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The identification of disease hotspots is an increasingly important public health problem. While 
geospatial modeling offers an opportunity to predict the locations of hotspots using suitable 
environmental and climatological data, little attention has been paid to optimizing the design of 
surveys used to inform such models. Here we introduce an adaptive sampling scheme optimized to 
identify hotspot locations where prevalence exceeds a relevant threshold. Our approach incorporates 
ideas from Bayesian optimization theory to adaptively select sample batches. We present an 
experimental simulation study based on survey data of schistosomiasis and lymphatic filariasis across 
four countries. Results across all scenarios explored show that adaptive sampling produces superior 
results and suggest that similar performance to random sampling can be achieved with a fraction of 
the sample size.

Recent years have seen considerable success towards control and elimination of a range of globally important 
infectious diseases. For many of these diseases, decisions relating to interventions are made across administrative 
units. For example, decisions about where to conduct mass drug administration (MDA) campaigns for neglected 
tropical diseases (NTDs) are made at an implementation unit (IU), typically the district or sub-district level1. A 
similar approach is typically taken in the control and elimination of malaria, where entire districts or sub-districts 
may receive insecticide treated nets or indoor residual spraying where others do not.

For NTDs, decisions relating to MDA are based on infection prevalence estimates at the IU level obtained 
from cross sectional surveys. Where IU level prevalence exceeds a threshold, the entire IU is treated1. Where 
prevalence does not exceed this threshold, the IU does not qualify for MDA and no individuals in that area are 
treated. For example, for schistosomiasis, current guidelines recommend that MDA is conducted in areas where 
prevalence is greater than 10%, whereas for soil-transmitted helminths, this threshold is 20%1.

While operationally straightforward, this approach ignores any within IU heterogeneity. In many instances, 
districts with prevalence below the threshold that triggers intervention contain a number of villages with active 
transmission2. Modeling and intuition therefore suggest that as disease transmission declines, moving away 
from decision making at coarse scales towards a more targeted approach is more cost-effective3. Such targeting 
is predicated on sufficiently accurate information on the location of sites with an infection prevalence above a 
policy relevant threshold, from hereon referred to as hotspots.

Missing hotspots could cause setbacks for elimination efforts. Hence, various approaches to identify them have 
been proposed. Variations of contact tracing, whereby testing is targeted at families and neighbours of individu-
als found positive during surveys or routine surveillance, have been explored for a number of diseases including 
schistosomiasis4, lymphatic filariasis5 and malaria6,7. Such approaches can, however, be expensive and can still 
fail to identify hotspots if positive individuals from those communities are not identified by the initial surveys.
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An alternative approach is to use less costly survey methods to sample a higher proportion of locations than 
would otherwise be possible. Techniques such as lot quality assurance sampling, a method designed to minimize 
sampling effort in order to categorize outcomes over a given population, is one such approach and has been 
used to identify hotspot communities for schistosomiasis8,9. Similarly, school-based questionnaires relating to 
blood in urine and eye worm occurrence, have been used to map urinary schistosomiasis10–12 and loiasis13,14 
respectively. These methods are inherently noisy as they only allow measurement of proxies of infection and 
can suffer from issues of recall.

Another approach to mapping hotspots, which reduces the need to sample a large fraction of the population, 
is using geospatial modeling. Climatological, environmental and ecological layers can help predict the spatial 
distribution of many infectious diseases. Furthermore, above and beyond patterns that can be explained by these 
layers alone, disease outcomes often display some spatial structure, with neighbouring values being correlated 
due to shared characteristics and transmission. This spatial structure means that information from one site 
provides information about neighbouring sites. Over the past decade, the ability to predict pathogen infection 
prevalence across entire regions based on survey data and relationships using geospatial modeling has improved 
considerably15–17. These advances in geospatial modeling have opened the door to more targeted approaches, 
potentially allowing decisions about treatment to be made with higher precision and granularity.

Despite these advances, surprisingly little attention has been paid to optimizing the survey design for 
risk mapping efforts. Evidence from other fields has shown that random sampling is suboptimal for spatial 
prediction18–21. For lymphatic filariasis, a grid sampling approach has been proposed as a mechanism to allow 
for more efficient spatial interpolation22,23. Diggle and Lophaven24 propose the use of grid sampling supple-
mented with clusters of close pairs of points which is useful when estimates of Kriging (covariance) parameters 
are required24. Simulation studies also suggest that this design provides a cost-effective approach to mapping 
schistosomiasis3. Similarly, Fronterre et al.25 show that spatially regulated surveys, in combination with spatial 
modeling, can reduce the sample size required to estimate IU level prevalence.

Recent studies by Chipeta et al.26 and Kabaghe et al.27 propose the use of spatially adaptive designs that lever-
age information from prior data to inform the locations of future sampling sites to minimize prediction error. 
Using malaria as an example, results from simulations and field studies show that adaptive spatial designs can 
be used to produce more precise predictions of infection prevalence using geostatistical modeling26.

Building on the adaptive spatial sampling approach, we incorporate ideas from Bayesian optimization 
theory28,29 to propose an adaptive spatial sampling approach optimized to identify hotspot communities.

Results
We compared the performance of two approaches for selecting survey sites: random sampling (RS), where sites 
are chosen randomly; and adaptive sampling (AS), that follows the acquisition function of Eq. (6). The underly-
ing statistical model is the same in both cases (see Eqs. (1)–(2)). The initial dataset D0 is also the same in both 
cases (see Table 2 lines 7 and 8). Hence, the variations in the performance with respect to the predictions based 
on D0 depend only on the mechanism of selecting the new survey locations A1,A2, . . . . Adding measurements 
at new locations improved out-of-sample sites classification under both sampling approaches. However, across 
the four scenarios tested we observed that adaptive sampling was consistently superior to random sampling in 
terms of accuracy, positive predictive value and sensitivity.

This confirms that under adaptive sampling each new batch of locations leads to a better classification of the 
unmeasured sites. Figure 1 shows the accuracy computed at each step in the four country scenarios using a batch 
of size 1. Note that when selecting a batch of size 1, the adaptive design does not take into account the exploration 
component. In this case the new location suggested is the one that maximizes entropy.

Figure 2 shows a summary of the validation statistics after adding 100 new samples, using different batch sizes 
(1, 10 and 50), across the four scenarios. The results show that adaptive sampling produces superior accuracy, 
sensitivity and PPV across every scenario, metric and batch size except in the Philippines where an adaptive 
approach with a batch size of 50 produced inferior PPV. Better performance across all metrics translates into a 
smaller number of false positives and a improved identification of hotspots in locations that have not been visited 
yet. In contrast to the validation statistics discussed above, MSE (bottom row) is lower across all scenarios when 
random sampling was employed, except in Malawi where adaptive sampling produced lower MSE.

At larger batch sizes there were smaller differences between random and adaptive sampling in terms of accu-
racy, PPV and sensitivity (Fig. 2). There are two ways of interpreting this result. One interpretation is that when 
the batch is large enough, random sampling provides a good coverage of the sampling universe negating the 
need for a trade-off between exploitation and exploration. The more locations in the batch the more redundant 
the information they provide, regardless of how they are chosen. A second interpretation is that the adaptive 
sampling design is more efficient and therefore requires smaller sample sizes to achieve the same results of a 
larger random sample. Table 1 illustrates this and shows the number of sample points needed when using adap-
tive sampling to achieve the same accuracy of random sampling with a sample size of 100 locations. For batches 
of size 50, adaptive sampling produced at least the same level of accuracy with just half the number of additional 
points across all scenarios. This difference becomes larger for smaller batch sizes (1 or 10). For batch sizes of 
10, adaptive sampling required 10–40% of the sample size to achieve the level of accuracy achieved with 100 
additional randomly selected sites and for batch sizes of 1, only 7–36% was required. With such sample sizes the 
adaptive sampling also achieved similar levels of sensitivity and PPV but higher MSE.
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Discussion
The identification of disease hotspots is an increasingly important public health problem. This is particularly 
true in disease elimination settings, where transmission is rare and typically focal. Numerous examples illustrate 
the use of geospatial modeling to predict hotspots, but very little attention has been given to the optimal survey 
design for such modeling efforts. Here, using simulation studies based on schistosomiasis and lymphatic filariasis 
survey data, we described a novel, spatially adaptive approach and demonstrate the superiority of this approach 
at identifying hotspots compared with the standard approach to surveys based on purely random sampling.

Results showed that across all batch sizes investigated, adaptive approaches produced higher levels of accuracy, 
sensitivity, and PPV compared with random sampling. Yet, the superiority of an adaptive approach declined 
with larger batch sizes. With a batch size of 1, the adaptive approach has an opportunity to identify the optimal 
next location to survey in the presence of all available data. In contrast, with larger batch sizes, the impact on 
predictions of each adaptively sampled location is not known until all locations in the batch are sampled and 
the model updates.

The use of an adaptive approach only produced marginal gains in accuracy (2–4%) after adding 100 sites to 
the initial sample, but this could represent hundreds of locations when applied at a country scale. Perhaps more 
importantly, however, adaptive sampling was more efficient in terms of achieving a given level of accuracy with a 
far smaller sample size. As outlined in Table 1, across all scenarios explored, adaptive sampling was able to achieve 
the same level of accuracy and sensitivity to that achieved by adding 100 locations randomly with between 7 
and 50% the sample size. These results demonstrate that an adaptive spatial sampling approach has the potential 
to substantially reduce the resources required to ensure hotspot locations receive treatment, while maintaining 
similar rates of false positives. In control and elimination settings, an operationalized adaptive spatial sampling 
approach for several years could render non-negligible improvements in cost-effectiveness. Further simulation 
studies could be used to help determine the magnitude of such benefits in cost-effectiveness.

Figure 1.   Out of sample accuracy (batch size = 1). The solid line represents the average value across 50 
repetitions. The shaded area represents the 2.5% and 97.5% quantiles of the values observed across all 50 
repetitions at each step. Note that step 1 here refers to the initial random sample of 100 sites. (A) Côte d’Ivoire 
( ϑ = 10% ). (B) Malawi ( ϑ = 10% ). (C) Haiti ( ϑ = 2% ). (D) Philippines ( ϑ = 2%).
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Figure 2.   Summary of validation statistics. Metrics computed after adding 100 new samples in batches of 1, 
10 and 50 sites. Dots represent the mean and whiskers represent the the 2.5% and 97.5% quantiles of values 
observed across all 50 repetitions. The thresholds used to define a hotspot are: ϑ = 10% in Côte d’Ivoire and 
Malawi and ϑ = 2% in Haiti and Philippines.

Table 1.   For random design RS with sample size of 100, we show the sample size needed to achieve a similar 
accuracy using an adaptive design AS. Additional validation statistics: PPV, sensitivity and MSE are also 
shown. Along the rows, results are shown per country and batch size ‖Ai‖.

Country ‖Ai‖

Num. 
obsv.

Accuracy 
(%) PPV (%)

Sensitivity 
(%)

MSE 
( ×10−4)

RS AS RS AS RS AS RS AS RS AS

Côte d’Ivoire

1 100 27 85.2 85.3 64.9 78.6 64.8 65.1 17.3 20.5

10 100 30 85.0 85.3 78.6 78.7 64.7 65.2 16.5 20.4

50 100 50 85.1 85.5 79.2 78.6 64.3 65.5 17.7 20.0

Malawi

1 100 36 81.8 81.9 80.8 80.6 59.9 59.4 14.0 14.9

10 100 40 81.6 82.0 79.5 80.5 60.8 59.7 14.1 15.0

50 100 50 82.1 82.1 80.3 80.3 61.9 60.4 13.8 14.5

Haiti

1 100 31 82.4 82.6 70.3 75.7 43.0 35.0 1.0 1.4

10 100 30 81.5 81.6 71.7 71.0 38.9 36.4 1.0 1.5

50 100 50 81.5 82.3 70.8 70.5 38.1 39.8 0.9 1.5

Philippines

1 100 7 95.2 95.2 93.7 94.4 69.7 67.7 2.5 4.3

10 100 10 95.1 95.2 94.1 93.6 68.9 68.6 2.3 5.1

50 100 50 95.2 95.6 94.6 85.0 68.9 79.8 2.7 5.5
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It should also be pointed out that in almost all settings the mean squared error estimates were higher for 
adaptive approach (Fig. 2, Table 1). This illustrates the fact that optimizing a design for one goal, here hotspot 
classification accuracy, leads to compromising other goals (e.g. precision in the prevalence estimates). Where the 
goal is to produce the most precise prevalence estimates at any given location, using adaptive approaches based 
on prediction variance as opposed to entropy would be more appropriate26.

While this approach was demonstrated for two diseases only, it could be used to support the identification of 
hotspots of any binomial outcome. This includes prevalence of infection of other infectious and non-infectious 
diseases, particularly those that display strong spatial correlation. Vector-borne diseases, such as malaria, oncho-
cerciasis and loiasis would certainly fall into this category given the association between disease transmission and 
ecological and environmental conditions. While it is likely that such spatial correlation will be masked following 
several years of intervention, evidence suggests that residual hotspots still occur2,30. In addition to identifying 
hotspots of infection, this approach also has potential utility for identifying cold spots in intervention coverage, 
such as pockets of undervaccination31. While this would likely require use of different covariates related to inter-
vention access, such as distance to roads, population density and poverty, the statistical problem is analogous.

In principle, in the context of schistosomiasis and lymphatic filariasis, including additional relevant covariates 
could improve the spatial model predictions. Among others, these could include information on intervention 
coverage, population density, poverty, housing type and soil type. For the purpose of this simulation study, we 
opted to use WorldClim data as the focus was on the marginal improvement of using an adaptive sampling 
approach over a random sampling, as opposed to identifying the optimal model and covariates with which to 
predict infection.

While we used a combination of random forest and model-based geostatistics to produce posterior preva-
lence estimates, the general adaptive sampling scheme we have proposed would work for any suitable modeling 
approach that produces posterior estimates with which to estimate exceedance probabilities. Combining random 
forests with other base learners such as generalized additive models and support vector machines may lead to 
improvements over using random forest alone. Such a ‘super learner’ approach to ensemble modeling, based on 
minimizing cross-validation error, may help to address any issues of model misspecification which if not properly 
addressed could lead the adaptive design to become overly confident about choice of sampling location. Super 
learning has been used across a range of other statistical problems including causal inference and prediction32–34. 
Furthermore, the super learner approach can be extended to be ‘online’ whereby models are updated rather than 
refit from scratch, yielding computational benefits35.

Similarly, an underlying binomial model is not essential to the methodology described here. What is impor-
tant is the spatial correlation component in which the exploration rule is based. For example, this methodology 
could work in a Poisson setting, for some definition of hotspot based on a threshold incidence or numbers of 
cases.

A further potential extension of this work would be to incorporate covariates into the adaptive sampling 
algorithm. The approach outlined here attempts to reduce redundancy when selecting sampling locations by 
prioritizing uncertainty across geographic space. However, the uncertainty of the model does not only depend 
on the geographic space encoded through the Matérn kernel. Uncertainty is also dependent on the remaining 
features (covariate values). In this application, a good spread of points in geographic space is likely to achieve 
a good spread of points in the remaining features, as their values are determined by location. In applications 
where the covariates are less influenced by geography it may be necessary to optimize the design for the uncer-
tainty in the whole feature space. Not doing so may lead to a design that is no better than random. The most 
straightforward way to implement this extension would be to model the covariates with another kernel (Matérn, 
linear or any other considered adequate). In such a model the term x⊤i β , in Eq. (2), would be substituted by 
another Gaussian process f (xi) that depends on the new kernel. Equation (4) would remain the same, but this 
time K would in fact be the sum of two kernels: the Matérn that models geographic space and the new kernel 
that models the remaining features.

Another possible extension of this methodology is applying it to cases where the classification of interest is 
not binary. For example, for schistosomiasis, MDA is recommended once per year in areas where prevalence 
is > 10% and < 50% and twice per year in areas where prevalence is > 50%1. As estimation of entropy is not 
restricted to binary classification problems, adapting the approach to such a setting is straightforward assuming 
it is possible to produce probabilistic classifications from the underlying model.

This study had a number of limitations. Firstly, the adaptive sampling approach described requires a geo-
referenced set of candidate sampling locations. Complete georeferenced lists of settlements are, however, often 
not available. In the absence of such data, there are several options available. Georeferenced locations could be 
extracted and compiled from open sources, such as OpenStreetMap, Geonames and openAFRICA. Alternatively, 
village locations can be derived from gridded population data using the approach described here (see Supple-
mentary Information) or using alternative approaches as suggested by Thomson et al.36.

A second limitation is that we did not consider the temporal aspect of adaptive surveys. In reality, there may 
be a time lag between the date at which survey data are available and when adaptive surveys take place. Similarly, 
prior survey data may have been collected over multiple time periods. To address this issue it would be possible 
to extend the spatial model used, to a spatio-temporal model. Hotspot probabilities could then be forecast from 
the historic data to the time point at which adaptive surveys are to take place. Additionally, there may be value 
in using temporally dynamic covariates as opposed to static, long-term averages as used here.

A third limitation was that we defined a site as a hotspot if there was at least a 50% chance that prevalence 
exceeded the relevant threshold. In some cases, programs may a priori wish to define hotspots more conserva-
tively by classifying sites as hotspots with smaller probabilities (e.g. > 10% chance a site is a hotspot). While 
the methodology would not change, such an approach would have a large impact on the performance of the 
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classifications, increasing sensitivity, but decreasing positive predictive value. In such cases, it may also be useful 
to modify the acquisition function.

A fourth limitation of this study is that we used a single acquisition function. In the acquisition function we 
used, the exploration component has an increasing concave weight as more locations are added to the new batch. 
This assumption, or the specific shape of this weight, could be substituted for an alternative. Also, the utility 
function, defined here as entropy, could be modified depending on the goal pursued. For example, a program 
interested in targeting sampling efforts at hotspots, instead of achieving a better binary classification, could use 
the probability of a location being a hotspot as the utility function. Such an approach would be suitable for situ-
ations where testing is required before an intervention/treatment is administered. This approach may also be 
useful for surveys whose goal is to determine freedom from infection37,38.

A fifth limitation stems from the simulated nature of the experiments. The strength of a simulated approach is 
that multiple experiments can be conducted without the need for expensive field validation studies. On the basis 
of these results, a valuable next step would be to conduct field studies comparing random to adaptive designs. 
Such studies would also allow an exploration of some of the more logistical elements and constraints and using 
an adaptive approach.

This study has demonstrated the value in adopting an adaptive approach to surveys designed to identify dis-
ease hotspots. Results show that a spatially adaptive sampling approach produced consistently superior accuracy 
in hotspot classification over a random sampling approach, and could dramatically lower the resources require-
ments to conduct surveys whose goal is to detect disease hotspots.

Methods
Spatial model.  To predict the probability that a given site (e.g. a village or other type of settlement) is a 
hotspot or not, and to guide adaptive sampling schemes, requires fitting a spatial model to observed data. As a 
reminder, here a hotspot is defined as a location where infection prevalence is greater than a defined threshold. 
We assume that an initial representative population sample exists to allow a model to be fit. If this is not the case, 
a randomly sampled set of measurements would be one option, although there may be superior approaches, par-
ticularly if data relating to the expected spatial structure or covariate values at candidate survey sites exist24,39,40.

There are a range of different modeling approaches available to predict prevalence at unsurveyed sites. Here, 
we use a combination of machine learning and model-based geostatistics15,41.

Let B be a region (e.g. a country) where we are interested in determining if a set of sites are hotspots or not. 
As mentioned above, it is assumed that an initial dataset from which we can estimate the overall prevalence 
exists. Say we have the dataset D0 = {si , ni , yi , xi}

m0
i=1 , where si are the GPS coordinates that describe the location 

of a site of interest, ni is the number of people tested in such site, yi are the number of positive cases out of ni and 
xi are other features associated to the site, like elevation, distance to water bodies or average temperature; m0 is 
the total number of observations. Given these data we can model the prevalence in B as a spatially continuous 
process given by

where β are a set of real parameters and f is a spatially correlated random effect using a Matérn correlation func-
tion (see Supplementary Information, Eq. (7)) and ei is a residual independent error term.

Instead of including linear covariate effects, we first fit a random forest model using 20-fold cross validation 
using all the covariates, excluding latitude and longitude. For each observation, we then have a cross-validated 
prevalence prediction (from hereon termed out-of-sample predictions). Additionally, we fit a random forest using 
all observations and use this model to predict to all observation and prediction points (from hereon termed in-
sample predictions). Out-of-sample predictions from the random forest are then included as a single covariate 
in the geostatistical model described by Eq. (2).

When making predictions, in-sample predicted prevalence values from the random forest using all observa-
tions were used as the covariate at each prediction point. While this model allows us to predict prevalence across 
the continuous region B , in this case we are only interested in predictions at the location of human settlements. 
Here, we denote these discrete locations as S ⊂ B.

In addition to obtaining estimates of predicted prevalence, the model described above allows us to simulate 
a posterior distribution of prevalence values at each cluster which can be used to estimate the exceedance prob-
abilities, i.e. the probability that prevalence θi at location si is above a given threshold ϑ.

Adaptive sampling.  Exploitation.  The goal we seek when using adaptive sampling or adaptive design 
is to leverage the information available and select the optimal sampling locations to improve our statistical 
inference28,29. The criteria to define what is optimal depends on what quantity is to be estimated. Hence, it is first 
necessary to define an objective or utility function, i.e. the measure by which we evaluate the performance of any 
given design. For situations where the goal is to produce as precise predictions as possible over the study region, 
measures such as average prediction variance is a sensible option26. If, however, the goal is to find hotspots, we 
are less interested in the precision of our estimates and should be focused on minimizing hotspot classification 
error from our model. Put another way, we wish to increase our confidence that the prevalence at any given lo-
cation is above or below the predefined threshold. A measure that fits naturally into this framework is Shannon 
entropy. Shannon entropy measures the uncertainty of a random variable based on its probability distribution42. 
Let ϑ be the relevant threshold. Given the model described in Eq. (1), for every si ∈ S we can estimate its prob-

(1)yi ∼ Binomial (ni , θi),

(2)logit(θi) =x
⊤
i β + f (si)+ ei;
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ability of being a hotspot p(θi > ϑ |D0) . Then the entropy value at such location regarding it being a hotspot or 
not is defined as

Locations with exceedance probabilities of 0.5 (i.e. p(θi > ϑ |D0) =
1
2 ) are the most uncertain and have an 

entropy value of one. On the contrary, the more certainty in the event (i.e. exceedance probabilities close to 0 or 
1), the entropy gets closer to 0. By targeting high entropy values, sampling is focused on those sites with highest 
classification (hotspot or not) uncertainty.

Exploration.  Giving preference to locations with higher uncertainty is intuitively more efficient than a uniform 
random selection, but choosing the design based only on entropy values (Eq. (3)) may not be efficient because 
prevalence is usually a spatially correlated process. For example, see Fig. 3 panel A, where we show a simulated 
field of uncertainty where values are spatially correlated. Since locations with high uncertainty can be expected 
to be clustered together, by defining a batch of sample points based only on H(θi|si ,D0) we may end up selecting 
locations that are very close to each other. However, such an approach leads to redundancy, as taking a meas-
urement at one location also provides information about neighboring locations due to the spatial correlation 
present. In Fig. 3 panel B, we choose the 10 locations (red dots) with highest uncertainty values from a grid of 
15× 15 potential locations (white dots). The Figure demonstrates how this greedy approach can result in poor 
coverage of the field.

It would be preferable to sample high entropy points, while ensuring a good spread of points across the study 
area to avoid redundancy. This allows a balance between exploitation (i.e. targeting high values of H(θi|si ,D0) ) 
and exploration (i.e. spread batch locations in B)43. If in Eq. (2) we assume that f is a multivariate Gaussian 
with spatial covariance K(si , sj) , then the average amount of information contained in a batch of locations 
A = {s1, . . . , sm1} is given by the joint differential entropy

where fA = (f (s1), . . . , f (sm1))
⊤ and KAA = [K(si , sj)].

The differential entropy is the continuous case of the Shannon entropy introduced before42. A low value of 
h(fA ) implies that the random variable fA is confined to a small volume, whereas a large value of the differential 
entropy implies a that the variable is widely dispersed. Given a batch size, by choosing the elements in it that 
maximize the differential entropy, we would be maximizing the average information content of the batch with 
respect to the random field f. Finding the batch with highest information content is a problem of combinatorial 
complexity. However an exact solution is not needed44. A approximate solution can be found through a sequential 
approach that at step t selects the new element of the batch according to

(3)
H(θi|si ,D0) = −p(θi > ϑ |D0) log2 p(θi > ϑ |D0)

− p(θi ≤ ϑ |D0) log2 p(θi ≤ ϑ |D0).

(4)h(fA ) =
1

2
log(2πe)m1 |KAA |,

(5)s
∗ = argmax

s∈S h
(

fAt−1∪{s}

)

.

Figure 3.   Exploration-exploitation trade-off. (A) Spatially correlated uncertainty. (B) Batch selected (red dots) 
by using the greedy approach of targeting the highest values of uncertainty. (C) Batch of locations selected (red 
dots) using the acquisition function described in Eq. (6).
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Trade‑off.  Once we have a utility function and a rule for exploration, we only need to define a trade-off strategy 
between exploration and exploitation that helps us select a batch of new survey locations. In Bayesian optimiza-
tion, this strategy is defined by the acquisition function45,46. Notice, however, that our setting is simpler than the 
usual setting for Bayesian optimization, where evaluating the utility function is considered to be expensive and 
the exploration sites could be infinite. In this application we assume a finite set of potential survey locations, as 
they represent villages or some type of human settlements. Also, in all of these locations we have a measurement 
of our utility function through the posterior distribution of θ.

As trade-off strategy we define the step-wise algorithm that combines Eqs. (3) and (5), so that at step t the 
new element in the batch is chosen according to

In the expression above we are explicitly defining y as a function of s to emphasize that we are interested in 
selecting survey locations. By using this acquisition function we induce batch locations to be spatially scattered 
and therefore achieve a better exploration. In Fig. 3 panel C, we show a batch of 10 locations (red dots) chosen 
according to Eq. (6). The locations selected are not the ones with the overall highest uncertainty, but the ones 
with the highest uncertainty within a neighborhood. This approach allows targeting high entropy values, while 
reducing information redundancy and exploring the region of interest.

The acquisition function in Eq. (6) is based on the Gaussian process upper confidence bound (GP-UCB) 
algorithm44. The GP-UBC is used in Bayesian optimization problems with an underlying Gaussian processes 
regression of the form yi = f (si)+ εi . The difference between our formulation in Eq. (6) and the original GP-
UCB is that the latter uses the mutual information between the observations yi and the process f42, as opposed 
to the joint differential entropy of fA only. The mutual information between yi and f is theoretically a better 
approach. However, the assumption of Binomial outcomes that depend on a transformation of f, makes this 
quantity harder to compute. On the other hand, the use of differential entropy showed satisfactory results in our 
simulation studies, as shown below.

Experimental simulation.  To test the proposed adaptive spatial sampling approach, we conducted a series 
of experimental simulation studies parameterized using data from NTD surveys across multiple diseases and 
countries. We created different scenarios in which the task was to adaptively select new sampling locations with 
the goal of classifying sites as hotspots and not hotspots. In this procedure, our benchmark was the prediction 
performance when selecting batches of sampling sites randomly without adaptation. We defined four prevalence 
scenarios based on cross-sectional prevalence survey data of schistosomiasis from Côte d’Ivoire and Malawi and 
lymphatic filariasis from Haiti and Philippines (see Supplementary Information). In each of the four countries, 
we used a universe of up to 1500 candidate survey sites identified with the Village Finder algorithm (see Sup-
plementary Information). This algorithm uses gridded population estimates of 2015 from Worldpop to identify 
clusters of populated places47. For computational reasons, if this resulted in more than 1500 clusters for any given 
country, we randomly sampled 1500 to obtain a final set of candidate locations. Figure 4 shows the cluster loca-
tions in each country and the simulated prevalence used as the truth during these experiments.

In order to have consistency in our results, we repeated our experiments 50 times per country. In each repli-
cate, we randomly selected 100 locations from the universe of clusters and used them as the locations of the initial 
set D0 . We ran three versions of the experiments, by sequentially selecting batches of size 1, 10 and 50, until we 
had incorporated 100 new samples. Given a set of initial sampling locations and batch size, we sampled additional 
locations either completely at random or adaptively following Eq. (6). At each step we fitted the model described 
in Eqs. (1) and (2). As environmental variables we used: annual mean temperature, temperature seasonality, 
annual precipitation and precipitation seasonality48, elevation (SRTM) and distance to inland water resampled 
to the same  1km resolution. After fitting the spatial model on each iteration, we computed four out-of-sample 
validation statistics to measure performance (see Supplementary Information): accuracy, positive predictive 
value (PPV), sensitivity and mean squared error (MSE). To compute the validation statistics we fitted the model 
in Eq. (1) to all the available data at each iteration (i.e. ∪D t−1

k=0  at step t) and made predictions on the villages that 
had not been visited yet (i.e. S \ ∪

t−1
k=0A

⋆
k  at step t). MSE was computed comparing the predicted prevalence 

vs the simulated prevalence. To compute accuracy, positive predictive value and sensitivity we first classified the 
villages as hotspots when p(θi > ϑ |D0) > 0.5 and compared this classification vs the actual class according to 
the simulated prevalence. Table 2 shows the algorithm followed to carry on our experiments.

Random forest and geostatistical models were fit using the R packages ranger 0.11.249 and spaMM 3.0.050 
respectively. All the simulated datasets and code developed as part of this study, including that used to conduct 
the simulation experiments, is available at https​://githu​b.com/disar​m-platf​orm/adapt​ive_sampl​ing_simul​ation​
_r_funct​ions. Internal Review Board approval was granted from the University of California, San Francisco 
(IRB Number: 18-25235).

We are also in the process of developing a user-friendly web application to allow both the hotspot mapping 
and adaptive sampling algorithms to be run without code.

(6)y(st) = argmax
s∈S {H(θ |s,D0)+

√

log t × h
(

fAt−1∪{s}

)

}.

https://github.com/disarm-platform/adaptive_sampling_simulation_r_functions
https://github.com/disarm-platform/adaptive_sampling_simulation_r_functions
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Figure 4.   Simulated prevalence scenarios. The locations of the villages is marked by the dots, whose colors 
represent the hypothetical prevalence of each scenario. (A) Côte d’Ivoire (schistosomiasis). (B) Malawi 
(schistosomiasis). (C) Haiti (lymphatic filariasis). (D) Philippines (lymphatic filariasis).
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