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Critical length in long-read resequencing
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ABSTRACT

Long-read sequencing has substantial advantages
for structural variant discovery and phasing of vari-
ants compared to short-read technologies, but the
required and optimal read length has not been as-
sessed. In this work, we used long reads simulated
from human genomes and evaluated structural vari-
ant discovery and variant phasing using current best
practice bioinformatics methods. We determined that
optimal discovery of structural variants from human
genomes can be obtained with reads of minimally 20
kb. Haplotyping variants across genes only reaches
its optimum from reads of 100 kb. These findings are
important for the design of future long-read sequenc-
ing projects.

INTRODUCTION

Long-read sequencing using Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT) platforms has
profound implications for genomics and genetics (1–4). In
contrast to earlier generations of sequencing technologies,
the read length routinely reaches tens to hundreds of kilo-
bases and even up to megabases (5,6).

Long-read sequencing leads to more continuous de novo
genome assemblies, but this does not necessarily make as-
sembly a trivial task, especially for long segmental duplica-
tions and heterozygosity. Long reads also have advantages
for genome resequencing in the context of structural vari-
ant (SV) discovery and variant phasing. It enables more
comprehensive detection of genome-wide structural varia-
tion, owing to their higher mappability in repetitive regions
and their ability to anchor alignments to both sides of the
break point (7–9). SVs are defined as genomic variability
of at least 50 bp with a change in copy number or location
and include deletions, insertions, inversions and transloca-
tions (10). It has been shown that ∼29 000 SVs can be iden-
tified per human genome by combining multiple technolo-
gies (11), showing that current short-read sequencing ap-
proaches leave thousands of variants undiscovered. Phasing
variants gains from long reads because of the higher chance
of finding variants inherited from the same haplotype on
a single read. Phasing has important implications in deter-

mining the pathogenicity of pairs of compound heterozy-
gous variants and the effect of cis-regulation (12).

To our knowledge, the dependence of SV detection and
variant phasing on the read length has not been formally
assessed. In this work, we evaluated the influence of the
read length on the accuracy and sensitivity of SV detec-
tion and on the length of contiguous stretches of phased
nucleotides based on simulated long-read data from recent
human genome assemblies.

MATERIALS AND METHODS

Commands for processing and analysis are included
in the Supplementary Data. All scripts and com-
mands are available at https://github.com/wdecoster/
read length SV discovery.

We include a high-quality phased genome assem-
bly (2.9 Gb) of the Puerto Rican reference individual
HG00733, obtained by combining 75× genome coverage
of PacBio long reads with additional long-range infor-
mation of conformational capture sequencing (Hi-C) as-
sembled with FALCON-Phase (13,14) (NCBI Assembly
identifier GCA 003634875.1, BioProject PRJNA483067),
CHM13hTERT (draft v0.6), a complete hydatidiform mole
(46,XX karyotype) (15) combining ONT and PacBio long-
read sequencing, 10X Genomics linked-reads and Bionano
Genomics optical maps assembled with Canu (16) and
NA12878 (OCVW02, PRJEB23027), a well-characterized
genome from European descent assembled using nanopore
sequencing data assembled with Canu (6,16). The quality
metrics and contiguity of the genome assemblies used in this
work were evaluated using D-GENIES (17) and QUAST
(18) (Supplementary Table S1).

We used SimLoRD (v1.0.2) (19) for simulation of 40×
coverage of PacBio reads with a defined length between 100
bp and 700 kb. Reproducibility was assessed by simulat-
ing reads for HG00733 in triplicate. Simulated reads were
aligned to the GRCh38 reference genome using minimap2
(v2.14) (20) followed by SV calling using Sniffles (v1.0.10)
(21). Alignment files were sorted, indexed and downsam-
pled using SAMtools (22). The obtained read depth was
assessed with mosdepth (0.2.3) (23). The truth set of SVs
was determined using paftools variant calling based on the
alignment of the assembly to the GRCh38 reference align-

*To whom correspondence should be addressed. University Antwerp, Campus Drie Eiken, Building V, Universiteitsplein 1, 2610 Antwerp, Belgium.
Tel: +32 32651639; Email: wouter.decoster@uantwerpen.vib.be

C© The Author(s) 2020. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0002-5248-8197
https://github.com/wdecoster/read_length_SV_discovery


2 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

ment using minimap2 with the asm5 alignment presets and
specific parameters for assembly-to-reference alignment, af-
ter splitting the diploid assembly by parental haplotypes
when applicable (20,24). The performance metrics preci-
sion, recall and F-measure (harmonic mean of precision
and recall) were evaluated for SVs with a minimal length of
50 nucleotides using surpyvor (7), which uses SURVIVOR
(v1.0.5) for merging VCF (variant call format) files of SVs
(25) and cyvcf2 (0.10.0) for parsing VCF files (26). VCF files
of SVs were annotated with the read depth of the variants
and their flanking sequences using duphold (v0.0.9) (27)
and filtered based on the fold change for the read depth
of copy number variants (CNVs) relative to its flanking re-
gions using bcftools (v1.9) (28), to enrich for CNVs sup-
ported by deviation in read depth.

Single-nucleotide variants (SNVs) from HG00733 as
identified in the 1000 Genomes Project (29,30) were phased
with the simulated reads by WhatsHap (31), after which
contiguous haplotyped segments (phase blocks) were com-
pared to the Ensembl transcript annotation (GRCh38, v95)
(32) using BEDTools (33). Data analysis and visualiza-
tion was performed in Python and Jupyter Notebooks (34)
using pandas (v0.23.4) (35), matplotlib (v3.0.0) (36) and
joypy (L. Taccari; https://github.com/sbebo/joypy). Com-
mands were parallelized using GNU Parallel (v20181022)
(37).

RESULTS AND DISCUSSION

Long-read resequencing has promising applications for ge-
nomics, as it enables direct observation of SVs and infer-
ence of haplotypes (7,11,38). In this work, we formally as-
sess the impact of increasing read length on the accuracy of
SV identification and haplotyping of SNVs. While current
long-read sequencing platforms allow sequencing of tens
of kb to Mb reads, longer read lengths come with a num-
ber of disadvantages: They require more laborious manual
DNA extraction from fresh tissue, which may not always
be available. Avoiding fragmentation prior to and during
library preparation is also essential. Furthermore, striving
for ultra-long read lengths also seems to reduce the total
yield (6). Due to these limitations and challenges, it is valu-
able to assess what the required and sufficient read length
is to obtain an optimal balance between read length, accu-
racy and sensitivity. We approach this problem by simulat-
ing long reads based on recently assembled human genomes
of HG00733 (14), CHM13 (15) and NA12878 (6).

The highest quality assembly in terms of contiguity is
the one from HG00733 (Supplementary Table S1), which is
also the only separated in maternal and paternal haplotypes.
CHM13 is effectively a haploid genome, and NA12878 has
both haplotypes superimposed, raising the possibility of in-
correctly represented SVs. Notably, repetitive regions play a
significant role in this analysis. These regions cannot always
be resolved in assemblies, leading to separate contigs. Fur-
thermore, these regions are known hot spots of structural
variation, while spurious read alignment also leads to an
inflated occurrence of false-positive and false-negative vari-
ants. As the HG00733 assembly is the most complete and
thus presumably most correctly represents SVs, we mainly
base our conclusions on this dataset. The truth set of SVs

Figure 1. Precision (with and without filtering on duphold annotation),
recall and F-measure (y-axis) for SV call sets of simulated reads from the
HG00733 assembly with increasing read length (x-axis). Average of tripli-
cate simulations.

was based on a direct comparison of the assembly with the
reference genome. In the case of HG00733, this alignment
and variant calling was done separately per haplotype. This
results in the identification of 25 139, 16 776 and 24 653 SVs
larger than 50 bp for HG00733, CHM13 and NA12878, re-
spectively, with a variant length distribution comparable to
earlier reports (Supplementary Figure S1) (7,11,39).

For each genome, multiple datasets with 40× target cov-
erage and a specific read length starting at 100 bp and
up to 700 kb were simulated. A limitation of our analy-
sis is that we use a fixed read length per dataset, while real
long-read sequencing experiments typically produce a long-
tailed log-normal distribution. Simulation of log-normal
distributed reads requires additional complexity of specify-
ing three parameters for the shape of the read length distri-
bution. Testing of this variable read length distribution for
HG00733 resulted in the same conclusion as using a sin-
gle fixed read length (Supplementary Figure S2). We an-
ticipate this simplification is therefore justified to provide
approximate guidelines of optimal read length. After align-
ment of the simulated reads to the human reference genome
GRCh38 with minimap2 (20), we obtained the expected
read coverage of ∼40× (Supplementary Figure S3). SVs
from simulated reads were called using Sniffles and com-
pared to the truth set to calculate the precision, recall and
F-measure (Figure 1). An SV is considered concordant (true
positive) if it is of the same type and has maximally a pair-
wise distance of 500 bp between the beginning and end co-
ordinates in the test set and the truth set.

For the HG00733 assembly, the SV precision reaches
its maximum already at reads of 1000 bp, while recall no
longer increases substantially after 20 kb (Figure 1). The F-
measure indicates that optimal performance is reached ap-
proximately from reads of 15 kb and longer. Replicate simu-
lations showed a high correlation of performance (Pearson’s
correlation coefficient >0.97). For the lesser contiguous as-
semblies, a shorter read length is sufficient to saturate the F-
measure. For the haploid CHM13 genome, the performance
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metrics follow the same shape, but the F-measurement is al-
ready saturated at 4-kb reads (Supplementary Figure S4).
For this dataset, the precision is higher than HG00733 at
shorter read lengths and similar from 1-kb reads onward,
while recall saturates at 20 kb, analogous to the findings for
HG00733. CHM13 provides a valuable simplification as no
heterozygous events are expected, while a diploid genome
has been shown before to complicate SV discovery (40). The
NA12878 assembly has both haplotypes compressed in a
single haploid assembly, as such likely misrepresenting SVs.
For this dataset, the F-measure already reaches its max-
imum from 1-kb reads (Supplementary Figure S5), while
strikingly the precision is low, suggesting many false pos-
itives, and recall substantially higher. Interestingly, for all
datasets recall decreases after 150 kb (discussed later). It is
also worth considering that our results might be affected by
differences in structural variability between individuals and
populations relative to the reference genome (41).

For HG00733, two additional evaluations were per-
formed using (i) lower coverage and (ii) variants filtered
based on duphold annotation (27), which adds confidence
to CNVs based on read depth information. The conclusion
after downsampling the HG00733 alignments to 20× cov-
erage is similar, although recall in general is lower (Sup-
plementary Figure S6). Filtering false-positive CNVs on
duphold annotation of read depth changes versus their
flanking sequences substantially improved precision, espe-
cially for shorter read lengths (Figure 1), while only mildly
penalizing recall (Supplementary Figure S7). As read depth
changes are only applicable to CNVs, only the accuracy of
deletions and duplications is improved, of which the latter
is rarely identified by Sniffles in favor of more common in-
sertion variants.

It is worth mentioning that in none of the variant sets
from simulated data all variants from the assembly-based
truth set are identified, highlighting the limitations of the
variant caller or suggesting that some variants can only
be identified using de novo assembly- or read depth-based
methods. Alternatively, it cannot be fully excluded that
the assembly-based SV identification contains false-positive
events, is incomplete, or that coordinates of events that are
inferred differently. Notably, as the size of the assemblies
is 86.6–89.5% compared to the human reference genome
GRCh38, some genomic content remained unassembled,
presumably containing complex repetitive sequences for
which longer reads are beneficial for both assembly and
SV calling. As such, our estimate of minimal read length
is probably an underestimation for these very long segmen-
tal duplications, but a sufficiently accurate guideline for
the majority of the SVs in the nonrepetitive genome. With
chromosome-scale, haplotype-resolved assemblies, a more
accurate guideline could be calculated, a feature that is the
promise of more recent ultra-long read libraries, highly ac-
curate reads and tailored genome assembly methods (15,42–
44).

Phasing 3.5 million SNVs called from short-read se-
quencing data shows a continuous increase in the length of
phase blocks (contiguous haplotyped genomic fragments)
with increasing read length, without reaching a point of sat-
uration within the sizes we tested (Figure 2). Phasing vari-
ants across the length of genes is an important application

Figure 2. Ridge plot showing the distribution of the length of phase blocks
with increasing read length simulated from HG00733. The x-axis is the
genomic size of phase blocks, and the y-axis shows the length distribution.
Datasets are stacked vertically on separate lines.

Figure 3. The fraction of genes entirely contained in a single phase block,
reaching a plateau at 100 kb, enabling phasing of variants across the entire
gene.

to assess pathogenicity. With reads of 10 kb, ∼50% of the
genes can be completely phased. This fraction of completely
phased genes increases with read length up to a maximum of
90% with reads of 100 kb or longer (Figure 3). The longest
phase blocks are megabases long but are limited by repeti-
tive sequences, regions without identified small variants and
structural variation leading to split read alignment. We an-
ticipate that accurate SNV calling methods for long reads
would further improve the length of phase blocks, as vari-
ants in repetitive sequences cannot be identified by short
reads due to ambiguous alignments.

With very long reads (>150 kb), we surprisingly see that
SV recall decreases while precision increases, and to a lesser
extent, the proportion of phased genes decreases. As soft-
ware, including aligners and SV callers, was not developed
based on such extremely long read sizes, we hypothesize
this reduction in performance is an analytic limitation and
not due to the increased fragment length itself; e.g. highly
complex combinations of SVs with multiple break points
per read may be missed, leading to inaccurate alignment or
break phase blocks. We can assume this can be mitigated
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by changing the assumptions of tools used for alignment,
variant calling and phasing.

CONCLUSION

In the context of human long-read resequencing, our re-
sults show optimal performance for SV discovery for read
lengths of 20 kb and longer and best phasing across genes
from reads of 100 kb only, crucially guiding the experimen-
tal design of future long-read sequencing studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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