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Selection pressure on the rhizosphere microbiome
can alter nitrogen use efficiency and seed yield in
Brassica rapa
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Microbial experimental systems provide a platform to observe how networks of groups

emerge to impact plant development. We applied selection pressure for microbiome

enhancement of Brassica rapa biomass to examine adaptive bacterial group dynamics under

soil nitrogen limitation. In the 9th and final generation of the experiment, selection pressure

enhanced B. rapa seed yield and nitrogen use efficiency compared to our control treatment,

with no effect between the random selection and control treatments. Aboveground biomass

increased for both the high biomass selection and random selection plants. Soil bacterial

diversity declined under high B. rapa biomass selection, suggesting a possible ecological

filtering mechanism to remove bacterial taxa. Distinct sub-groups of interactions emerged

among bacterial phyla such as Proteobacteria and Bacteroidetes in response to selection.

Extended Local Similarity Analysis and NetShift indicated greater connectivity of the bacterial

community, with more edges, shorter path lengths, and altered modularity through the

course of selection for enhanced plant biomass. In contrast, bacterial communities under

random selection and no selection showed less complex interaction profiles of bacterial taxa.

These results suggest that group-level bacterial interactions could be modified to collectively

shift microbiome functions impacting the growth of the host plant under soil nitrogen

limitation.
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In recent years, numerous plant microbiome studies have
highlighted the intricate links between a plant host and its
associated microbiomes1–3. In the rhizosphere, microbiomes

play a key role in processes that affect plant fitness, such as
nutrient cycling4,5 and disease suppression6,7. Given their influ-
ence on plant growth and health, microbial consortia in the
rhizosphere have become targets for altering plant traits that may
help improve agricultural productivity8,9. Several studies have
demonstrated the ability to alter host traits via selection (i.e.
directed microbiome manipulation) for microbial consortia in the
root zone. For example, experimental evolution work by Swenson
et al.10 demonstrated that plant biomass could be enhanced in
Arabidopsis thaliana following inoculation with rhizosphere
microbiomes selected based on their association with increased
host biomass production over multiple generations. A similar
study demonstrated microbiome modification of flowering time
in A. thaliana11. Considering these findings, the creation of
robust plant growth promoting rhizosphere microbiomes could
be possible through the careful conveyance of group-level selec-
tive processes (i.e. selective processes that affect whole groups of
organisms rather than individuals alone) for rhizosphere micro-
bial consortia associated with enhanced productivity and fitness.

Microbiome sequencing data can provide a window into the
changing communities and dynamics of group-level processes
such as nutrient cycling in microbiome experiments over time.
Microbial experimental systems that entail simulations of both
microbe-microbe and plant-microbe interactions can be designed
as empirical studies to track the outcome of selective pressure on
a group-level trait12. Resulting sequence data of the microbiome
can be used to observe the emergence of interaction networks that
could signify group-level processes developing through time. The
significance of this network profile is the potential record of
group selection processes unfolding within a system13,14. A key
tenet of group selection is that selective pressures at the group-
and individual levels constantly interact with one another to
produce the observed phenotype of a population15. In the context
of host-microbe interactions, the microbiome can be shaped
heavily by plants when the microbial environment and resource
pool are largely defined by the host16. The resulting microbiome,
in turn, alters different aspects of host growth and development4.
A better understanding of the plant-microbiome feedback pro-
cesses in the rhizosphere could reveal how group-level interac-
tions collectively shape host phenotypes.

For microbial experimental systems involving time series
sequence data, it is important to consider what types of micro-
biome interactions can be interpreted in a network profile.
Microbial taxa that are positively associated could indicate
cooperative or antagonistic behaviors. For example, resource
sharing could be extremely costly for individuals given that
members in the community may utilize the resource in an
uncooperative manner17, thereby increasing their own fitness
while avoiding the cost of cooperation. Network models may not
distinguish between these forms of interactions unless the
experimental design explicitly controls for contrasting scenarios
that determine if more cooperative communities can outcompete
others when certain group-level selective pressures are acting
on the system18–20. In the case of the rhizosphere and its
root-associated microbiome, group-level selection could be
ubiquitous4,21,22 and may help explain the high rates of carbon
losses from the plant via root exudation23 as an adaptive strategy
to harbor beneficial microbiota in the root zone. Given that these
forms of selective pressures are known to influence the micro-
biome, directed evolution in the rhizosphere for microbial
communities that confer an ecosystem-level trait, such as
enhanced aboveground biomass production, could be a
possibility.

Here, we examined if plant productivity (i.e. aboveground
biomass and seed yield) could be enhanced in the non-
mycorrhizal host Brassica rapa through repeated selection for
rhizosphere microbiota associated with increased aboveground
biomass production over nine generations of plantings. The
objective of this experiment is to examine changes in rhizosphere
bacterial group dynamics across generations of selection for high
biomass growth of a nonmycorrhizal plant under soil nitrogen
limiting conditions. Arbuscular mycorrhizal fungi form associa-
tions with most terrestrial plant species that support nitrogen and
phosphorus uptake of the plant host24,25, but the Brassica lineage
of plants is dominated by species that do not serve as mycorrhizal
hosts26. The loss of key symbiosis genes in non-host Brassicas
occurred early in the lineage of the Brassicales order27, which
suggests that these plants have evolved different strategies to
acquire nitrogen and phosphorus from soil. We hypothesized that
selection pressure on rhizosphere microbiomes for increased
biomass of a non-mycorrhizal plant host growing under nitrogen-
limiting conditions will lead to the assembly of distinct, highly
connected and interactive rhizosphere bacterial groups associated
with plant host nitrogen uptake strategies. Additionally, we
hypothesize that enhanced soil N cycling would be a key
mechanism by which the rhizosphere microbiome of a non-
mycorrhizal plant host would enhance biomass growth and
seed yield.

The selection treatment for high biomass plants was compared
with two types of control treatments: plants that were chosen
through random selection (random treatment) and plants that
were grown with cryopreserved soil microbial inocula that served
as controls against microbial adaptation (control treatment). All
three selection treatments in the experiment received the same
bacterial inoculant in the first generation, derived from organic
farm soils. Thus, the initial bacterial community was the same for
all three selection treatments but diverged over time across gen-
erations of the selection experiment. The microbial inocula con-
sisted of rhizosphere soil dispersed with sterile water into
autoclaved soils. Each selection treatment consisted of 15 repli-
cated pots with identical autoclaved soil and B. rapa seeds across
treatments and generations of plantings, which ensured that the
microbial inocula were the dominant variable. The experimental
design optimized soil bacterial passage across selection genera-
tions through use of the liquid dispersal medium and rapid
generation times of the host plant (10-day growth of B. rapa
Wisconsin Fast Plants). For a detailed illustration of the experi-
mental design, see Fig. 1. We used amplicon sequencing of 16 S
rRNA genes to observe shifts in bacterial community composition
and interaction profiles across taxa. For bacterial community
function, we assessed changes in plant nutrient use efficiency by
measuring isotopic nitrogen (δ15N) of plant tissue to indicate
potential changes in soil N processing and nutrient metabolism
within plants, which is a major determinant of plant productivity
and yield.

Our data show B. rapa plants in the high biomass treatment
had significantly greater seed yield and nitrogen agronomic use
efficiency (NUE) compared to plants in the control treatment
after the 9th and final generation of selection, with no effect
between the random selection and control treatments. Microbial
sequencing data from B. rapa rhizospheres revealed distinct
community profiles between the three selection treatments over
the course of the experiment, suggesting distinct rhizosphere
microbial communities formed in each treatment. Network
analysis using our microbial sequence data showed unique
microbial interaction networks between the three treatments,
with overall greater connectivity of microbiomes in the high
biomass selection treatment. Meanwhile, bacterial communities
under random selection and no selection showed less complex
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interaction profiles of bacterial taxa. Altogether, this experiment
shows group-level bacterial interactions could be modified to
collectively shift microbiome functions impacting the growth of
the host plant under selection pressure.

Results
Plant, soil, and microbiome samples. In the 9th and final gen-
eration of the experiment, the plants were allowed to set seed to
determine selection pressure outcomes on B. rapa seed yield and
nitrogen use efficiency. Only the harvested aboveground biomass
is reported for plant data from the previous 1st through 8th
generations, followed by seed yield in the 9th generation. Like-
wise, rhizosphere bacteria data are shown for the 1st through 8th
generations, and the 9th generation sampling was avoided due to
the prolonged growth of seed-bearing plants and low moisture
soil conditions (and eventual desiccation) required for seed
collection.

Aboveground dry biomass production and seed yield. To assess
if our selection process enhanced plant productivity in the high
biomass selection treatment, we compared the total dry above-
ground biomass production and seed yield of the three selection
treatments in the 9th generation. Analysis of aboveground dry
biomass production (g) revealed significant effects of selection
treatment (df = 2, F value= 13.3, p= 3.28e-05). Pot units in the
high biomass and random selection treatments had 36% and 38%
greater B. rapa aboveground dry biomass production compared
to pots in the control treatment at the p= 0.0002 and
p= 0.0001 significance levels, respectively (Fig. 2a). Aboveground
dry biomass production between the high biomass and random
selection treatments did not differ (p= 0.97). Analysis of seed
yield revealed significant effects of selection treatment (df = 2,
F value= 3.7, p= 0.032). The seed yield, measured as the total g
of seeds produced per pot unit, in the high biomass selection
treatment was 62% higher compared to the control treatment at
the p= 0.025 significance level (Fig. 2b). In contrast, the seed

yield of the random selection treatment did not differ from the
high biomass selection treatment (p= 0.51) or the control
(p= 0.25).

Analysis of plant tissue N content. Plant N uptake is one of the
largest determinants of productivity28. We expected that increased
soil N cycling would be a key mechanism by which the rhizosphere
microbiome of a non-mycorrhizal plant host would enhance bio-
mass growth and seed yield. Thus, we analyzed foliar N data from
the 9th generation of the experiment to determine how selection
may have altered microbial nutrient cycling activity. Analysis of
total foliar N revealed effects of selection treatment in the 9th
generation of the experiment at the p= 0.031 significance level
(n= 4, df = 2, F value = 5.2) (Table 1). Plants in the high biomass
selection treatment had 60% more total foliar N compared to
plants in the control treatment at the p= 0.028 significance level,
while the total foliar N content of plants in the random selection
treatment did not differ from the high biomass (p= 0.6) or control
(p= 0.12) treatments. Analysis of foliar δ15N values in the 9th
generation revealed further effects of selection treatment (df = 2, F
value= 15.0, p= 0.0013). Plants in the high biomass selection
treatment had 43% lower foliar δ15N values compared to plants in
the random selection treatment, and 49% lower foliar δ15N values
compared to plants in the control treatment at the p= 0.0077 and
p= 0.0014 significance levels, respectively (Table 1). The foliar
δ15N values of the random selection and control treatments did not
differ from one another (p= 0.46). Foliar % N did not differ
between any selection treatments (df = 2, F value=1.7, p= 0.22).
Selection treatment also had a weak effect on N agronomic use
efficiency (NUE), defined as seed yield (g) g-1 nitrogen added28, at
a p= 0.08 significance level (n= 4, df= 2, F value = 3.3). Plants in
the high biomass selection treatment had a similarly weak rela-
tionship exhibiting a 112% greater NUE compared to the control
treatment in the 9th generation (p= 0.071) (Table 1). The NUE of
the random selection treatment did not differ significantly from the
high biomass (p= 0.65) and control (p= 0.27) selection

Fig. 1 Experimental design of selection for rhizosphere microbiomes that enhance plant host yield. Selection pressure is placed on the rhizosphere
microbiome for phenotypic changes (enhanced yield) of the host plant. For the 1st through 8th generations of the high biomass selection treatment, the
rhizosphere soil from the four highest yielding units (from n= 15 replicates) is composited into microbial inoculants for the subsequent generation of
plantings. For the random selection treatment, four units (from n= 15 replicates) are selected at random with rhizosphere harvested and used as microbial
inoculants for the next planting. The control treatment consists of cryopreserved microbial inoculants that are identical to the start of the 1st generation of
plantings and represent non-adaptive microbiomes (n= 15 replicates). For all three selection treatments, seeds were collected to determine seed yield and
nitrogen use efficiency (NUE) in the final (9th) generation. Units in all treatments and generations of plantings were comprised of the same B. rapa seed
pool to minimize genetic diversity of the plant host. All units of the three selection treatments in the 1st generation received identical microbial inoculants
derived from a mixture of organic farm soils.
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treatments. To ensure differences observed in plant phenotype
between selection treatments in the 9th generation were a result of
our selection process, we analyzed aboveground dry biomass
production, % foliar N, foliar δ15N, and total foliar N from the 1st
generation (Table 1), which showed no effect of selection
treatment.

To link our foliar N measurements to plant productivity, we
performed Pearson correlations using data from the 9th
generation of the experiment. Total foliar N was found to have
a strong positive correlation with aboveground dry biomass
production (df= 10, R= 0.89, p= 1e-04) (Fig. 3a) and seed yield
(df= 10, R= 0.74, p= 0.005) (Fig. 3b).

Analysis of the rhizosphere bacterial community. We analyzed
bacterial community composition through interpretations of 16 S
rRNA gene sequences to assess changes in the composition and
interaction profiles of microbial taxonomic groups and specific
operational taxonomic units (OTU). Plotting of the Bray-Curtis
distances in an ordination followed by PERMANOVA revealed

significant effects of Generation (df= 7, F-model= 17.2, p < 0.001),
Selection Treatment (df= 2, F-model= 34.5, p < 0.001), and the
interaction between the two factors (df= 14, F-model= 5.1,
p < 0.001) on bacterial community composition. The PCoA shows
the 1st generation samples and the entire set of control samples (1st

through the 8th generation) cluster together, while the high biomass
and random selection samples separate from this group together as
the generations of plantings progress (Fig. 4). High biomass and
random microbiomes become distinct in the 6th generation. Dif-
ferences in bacterial composition between the selection treatments
as the generations advanced are also displayed in the heatmap
constructed using Euclidean distances and average linkage cluster-
ing (Supplementary Fig. 1).

In order to assess the effect of Generation and Selection
Treatment on abundances of specific bacterial taxa, which may
help explain functional shifts in the rhizosphere bacterial
community, we ran ANOVAs on the relative abundances of the
top seven most abundant bacterial families for the 1st to 8th
generations. For our ANOVA models, we included Generation,

Fig. 2 Plant productivity at the 9th generation for the high biomass, random, and control selection treatments. a Box plot displaying the average
aboveground biomass production (g) of the pots in each selection treatment after the 9th generation of selection. b Box plot displaying the average seed
yield (g) of the pots for each selection treatment after the 9th generation of selection. The different selection treatments are represented in color with the
high biomass treatment in red, the random selection treatment in blue, and the control treatment in green. Upper and lower hinges of each box represent
the first and third quartiles of the corresponding group. The top whisker of each box represents the highest values within 1.5 times the interquartile range
and the lower whisker of each box represents the lowest values within 1.5 times the interquartile range. Each selection treatment had n= 15 replicate pots.
Measurements for individual samples in each group are represented with points. Group means that are statistically significant from one another are labeled
with horizontal bars and the corresponding p value. *p < 0.05, **p < 0.01, *** p < 0.001.

Table 1 Group means and ANOVAs for total foliar N, foliar δ15N vs At. Air, % foliar N, and N agronomic efficiency for the three
selection treatments at the 9th generation and group averages and ANOVAs for total foliar N, foliar δ15N vs At. Air, % foliar N,
and aboveground dry biomass production, for the 1st generation.

Generation 9 Total foliar N (g) Foliar δ15N vs. At. Air % foliar N N agronomic efficiency (g seed/g N added)

High biomass 0.0013 +/− 0.00014a 1.47 +/− 0.12a 0.89 +/− 0.035a 1.17 +/− 0.17a

Random 0.0011 +/− 0.00013ab 2.58 +/− 0.21b 0.80 +/− 0.052a 0.95 +/− 0.21ab

Control 0.00083 +/− 0.000057b 2.92 +/− 0.24b 0.97 +/− 0.082a 0.55 +/− 0.13b

ANOVA
Selection line 0.031** 0.0013*** 0.22 0.08*

Generation 1 Total foliar N (g) Foliar δ15N vs. At. Air % foliar N Aboveground dry biomass production (g)

High biomass 0.0027 +/− 0.65a 5.35 +/− 0.65a 2.48 +/− 0.50a 0.10 +/− 0.019a

Random 0.0027 +/− 0.31a 5.39 +/− 0.31a 2.04 +/− 0.38a 0.13 +/− 0.021a

Control 0.0039 +/− 0.56a 5.91 +/− 0.56a 2.50 +/− 0.35a 0.14 +/− 0.023a

ANOVA
Selection line 0.80 0.71 0.68 0.55

N data are from analysis of four replicates chosen at random from each selection treatment in the 9th and 1st generation. Average aboveground dry biomass in the 1st generation was calculated using 15
replicates from each selection treatment. The values in the table represent group means +/− SE. The superscript letters represent pairwise comparisons between selection treatments using least-
squares means. *p < 0.1, **p < 0.05, ***p < 0.01.
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Selection Treatment, and the interaction between the two as
model factors, then report here pairwise comparisons of the
abundances of different bacterial families in the 8th generation
between the selection treatment. In other words, the ANOVAs
and pairwise comparisons reported here are from analysis of the
Generation x Selection Treatment interaction term. Our analysis
shows shifts in the quantities of bacterial families such as
Chitinophagaceae (df = 14, F value= 1.97, p value= 0.022)
(Supplementary Fig. 2). Members of this family, which contains
plant growth promoting species such as Arachidicoccus
rhizosphaerae29, increased in relative abundance in the high
biomass and random selection treatments by 378.1% (p= 0.0007)
and 329.5% (p= 0.026) compared to the control treatment in the
8th generation (Supplementary Fig. 2). Our analysis of Flavo-
bacteriaceae (df = 14, F value= 4.74, p value= 2.98e-7), which is
a member of the widespread Bacteroidetes phylum, and
Oxalobacteraceae (df= 14, F value= 5.46, p value= 1.6e-8),
belonging to the functionally diverse Proteobacteria phylum,
revealed further shifts in abundances between selection

treatments in the 8th generation. The abundance of Flavobacter-
iaceae was 83.1% lower in the high biomass selection treatment
(p < 0.001) and 84.2% lower in the random selection treatment
(p < 0.001) compared to the control treatment. The abundance of
Oxalobacteraceae was 51.1% lower in the high biomass selection
treatment (p= 0.0082) and 60.6% lower in the random selection
treatment (p= 0.0006), compared to the control treatment.
Analysis of Sphingobacteriaceae, also a member of the Bacter-
oidetes phylum, revealed further shifts between selection treat-
ments in the 8th generation (df = 14, F value= 5.61, p
value= 8.69e-9). When analyzing Sphinobacteriacaea abundance
between selection treatments in the 8th generation, we found the
high biomass selection treatment had 52.3% lower abundance
compared to the random selection treatment (p < 0.001) and
37.6% lower abundance compared to the control treatment
(p= 0.0136).

Analysis of Shannon diversity indexes revealed differences in
bacterial diversity between all three selection treatments (df = 2,
F value=14.7, p= 1.12e-06) (Fig. 5). The control treatment had

Fig. 3 Pearson correlations between plant productivity and total foliar nitrogen (N) measurements in the 9th generation of the experiment.
a Scatterplot and Pearson correlation of aboveground dry biomass production (g) vs. total foliar N (g). b Scatterplot and Pearson correlation of seed yield
(g) vs. total foliar N (g). Each point represents the seed yield/productivity data and total foliar N data of a sample from the 9th generation. The line
represents a linear regression between the two variables in each graph. The shaded region represents the 95% confidence interval in each graph. Each
selection treatment had n= 4 replicates for this analysis.

Fig. 4 Principal coordinates analysis (PCoA) of the rhizosphere microbial community based on 16 S rRNA gene sequencing. Circles indicate
microbiomes from the high biomass selection treatment and triangles indicate those derived from random selection. The crosses represent the control
selection treatment, which are used to measure against genetic drift and growth chamber adaptation. For the high biomass and random selection
treatments, the cycles of plantings are represented by color: 1st through 8th are red, orange, yellow, green, blue, purple, pink, and gray, respectively. For the
control selection treatment, all generations (1st through 8th) are represented in teal. Generation x Selection Treatment groups had at least seven replicates.
In total, sequences from 186 soil samples were used in this analysis. PERMANOVA revealed significant effects of Generation (p < 0.001), Selection
Treatment (p < 0.001), and the interaction between the two factors (p < 0.001) on bacterial community composition.
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the greatest bacterial diversity, with a diversity index 3.4% greater
than the random selection treatment (p= 0.033) and 7.7% greater
than the high biomass selection treatment (p < 0.0001). In
addition, the random selection treatment had a diversity index
4% greater than the high biomass selection treatment (p= 0.012).
This decrease in diversity could be indicative of ecological
filtering30 or a similar process in the high biomass selection
treatment.

Microbiome network analysis. To compare how bacterial group
dynamics shifted between the different selection treatments in our
experiment, we performed an Extended Local Similarity Analysis
(eLSA) using bacterial sequence data from the 1st through 8th
generation. Briefly, an eLSA is a modified version of Local
Similarity Analysis (LSA), which measures local and potentially
time-delayed co-occurrence patterns in time series data31. Unlike
LSA, eLSA can reveal statistically significant local and potentially
time-delayed association patterns in replicated time series data,
such as the bacterial sequence data from this experiment. Results
from the analysis can then be used to construct an association
network consisting of nodes (representing bacterial Operational
Taxonomic Units, or OTUs), edges (representing potential rela-
tionships between nodes), and modules (clusters of nodes), which
together can be used to visualize changes in microbial interaction
networks (i.e. microbial ecological relationships).

The eLSA revealed that the three selection treatments differ in
edge connections with the same node set, which included OTUs
that had a relative abundance above 1% in at least 1 sample. The
high biomass selection treatment showed the greatest number of
edge connections, followed by the random selection treatment,
then the control treatment (Fig. 6a). Notably, the high biomass
selection treatment visually showed a densely connected cluster of
OTUs not observed in the random or control selection treatments
when the three networks are stacked (Fig. 6b). When plotting the

degree distribution (number of edges connected to a specific
node) of all three selection treatments, the high biomass selection
treatment had substantially more nodes that are more connected
when the degree is larger than 12 (Supplementary Fig. 3a).
Changing the alpha threshold for the eLSA analysis, which
determines if a correlation between two OTUs is significant,
yields consistent results where the network of the high biomass
selection treatment is always the most dense (Supplemental
Fig. 3b) and indicates robustness of eLSA on this data set.

In addition to differences in edge connections between the
three selection treatments, we found decreased modularity of the
bacterial community under high biomass selection, which is
indicative of a more highly organized network topology
displaying tightly connected bacterial OTUs. The high biomass
bacterial communities showed the lowest modularity of 0.546,
followed by 0.562 in the random selection group and 0.741 in the
control group. Module size, taxonomic composition, and the
interaction strength (connectivity, as indicated by the node size)
differed across the selection treatments and control. Figure 6c
shows the two largest group formations within the network and
their taxonomic profile. The greater density of the two major
groups in the high biomass selection treatment compared to those
generated from random selection shows stronger interconnection
within the groups.

To further quantify these visual differences, we used our
sample edge lists to run a publicly available network model tool,
known as NetShift32, which quantifies bacterial community
rewiring and changes between two data sets. With the analysis,
we sought to perform pairwise comparisons of global graph
properties for the three selection treatments. Our analysis
revealed the high biomass selection treatment overall had higher
network density (portion of potential connections in a network
that are actual connections), lower average pathlength (lower
average number of steps connecting one node to the next), more
total edges (more connections), and more exclusive edges than
the random selection and control treatments (Fig. 6d). The results
indicate a more connected bacterial community in the high
biomass selection treatment compared to the random and control
treatments, which was also visually observed in our microbial
network constructed from the eLSA.

Discussion
The objective of the experiment was to examine changes in rhi-
zosphere bacterial group dynamics across generations of selection
for high biomass growth of a non-mycorrhizal plant under soil
nitrogen limiting conditions. In essence, we used a specific phe-
notype of the host plant (high aboveground biomass) to report
the collective actions of a bacterial community that are modifiable
over the course of selection4. We used an ecological filtering
approach30 in this experiment to remove rhizosphere microbiota
that were not associated with the four highest performing units
for each generation of plantings in the high biomass selection
treatment. The plants used in this experiment did not undergo
selection pressure. Instead, seeds of the same parental origin were
used across generations of plantings, which means the genetic
profile of plants from the 1st through 9th generations were the
same. The PCoA indicated divergence in the bacterial commu-
nities between the high biomass and random treatments starting
in the 6th generation. The bacterial network analysis using eLSA
and NetShift indicate that bacteria associated with increased
aboveground biomass may be coordinating group-level behaviors
that impact fitness traits, such as the higher seed yield in the high
biomass selection treatment compared to the control treatment.
Altogether, the stronger connectivity of specific taxonomic groups
forming within the rhizosphere of the high biomass plants over

Fig. 5 Analysis of mean Shannon diversity index for the three selection
treatments using microbial data from all eight generations of soil
samples sequenced. The different selection treatments are represented in
color with the high biomass treatment in red, the random selection
treatment in green, and the control treatment in blue. Upper and lower
hinges of each box represent the first and third quartiles of the
corresponding group. The top whisker of each box represents the highest
values within 1.5 times the interquartile range and the lower whisker of each
box represents the lowest values within 1.5 times the interquartile range.
Measurements for individual samples in each group are represented with
points. Most Generation x Selection Treatment groups had eight replicates
each after quality control. In total, sequences from 186 soil samples were
used in this analysis. Group means that are statistically significant from one
another are labeled with horizontal bars and the corresponding p value.
*p < 0.05, **p < 0.01, ***p < 0.001.
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time, along with the observed changes in bacterial community
composition, may have contributed to shifts in plant seed yield
and plant N dynamics.

The eLSA network model revealed that the selection process
had a significant effect on bacterial group dynamics in each
treatment over the course of the experiment. A notable outcome
of the experiment was the formation of bacterial groups (mod-
ules) that differed in composition and interaction intensity across
the selection treatments. Modules or clusters are biologically
relevant units whose interaction patterns provide information in
understanding the function of the network33. For example, past
research has suggested highly modular microbiota could play a
key role in plant immune responses to pathogens34. The sig-
nificance of these groups is how they may reveal emergent
properties of microbiomes associated with alterations in the host’s
phenotype, such as seed yield. In this study, the selective pressure
on plant biomass resulted in lower diversity and higher con-
nectivity in the high biomass selection treatment, suggesting a
highly organized bacterial community formed in the rhizosphere.

Analysis using NetShift provided quantitative data confirming
changes in bacterial community dynamics across treatments.
NetShift indicated a more interconnected bacterial community:
lower average path length, which describes the average number of
steps connecting one node to the next, and total edges, which
represents connectedness among community members32. Pre-
vious work has highlighted the influence of external pressures on
bacterial community properties, such as density. Faust et al.35

showed that microbial networks in bulk soils are generally less
dense than host-associated networks. Considering empirical

results such as this, it is conceivable the selection pressure for
increased plant biomass production resulted in highly connected
assemblies of bacterial groups that coordinate complex functions
that are beneficial to plant growth and N use efficiency.

It is well known that the rhizosphere bacterial community
regulates several plant activities, such as nutrient uptake, through
a variety of mechanisms. For example, rhizobia form nodules in
legume roots and fix atmospheric nitrogen for their host36, while
free-living microbes, such as phosphorus solubilizing bacteria,
regulate plant P availability through collective production of
extracellular enzymes37. It is possible that the changes observed in
plant tissue N content in this experiment were a result of changes
in the nutrient cycling activities of the rhizosphere bacterial
community between the selection and control treatments. Our
sequencing data indicate that the bacterial communities of the
high biomass selection treatment showed distinct characteristics
from the bacterial communities of the random selection and
control treatments. Among these distinct characteristics were a
decrease in bacterial diversity, which could indicate ecological
filtering30 for more efficient N cycling microorganisms. An
example is the shift in the relative abundance of Chitinophagaceae
bacteria, which have previously been shown to be associated with
increased N cycling activity38.

By repeatedly selecting for rhizosphere bacterial communities
associated with greater aboveground biomass production, it is
conceivable the rhizosphere bacterial communities in the high
biomass selection treatment became enriched with taxa that aid in
the mineralization of N, which is an essential nutrient for
seed production and development39–41. It is important to note

Fig. 6 Extended Local Similarity Analysis (eLSA) networks representing microbial taxa (OTU) interactions. a Networks of the three different selection
treatments comprised of sequencing data from all eight generations. Size of the node is proportional to the degree of the node (the number of connections
a node has). b Network of the combined three selection treatments. c Two largest modules (clusters) from each selection treatment and control using our
network data. The networks represent OTU interactions for different selection treatments using sequencing data from all eight generations. Size of the
node is proportional to the level of connectivity and colors represent taxonomic groups of bacteria. d Comparisons of network density, average path length,
total edges, and exclusive edges between selection treatments using NetShift. We used the same edge lists generated for our LSA to run our NetShift
analysis. The high biomass selection treatment had 63 replicates, the random selection treatment had 61 replicates, and the control treatment had 62
replicates. In total 186 soil samples were used for this analysis.
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that the plants in this study were grown under nitrogen limita-
tion, specifically 20 ml of 100 ppm N fertilizer as one dose in each
generation. In nitrogen-limiting conditions such as this, plants
may enrich the rhizosphere for N capturing microorganisms via
root exudation42, which could impact soil N availability or N use
efficiency in the host.

Stable isotopes provide an opportunity to assess potential
contributions of the rhizosphere microbiome to plant N
utilization43,44. Changes in foliar δ15N result from corresponding
alterations in the δ15N of the soil solution or some fundamental
change in within-plant N metabolism, which is often interpreted
as modifications in soil processes, especially nitrification and
denitrification45. In this study, it is challenging to determine the
soil or metabolic processes that were impacted between the 1st
and 9th generations. However, the observed changes in foliar
δ15N (Table 1) suggest some alteration in soil N cycling by the
rhizosphere microbial community or metabolism in the high
biomass selection treatment. There are several potential ways in
which the rhizosphere could change soil N cycling. For example,
differences in foliar δ15N values among the treatments could be a
result of differential rates of nitrification and denitrification
between groups46. Similarly, differences in δ15N values could
indicate contrasts in fertilizer- versus soil-N use by plants across
treatments47, which could be mediated by the microbiome. Plant
fractionation of nitrogen isotopes may have differed across
selection treatments48. The increases in total foliar N and N
agronomic use efficiency, and the δ15N data altogether suggest
alterations in rhizosphere N cycling and plant N utilization in the
high biomass selection treatment. As shown in our regression
analysis, this alteration in available N could be a major
mechanism by which bacterial communities in the high biomass
selection treatment altered the yield and NUE phenotypes of B.
rapa.

In addition to potentially promoting N cycling, the rhizosphere
bacterial community in the high biomass selection treatment
could have also promoted the uptake of other important plant
nutrients, such as phosphorus49,50, but plant tissue P and soil
extractable orthophosphate were not analyzed in this study. It is
also possible the shifts in the high biomass bacterial communities
over the course of selection represent the elimination of organ-
isms that inhibit plant productivity51, as we observed a decline in
diversity in the high biomass selection treatment compared to the
other two treatments. Our analysis revealed lower abundances of
taxa belonging to the family Sphingobacteriaceae in the high
biomass treatment. This lower abundance may have benefited
plants in the high biomass treatment as members of this family
have been associated with plant and animal diseases52,53. We
expected ecological filtering of the bacterial community, and thus
a decline in diversity as observed in our experiment, since our
selection for high biomass production likely altered bacterial
community assembly processes54,55.

We have shown in this experiment that it is possible to develop
rhizosphere bacterial communities associated with desirable plant
traits in agriculturally relevant crops, such as B. rapa, through
artificial group selection over multiple generations. Our results
show seed yield and plant tissue N may have been altered by the
microbiomes assembled under high biomass selection. While
both high biomass and random selection treatment plants had the
same aboveground biomass and the soil microbial communities
were largely similar, the main conclusion from this study indi-
cates that iterative selection over time shows divergences in
microbiome composition that may be associated with increased
seed yield and nitrogen use efficiency. Our work demonstrates
that group-level behaviors within the rhizosphere can be altered
under selection and may serve a key role in modifying plant host
phenotypes related to productivity. This project contributes to the

growing area of research showing that rhizosphere microbiomes
influence crop traits and have the potential to promote plant
productivity and yield56,57 without the use of genetic engineering
or gene-editing techniques. As this experiment focused on bac-
terial communities, future studies could be designed to analyze
how microbiome composition or behaviors can be modified to
alter plant fitness and other phenotypes. These types of microbial
experimental systems could ultimately help develop a better
understanding of plant-microbe interactions that can be utilized
for regenerative agriculture.

Methods
Growth chamber conditions. All plants in this experiment were grown in a
growth chamber set at 350 µmol of light, 10% humidity, alternating between 28 °C
for 16 h and 23 °C for 8 h for every generation (Percival-Cornell University Weill
Hall Life Sciences Growth Chamber Facility, Ithaca, NY, USA).

Selection on rhizosphere microbiomes. Bacterial inoculants for the high biomass
and random selection treatment were created using an iterative selection process
over nine generations adapted from Swenson et al.10 and Panke-Buisse et al.11. In
the 1st generation, 0.5 L pots were filled with LM-111 container soil (Lambert Peat
Moss, Inc., Riviere-Ouelle, Quebec, Canada) that was autoclaved twice with a 24-
hour resting period in between cycles. After sterilization, the pots were inoculated
with 20 mL of a bacterial inoculant created from field soils gathered from diverse
organic farms in Ithaca, New York (42.4440° N, 76.5019° W). This initial bacterial
inoculant was created by compiling and homogenizing the field soils, then adding
55 mL of the mix to 500 mL of sterilized deionized water. The mix was then
shaken with 30 mL of sterilized glass beads at 180 opm for one hour. The resulting
slurry was then filtered through four layers of sterilized food preparation cloth,
which retains a large portion of the soil bacterial community in the filtered slurry
while eliminating large soil particles. Aliquots of this mix were frozen at −20 °C to
serve as bacterial inoculants for the control selection treatment in the following
generations. In every generation, all three selection treatments (high biomass,
random, control) had 15 replicate pots total. The high biomass and random
selection inoculants were kept frozen at −20 °C for two days and thawed, along
with the control inoculants, prior to the start of each generation. This additional
process of freezing and thawing at each generation was set in place to minimize
potential confounding differences between the control samples and the selection
treatments.

A single B. rapa seed pool consisting of a single genotype was gathered for
use throughout the entire experiment. This prevented any genetic changes at the
plant host level, helping to ensure any changes in plant phenotype observed in
our experiment were a result of changes in the bacterial community. Before
planting, seeds were surface sterilized with 2.5% bleach for 15 min and then
rinsed with sterile water at least five times before seeding. Eight seeds were
planted into each pot to ensure adequate germination. Pots were then thinned to
five plants per pot upon emergence. Pots were placed randomly into trays
covered with sterile clear plastic domes to help prevent outside contamination.
The trays were arranged randomly across two growth chamber benches. Plants
were watered daily with filter-sterilized water and received one dose of 20 mL
filter sterilized Jacks 21-5-20 + Epsom salt fertilizer, at a concentration of 100
ppm N. Plants were grown for 10 days, then the stem and leaf aboveground
biomass of all plants in each pot were harvested by cutting at the base of each
plant’s cotyledon leaves. The composited plant samples from each pot were dried
at 65 °C for 24 h to record total aboveground dry biomass production (i.e. the
biomass reported for each pot is the biomass production of all plants, not an
average).

Rhizosphere soils were collected and stored at 4 °C upon harvest. The soil was
collected by gently breaking up the root ball, holding the roots, and gently
shaking away unattached soil. For the high biomass selection treatment, we kept
soils from the four pots with the greatest total aboveground biomass production
(summed total of the plants within the pot) to create the high biomass treatment
microbiome inoculant for the following generation. After creating a homogenous
mix of the four soils, 100 mL of the soil mix was dissolved into 500 mL of sterile
DI water. The slurry was then shaken with 30 mL of sterile glass beads for one
hour at 180 opm and filtered through four layers of sterile cheesecloth. The
resulting mix was then used as the bacterial inoculant for plants in the successive
generation of the high biomass selection treatment with each pot receiving 20 mL
of the inoculant. For the random selection treatment, the rhizosphere soil from
four random plants (selected using a random number generator on Microsoft
Excel) was used to create bacterial inoculants for the next generation of plants in
this selection treatment. The four randomly chosen soils were homogenized and
100 mL was then mixed with 500 mL of sterile DI water, shaken at 180 opm with
30 mL of sterile glass beads for one hour, then filtered through four layers of
sterile cheese cloth. This filtrate was then used to inoculate plants in the random
selection treatment in the following generation with each plant receiving 20 mL of
the mix. Soils from eight random plants were kept from the control selection
treatment, which were only used for analysis of the rhizosphere bacterial

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03860-5

8 COMMUNICATIONS BIOLOGY |           (2022) 5:959 | https://doi.org/10.1038/s42003-022-03860-5 | www.nature.com/commsbio

www.nature.com/commsbio


community (i.e. they were not used to make bacterial inoculants for the following
generations). We repeated this exact selection process for a total of 9 generations
(Fig. 1).

At the final generation (9th generation), we grew the plants to seed in order to
assess the effect of our selection process on B. rapa seed yield, which required
plants to be grown for 31 days. Upon flowering (~18 days), plants were hand
pollinated daily by transferring pollen to neighbor B. rapa plants. In order to
initiate seed ripening, we ceased watering the plants two days before harvesting.
After harvesting, stem and leaf tissue was collected and dried at 65 °C for 24 h then
weighed to record total dry aboveground biomass production. Seeds were collected
from all plants in every pot and weighed to assess seed yield. Because the plants
required dried soil to set seed in this generation, we were not able to collect soil
samples for sequencing the rhizosphere bacterial community for this final
time point.

Bacterial 16 S rRNA gene sequencing. Bacterial DNA was extracted from frozen
rhizosphere soil samples collected from the 1st through 8th generation using a
PowerSoil DNA Isolation Kit (Qiagen, Hilden, Germany) following the manu-
facturers protocol for more absorbent soils. Approximately 150 to 200 mg of soil
from each sample was used for extraction. 16 S rRNA gene sequences were
amplified using PCR primers 341 f (50-195 CCTACGGGNGGCWGCAG-30)
and 805 R (50-GACTACHVGGGTATCTAATCC-30)58, which target the bac-
terial/archeal 16 S rRNA gene variable region for pair-end Illumina (Illumina,
Inc., San Diego, CA, USA) barcoded sequencing. Each selection treatment in the
1st generation had one sample with poor PCR amplification, which were
excluded from downstream analyses. After an initial clean-up of the successfully
amplified samples using the HighPrep PCR Clean-up System (MAGBIO
Genomics, Gaithersburg, MD, USA), unique Index Primers were attached to
amplicons in each sample with a second PCR cycle. The indexed samples were
cleaned and normalized using the SequalPrep Normalization Plate Kit (Thermo
Fisher Scientific, Waltham, MA, USA). Sample normalization was followed by
pooling 5 ul of each sample into one composite sample. The pooled sample was
then run on a 1.2% agarose gel with SyberSafe added and the target band was
excised. The DNA was then extracted from the gel using the Wizard SV Gel and
PCR Clean-Up System (Promega, Madison, WI, USA). The final pooled sample
was then sent to the Cornell Genomics Facility (Cornell University, Ithaca, NY,
USA) for sequencing on the Illumina MiSeq platform using the v3 paired-end
300 bp kit.

Plant tissue N analysis. N content and isotope ratio of plant tissue in this
experiment was analyzed at the Cornell Stable Isotope Laboratory (COIL) using a
Thermo Delta V isotope ratio mass spectrometer (IRMS) interfaced to an NC2500
elemental analyzer. Tissue from four random samples from each Generation x
Selection Treatment group were submitted to COIL for analysis. Measurements of
%N were used along with aboveground dry biomass production to calculate total
plant N.

Statistics and reproducibility. All statistical analyses were performed using R
statistical software (Rproject.org). To analyze the effect of our selection process, we
analyzed plant biomass production, seed yield, and N data from the 9th generation
using linear modeling. We focused on plant data from this generation and analyzed
it separate from other generations given it was the final generation of the experi-
ment and was grown for a longer period than the generations before. One-way
ANOVAs were performed for each model to determine the effect of selection
treatment on each outcome in the 9th generation. Least squared means was then
used to perform pairwise comparisons of group means between selection treat-
ments. Normality of residuals and homoscedasticity were verified for each model
using plotting methods. To show our selection process was responsible for any
differences observed in our ANOVAs at the 9th generation, we performed these
same procedures on data from the 1st generation, which showed no differences in
treatment means for any response variable (Table 1). Data transformations were
performed as necessary for all analyses to meet ANOVA assumptions.

Pearson correlations were performed using foliar N data, aboveground dry
biomass production, and seed yield data from the 9th generation to assess potential
linkages between plant nitrogen uptake and productivity. Data were first visualized
in scatterplots using the ggscatter function to verify linear relationships between
variables. Normality for each variable was then verified using the Shapiro-Wilk
normality test. We then ran our correlation analysis using the cor.test function in
R, which provided Pearson correlation coefficients along with p values to indicate if
a relationship was significant.

Analysis of microbiome sequences. The pipeline from the Brazilian Microbiome
Project (http://www.brmicrobiome.org/) was modified to process our sequences.
Mothur v. 1.3613 was used to merge paired-end sequence (make.contigs), trim off
primers (trim.seqs, pdiffs = 2, maxambig = 0), remove singletons (unique.seqs →
split.abund, cutoff = 1) and classify sequences (97% similarity). OTUs that were
suspected to not be of bacterial origin were removed (remove.lineage). Qiime v.

1.9.114 was used to cluster OTUs and create an OTU table. Raw sequence data are
available via the National Center for Biotechnology Information (https://www.ncbi.
nlm.nih.gov/) repository under accession PRJNA83311159.

Following sequence processing, the dataset was rarefied to 2988 sequences per
sample (i.e. the minimum number of reads per sample in this dataset). We then
converted OTU counts in each sample to percentage, then calculated Bray-Curtis
distances using vegdist. We then performed a PCoA analysis on the Bray-Curtis
distances calculated using cmdscale. We then calculated % variance explained by
the first two axes, then plotted the calculated Bray-Curtis distances in an ordination
to visualize the effect of Generation and Selection Treatment on community
composition. The adonis package was used to perform a PERMANOVA on our
sequence data and assess the effects of Generation, Selection Treatment, and the
interaction between the two factors on community composition. Due to a lack of
adequate post hoc tests in adonis, we were not able to do pairwise comparisons.
PERMANOVA requires homogeneity of variance, which we analyzed using the
betadisper function. Shannon diversity indices we calculated for each sample using
the diversity function. We then created a linear model assessing the effect of
Selection Treatment alone on the Shannon diversity indices of our samples (i.e.
Generation and an interaction term were not included in the model), then ran an
ANOVA on the model. We then used least squares means to do pairwise
comparisons of diversity indices.

Changes in the relative abundances (%) of different bacterial taxa across
generations and treatments were presented with stacked barplots
(Supplementary Fig. 2). We aggregated the OTU, taxonomic, and metadata using
the phyloseq function, then identified the seven most abundant bacterial families
using the sort function. We then calculated average % abundance for each
bacterial family across Generation x Selection Treatment groups then plotted the
abundances in a stacked barplot. ANOVAs were then performed on the relative
abundances of each taxonomic group using linear modeling and group means
were compared using least squared means to quantitatively assess differences in
taxonomic abundances across generations and selection treatments. Normality
of residuals and homoscedasticity were verified for each model using plotting
methods, and transformations were performed as necessary to meet ANOVA
assumptions. A heatmap was also created to visualize changes in the relative
abundances of bacterial taxa. We first identified the maximum abundance of
each individual OTU in every sample, then filtered out OTUs with maximum
abundances below 7.5%, which we found was an appropriate cutoff to visually
see shifts in OTU abundances across generations and selection treatments in our
heatmaps. After filtering, we then used the pheatmap function in R to visualize
shifts in OTU relative abundances across generations and selection treatment
using Euclidean distances of OTU relative abundances and average linkage
clustering.

Extended local similarity analysis (eLSA) and network construction. In order
to study the effect of our selection process on bacterial community co-occurrence
patterns, which can represent important ecological interactions and processes60, we
constructed dynamic networks for each selection treatment using bacterial
sequence data from the 1st through 8th generation. To construct our networks, we
employed Extended Local Similarity Analysis (eLSA), a similarity-based method
that uses dynamic programming to build association networks from time series
data31,61. The algorithm used is summarized in Supplementary Table 1. In a
standard LSA method, we are provided sequence data in which only one sample is
available for each time step for each sequence we have. We first used pairs of OTU
time series data of the same length as inputs. Positive and negative correlation
scores between each pair were then calculated, which we used to determine local
similarity scores. Larger local similarity scores indicated stronger potential rela-
tionships between the two paired OTUs. However, this is too stringent in our case
where multiple samples are available within one sequence for each time step.
Hence, instead of using LSA, we applied the eLSA method in this work where a
sufficient statistic is computed for each time step given all the samples observed at
that time step and then applied the standard LSA method to compare the local
similarity score. Here, we used the simple average method to summarize the
replicated time series data31. For example, if we have 10 samples at each time step,
we can then compute the average value of the 10 samples at the same time step and
apply LSA on this new sequence data where the data at each time step is the
average value for all samples. In this paper, we take the mean of all the samples
observed at every time step.

Next, we used our LSA scores between OTUs to construct a network
representing the strong relationships within bacterial communities. We defined a
graph G (V, Ɛ) where V= {v1, v2,…, vm} represents different OTUs and (vi, vj) ∈
Ɛ if there is a strong correlation between OTUs represented by vi, vj. Strong
correlations here are defined using the significance level α.

To compute p values for two OTU time series data O1 and O2, we first
randomly permuted O1 and O2 and computed LS (O1, O2). P value here was
defined as the probability that this local similarity value is at least as large as the
local similarity value with the non-permuted data. We computed an upper bound
for the p value62. After establishing the upper bound for the p value between O1
and O2, we defined a global significance level α and filtered the upper bounds with
α. Specifically, if the p value upper bound between OTU time series represented by
vi and vj was larger than α, we drew an edge between vi and vj. For our analysis,
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only OTUs with a relative abundance of at least 1% in any of the samples were
used, which gave us a network with 90 nodes representing different OTUs. We
used a time delay of 1 and the significance level α to be 1. The code used for this
analysis is available via https://doi.org/10.5281/zenodo.680059563.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw bacterial sequencing dataset are available in the National Center for
Biotechnology Information Sequence Read Archive, https://www.ncbi.nlm.nih.gov/sra/
PRJNA833111. The corresponding accession code is PRJNA833111. Data used to
generate Figs. 2 and 5 are included in Supplementary Data 1.

Code availability
For the network model, we used a custom code to run the Extended Local Similarity
Analysis (eLSA) discussed in this paper. The code can be accessed via https://doi.org/10.
5281/zenodo.6800595.
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