the sensitivity of these antitumor drugs
between the high and low ZC3H13 groups. As shown in
Figure 6A and Supplementary Table 15, the sensitivity of
most drugs was significantly different between the two groups.
Furthermore, we focused on several targeted therapies and genes
that were most commonly used in advanced KIRC patients:
sorafenib with its targeted genes, including BRAF, FLT1, FLT3,
FLT4, KDR, KIT, and RAF1; sunitinib with its targeted genes,
including CSF1R, FLT1, FLT3, FLT4, KDR, and RET; pazopanib
with its targeted gene SH2B3; and bevacizumab with its targeted
gene VEGFA. We found that the sensitivity of these drugs was
significantly higher in the high ZC3H13 group (Figure 6B). This
finding indicated that targeted therapy could be a treatment
option for the high ZC3H13 group, though this group was less
sensitive to ICB therapy.
DISCUSSION

This study comprehensively analyzed the different expression
profiles, prognostic values and immunoregulatory effects of
ZC3H13 in pan-cancers. We found that ZC3H13 was closely
Frontiers in Oncology | www.frontiersin.org 8
related to the occurrence of a variety of tumors, especially KIRC.
Then, we focused the analyses of ZC3H13 on KIRC. ZC3H13
might be a tumor suppressor gene in KIRC. Interestingly, the
high expression of KIRC represented a noninflamed phenotype
and this result could be roughly validated in our own RNA-seq
cohort. Patients with high ZC3H13 expression were less sensitive
to ICB but were more sensitive to targeted therapy. These results
suggested that ZC3H13 was a potential predictive marker for ICB
and targeted therapy in KIRC.

Given the substantial economic burden and toxic side effects,
it is vital to find more reliable and simpler ICB efficacy prediction
markers. To date, some ICB efficacy prediction markers have
been identified, including PD-L1, TMB, MSI and some other
efficacy prediction models, such as the TIDE model (27).
However, it is worth noting that all these predictive markers
have encountered many obstacles in clinical practice. The most
serious obstacle is that the prediction accuracy is not sufficient.
For example, as a marker for predicting the efficacy of ICB, the
accuracy of PD-L1 can be affected by many other factors, such as
immunohistochemical test methods, detection antibodies, and
the choice of positive threshold (28, 29). TMB and MSI have
relatively higher accuracy in predicting the efficacy of ICB than
PD-L1. However, the clinical detection of these two markers
relies on expensive and complex molecular methods. The tumor
microenvironment (TME) plays an important role in tumor
immunotherapy. An inflamed TME in conjunction with pre-
existing anticancer immunity is necessary for ICB (23–26).
Therefore, finding a biomarker that can fully predict the
immune phenotype opens a new road for predicting the
efficacy of ICB. In this study, we found that ZC3H13 could
predict the immune phenotype from multiple angles.

First, we indicated that ZC3H13 was significantly correlated
with the activity of the antitumor immune response steps in the
TME of KIRC (19). The activities of the major cycles were
downregulated in the high ZC3H13 group, including the
activities of priming and activation, trafficking of immune cells
to tumors (macrophage recruitment, NK cell recruitment, DC
recruitment, and TH17 recruitment), infiltration of immune cells
into tumors, and recognition of cancer cells by T cells. This
indicated that ZC3H13 could inhibit the body’s immune
monitoring of tumor cells from the origin and further promote
the immune evasion of tumor cells. The types of immune cells in
the tumor microenvironment are complex, and their infiltration
varies greatly. In KIRC, high expression of ZC3H13 could
significantly inhibit the infiltration of most tumor suppressor
TIICs, including activated CD4 T cells, activated CD8 T cells,
activated dendritic cells, CD56 bright natural killer cells, central
memory CD4 T cells, type 1 T helper cells, and type 17 T helper
cells. Additionally, the infiltration of cancer-promoting TIICs,
including regulatory T cell, plasmacytoid dendritic cells,
neutrophils, and type 2 T helper cells, was significantly
increased in the high ZC3H13 group. In addition, the
activation of stromal pathways could also affect antitumor
immunity in the TME. We found that the stromal pathways
(including EMT1 and EMT3) in the high ZC3H13 group were
significantly activated. In summary, we have proven from
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D
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FIGURE 4 | The linear relationship between the expression of ZC3H13 and the enrichment scores of immune cycles and ICB efficacy prediction pathways.
(A) Spearman correlation of ZC3H13 expression with cancer immunity and immune related pathways, presented on the left and right respectively. The different types
of lines represent positive or negative correlations; the thickness of the lines and the color of the bar plots represent the strength of correlation; and the different
colors of the lines represent p-values. MDSC, myeloid-derived suppressor cell; NK, natural killer cell; Th, helper T cell; Treg, regulatory T cell. (B) The histogram of
log2(TPM) values of immune checkpoint genes between different ZC3H13 groups. Low ZC3H13 group, blue; High ZC3H13 group, red. (T test, ***P < 0.001;
****P < 0.0001; ns, not statistically significant). (C) Spearman correlation of ZC3H13 expression with cancer immunity and immune related pathways in our own
RNA-seq cohort, presented on the left and right respectively. The different types of lines represent positive or negative correlations; the thickness of the lines and the
color of the bar plots represent the strength of correlation; and the different colors of the lines represent p-values. MDSC, myeloid-derived suppressor cell; NK,
natural killer cell; Th, helper T cell; Treg, regulatory T cell. (D) The histogram of log2(TPM) values of immune checkpoint genes between different ZC3H13 groups in
our own RNA-seq cohort. Low ZC3H13 group, blue; High ZC3H13 group, red. (T test, *P < 0.05; ns, not statistically significant).
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multiple angles that high expression of ZC3H13 represents a
noninflamed phenotype.

Since high expression of ZC3H13 can predict a noninflamed
phenotype, patients with high ZC3H13 expression may not be
sensitive to ICB treatment. Unfortunately, we lacked a database
containing patients treated with ICB to directly analyze the
relationship between ZC3H13 and ICB efficacy. Therefore, we
analyzed the relationship between ZC3H13 and the predictive
pathways that were closely related to the efficacy of ICB (22). As
expected, the enrichment scores of pathways that were positively
related to the response to ICB, such as nucleotide excision repair,
oocyte meiosis, DNA replication, mismatch repair, systemic
lupus erythematosus, alcohol, microRNAs in cancer, and the
cell cycle, were significantly lower in the high ZC3H13 group. In
contrast, the enrichment score of the cytokine-cytokine receptor
interaction, which was negatively related to the response to ICB,
was significantly higher in the high ZC3H13 group. At the same
time, we found that ZC3H13 and several critical immune
checkpoints, such as CTLA-4, PD-1, LAG-3, LAALS3, and
TIGIT, were also significantly negatively correlated. Most
importantly, we found that ZC3H13 was also significantly
Frontiers in Oncology | www.frontiersin.org 10
negatively correlated with TMB in KIRC. The above results
indicated that high expression of ZC3H13 could not only
predict a noninflamed phenotype but also indicate a lower
sensitivity to ICB. Nevertheless, patients with high expression
of ZC3H13 were more sensitive to targeted therapy.

There are some limitations in the study. First, this study was
based on an analysis of public databases and our small sample
size RNA-seq cohort. Therefore, the conclusions need further
verification in larger cohort, especially the cohort receiving ICB
treatment. Second, this study chose the median expression of
ZC3H13 as the cutoff value. This cutoff value may not be suitable
for use in further external datasets. Third, further mechanistic
experiments are still needed to clarify the immunoregulatory
effects of ZC3H13 on the tumor microenvironment of KIRC.

CONCLUSION

This study demonstrated that ZC3H13 might shape a
noninflamed phenotype in KIRC. Moreover, ZC3H13 could
predict the prognosis and clinical response of ICB and the
sensitivity to targeted therapies in KIRC.
A

B C

FIGURE 5 | The relationship between ZC3H13 and the tumor mutation spectrum, TMB and MSI in KIRC. (A) Mutation spectrum of the high (left) and low (right)
ZC3H13 groups in KIRC. Different colors represented different mutation types annotated at the bottom; The barplot on the top represented mutation burden. The
numbers on the right represented mutation frequency. TMB, tumor mutation burden. MANTIS, microsatellite analysis for normal-tumor instability. (B) The histogram
of log2(value) of TMB between the different ZC3H13 groups. Low ZC3H13 group, blue; High ZC3H13 group, red. (T test). (C) The histogram of log2(value) of
MANTIS score between the different ZC3H13 groups. Low ZC3H13 group, blue; High ZC3H13 group, red. (T test).
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A

B

FIGURE 6 | The relationship between ZC3H13 and the sensitivity to targeted therapy of KIRC. (A) Heatmap drawn based on the different sensitivities to the 183
drugs selected from the DrugBank database. (B) The histogram of sensitivities to the selected targeted therapy between the different ZC3H13 groups. Low ZC3H13
group, blue; High ZC3H13 group, red. (T test, **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not statistically significant).
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Supplementary Figure 1 | Expression pattern of ZC3H13 in pan-cancers. (A, B)
The expression pattern of ZC3H13 of pan-cancers in TCGA and TCGA combined
with GTEx. The asterisks indicate a significant statistical p value calculated with the
Frontiers in Oncology | www.frontiersin.org 12
T test (*P < 0.05; **P < 0.01; ***P < 0.001). (C) The expression of ZC3H13 in normal
tissues from the GTEx database. (D) The expression of ZC3H13 in cancer cell lines
in CCLE.

Supplementary Figure 2 | Prognostic analysis of ZC3H13 for overall survival in
pan-cancers. (A) The prognostic analyses of ZC3H13 in pan-cancers using a
univariate Cox regression model. A hazard ratio >1 indicated a risk factor, and a
hazard ratio <1 represented a protective factor. (B, C) The prognostic analyses of
ZC3H13 in pan-cancers using the Kaplan-Meier method and log-rank test. Only
cancers in which ZC3H13 was a significant prognostic biomarker are shown.

Supplementary Figure 3 | Prognostic analysis of ZC3H13 for progression-free
survival in pan-cancers. (A) The prognostic analyses of ZC3H13 in pan-cancers
using a univariate Cox regression model. A hazard ratio >1 indicats a risk factor, and
a hazard ratio <1 represents a protective factor. (B–E) The prognostic analyses of
ZC3H13 across cancers using the Kaplan-Meier method and log-rank test. Only
cancers in which ZC3H13 was a significant prognostic biomarker are shown.

Supplementary Figure 4 | Prognostic analysis of ZC3H13 for disease-specific
survival in pan-cancers. (A) The prognostic analyses of ZC3H13 in pan-cancers
using a univariate Cox regression model. A hazard ratio >1 indicates a risk factor,
and a hazard ratio <1 represents a protective factor. (B–E) The prognostic analyses
of ZC3H13 in pan-cancers using the Kaplan-Meier method and log-rank test. Only
cancers in which ZC3H13 was a significant prognostic biomarker are shown.

Supplementary Figure 5 | Correlations between ZC3H13 and immune
checkpoints, tumor infiltrating immune cells, TMB, and MSI in pan-cancers.
(A) Correlation between ZC3H13 and immune checkpoints in pan-cancers.
(B) Correlation between ZC3H13 and MSI in pan-cancers. (C) Correlation between
ZC3H13 and tumor infiltrating immune cells in pan-cancers. (D) Correlation
between ZC3H13 and MSI in pan-cancers. The asterisks indicate a significant
statistical p value calculated with Spearman correlation analysis (*P < 0.05; **P <
0.01; ***P < 0.001).

Supplementary Figure 6 | Functional annotation for different expression genes
between the high and low ZC3H13 groups. (A) Biological Processes (BP)
(B) Cellular Components (CC); (C) Molecular Functions (MF); (D) Kyoto
Encyclopedia of Genes and Genomes (KEGG). (F) The histogram of
immunotherapy predicted pathways between the high and low ZC3H13 groups.
Low ZC3H13 group, blue; High ZC3H13 group, red. (T test, *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001; ns, not statistically significant).

Supplementary Figure 7 | Spearman correlation of ZC3H13 expression with
cancer immunity in TCGA cohort.

Supplementary Figure 8 | Spearman correlation of ZC3H13 expression with
immune related pathways in TCGA cohort.

Supplementary Figure 9 | Spearman correlation of ZC3H13 expression with
immune related pathways in our own cohort.

Supplementary Figure 10 | Spearman correlation of ZC3H13 expression with
cancer immunity in our own cohort.
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