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Abstract

Prenatal stress is a risk factor for several psychiatric disorders in which inhibitory neuron 

pathology is implicated. A growing body of research demonstrates that inhibitory circuitry in the 

brain is directly and persistently affected by prenatal stress. This review synthesizes research that 

elucidates how this early, developmental risk factor impacts inhibitory neurons and how these 

findings intersect with research on risk factors and inhibitory neuron pathophysiology in 

schizophrenia, anxiety, autism and Tourette syndrome. The specific impact of prenatal stress on 

inhibitory neurons, particularly developmental mechanisms, may elucidate further the 

pathophysiology of these disorders.

Introduction

There is an increasing appreciation for the importance of early events in brain development 

for the pathophysiology of psychiatric disorders. Genetic factors previously associated with 

mature brain dysfunction in psychiatrically-ill patients have critical roles in the development 

of the brain preceding illness. Environmental changes that occur during early periods of 

development are also risk factors for later psychopathology. Stress is a major environmental 

risk factor for psychiatric illness and disrupts mature brain functioning in a variety of 

ways.1, 2 Stress is also a significant risk factor during development.1, 3, 4 Just as with genetic 

factors, stress during embryonic development is now recognized as equally important to 

psychopathology as when it interacts with the mature brain. In particular, prenatal stress is 

associated with atypical patterns of emotions and behavior and increased risk for psychiatric 

illness in offspring. 5, 6 Animal model work has demonstrated that at least some of these 

associations are causal, as prenatal stress in rodents, primates and other models significantly 

influences later neural circuitry and behavior. 7, 8
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Along with the growing appreciation for the role of development in psychiatric disorders, 

the importance of inhibitory neuronal systems in mental illness has also become widely 

recognized. As we will discuss below, inhibitory circuitry is fundamentally altered in several 

neuropsychiatric disorders. The effects of prenatal stress on the brain may be mediated by its 

influence on this important aspect of neural signaling—critical cellular development of 

GABAergic systems occurs during prenatal periods when stress can have persistent effects 

on the brain and behavior. Prenatal stress broadly influences non-GABAergic neural 

systems that also develop prenatally, but the interactive nature of CNS development in 

which GABAergic progenitors have an influence on the formation of surrounding circuitry 

makes understanding the influence of prenatal stress on inhibitory neurons an imperative. 

GABAergic systems are also part of the circuitry that normally regulates other neural 

systems in the mature brain—of particular interest for prenatal stress is the GABAergic 

control of stress regulation, a neuronal system fundamentally altered by prenatal stress.

In this review, we focus on prenatal stress as a risk factor for psychiatric disorders in which 

inhibitory systems are implicated. The co-occurrence of inhibitory neuron pathophysiology 

and risk due to prenatal stress gives weight to pre-clinical investigations of prenatal stress 

and inhibitory neural circuitry. Developmental events influenced by prenatal stress impact 

inhibitory neurons, and animal models demonstrate fundamental alterations in this neural 

circuitry.

Development of Inhibitory Neuronal Systems

Animal models have been extremely valuable for examining cellular and molecular changes 

due to prenatal stress. In most mammals, inhibitory neurons are generated solely in the 

ventral telencephalon.9 From their subcortical origins, inhibitory neurons populate 

subcortical nuclei and tangentially migrate to the cortex, where they play a role in 

organizing neuronal connections to form functional groups such as cortical columns and 

limbic-cortical loops.10 Due to chloride homeostasis, GABAergic signaling changes from 

excitatory to inhibitory during the perinatal period, and this switch has precise timing, 

determining the functionality of cortical and subcortical circuits.11 GABAergic neurons act 

as architects in early postnatal brain development, regulating the development and function 

of the cerebral cortex during critical periods.12 In the mature brain, they act as modulators of 

cortical excitability and cortical-subcortical oscillations through their varied morphology, 

widespread locations in the circuitry and diverse electrical characteristics.13

Inhibitory neuronal precursors follow a regulated series of events to populate the cerebral 

cortical primordium. After the peak of GABAergic precursor proliferation in the ganglionic 

eminences, during the last embryonic week in rodents, these progeny differentiate as they 

migrate.14 Some of the first molecular markers of inhibitory neurons are the transcription 

factors, dlx1, dlx2 (distal-less homeobox) and arx (aristaless homeobox), which are 

responsible for specifying cortical inhibitory neuron fate.15, 16 The enzymes required to 

synthesize GABA, GAD67 and GAD65, are also expressed early in the development of 

inhibitory progenitors.17 As these neuronal precursors further differentiate into different 

GABAergic cell subtypes, they express a variety of calcium-binding proteins such as 

parvalbumin (PV), calretinin (CR), and somatostatin (SOM) and acquire different 
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morphologies and functions.10 Two important factors, lhx6 (lim homeodomain transcription 

factor) and nkx2.1 (NK2 homeobox 1), are expressed in ventral telencephalic cells as they 

begin to migrate tangentially.18, 19 These transcription factors are specific to different 

subtypes but also underlie migration. GABAergic neuronal precursors that later populate the 

cortex express other markers that play a significant role in the targeting of these cells to 

specific locations, including reelin,20 ERBB4,21 CXCR422 and neuropilin.23 Stress that 

occurs while these transcription factors and cell signaling molecules are expressed may have 

persistent effects on brain function due to their influence on gene expression or cellular 

function of GABAergic cells. Understanding how early risk factors influence brain 

development is one avenue through which improved interventions can be developed.

Prenatal Stress and Development of Inhibitory Systems

Changes in cell numbers and maturation through altered proliferation, migration and 

differentiation could result in persistent effects on brain functioning at distant time points. 

Through maternal factors interacting with the programmed sequence of developmental 

events, prenatal stress may have influences on a range of neuronal systems. Effects of 

prenatal stress may be due to activated hormone receptors that act directly on gene 

expression through their transcription factor properties or through the direct influence of 

maternal signaling proteins produced by her stress response on cellular functioning in the 

offspring brain, which may include epigenetic alterations. As a result of these largely 

unidentified molecular mechanisms, prenatal stress has effects on cerebellar and 

hippocampal neuronal proliferation, survival, and differentiation,24, 25 effects initiated 

prenatally but persistent postnatally. The very timing of many prenatal stress models in the 

last week of rodent gestation, during important aspects of inhibitory neuronal development, 

suggests that inhibitory neuron proliferation, survival and differentiation may be affected.

Though a link between prenatal stress and dysfunction in the mature brain has been well-

established, research on the developmental trajectory of this effect is still in early stages. 

Accordingly, there have been less than a handful of papers that discuss the relationship 

between prenatal stress and development of inhibitory neurons (Table 1). Work from our lab 

has demonstrated that, when prenatal stress occurs during the early phases of neurogenesis 

and migration, the migration of inhibitory neuronal progenitors is delayed during and 

immediately after prenatal stress, linked closely with concurrent changes in the transcription 

factors, dlx2 and nkx2.1, that are involved in cortical interneuron migration.26 Delays in the 

tangential migration of these precursors occur after even one day of prenatal stress and 

persist over time to result in reduced GABAergic cells in neonatal medial frontal cortex. The 

same group of transcription factors implicated by our work, particularly dlx2, was also found 

to be altered by prenatal maternal immune activation,27 demonstrating that these two forms 

of prenatal risk, which have similar postnatal outcomes, may share a central influence on 

developing inhibitory neurons. Cell migration changes with prenatal stress in general, as 

demonstrated by delayed migration of excitatory neuronal precursors after prenatal 

glucocorticoids.28, 29 Later stage maternal stress from embryonic day 15 (E15) resulted in 

altered distribution of late born neurons (labeled with BrdU at E15) in the cortical plate two 

days later, accounted for by a reduction in GABAergic cells born at E15, with no change in 

migration of earlier born cells.30 These findings suggest that GABAergic cells born at 
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different time points are affected by prenatal stress in different ways, which could influence 

specific subtypes.31

While temporary changes in inhibitory neuron gene expression have a significant role to 

play in prenatal stress, there is also evidence that persistent methylation of genes expressed 

in GABAergic cells results from this early exposure, which may alter gene expression on a 

longer term basis.32 Prenatal stress increased methylation of reelin and GAD67 and was 

associated with their decreased expression in frontal cortex. These results are consistent with 

a generalized reduction in typical inhibitory functioning after prenatal stress. Moreover, 

prenatal stress effects on methylation are significant as a potential mechanism by which 

other biological changes occur, from those of the CNS inhibitory circuits discussed here to 

effects in non-neural systems. 33

Inhibitory neuron development is also affected by prenatal stress in mice with altered levels 

of GAD67 during development. GABA levels are dependent on, GAD67 and GAD65 which 

convert glutamate to GABA. GAD67 and GAD65 begin producing GABA very early in the 

development of inhibitory progenitors. 34, 35 This early presence of GABA plays a 

significant role in regulation of the very inhibitory progenitors producing it,36 underlying the 

appropriate migration of progenitors. Mice with temporarily reduced levels of GAD67 

during development are more sensitive to prenatal stress: total fetal corticosterone increases 

after prenatal stress, a change that is amplified in mice with less GAD67.37 Whether this 

effect occurs through GABAergic cells or by an effect of GABA and stress together on other 

cells, it suggests that prenatal stress interacts with GABA during development in influencing 

hormonal levels.

While prenatal stress has been shown to induce cell death in some progenitors, there is little 

evidence that developmental processes such as cell death are part of the impact of prenatal 

stress on GABAergic cells or responsible for reduced inhibitory functioning across the CNS. 

No colocalization of caspase-3 with GAD67GFP in embryonic cortical plate26 was found 

after prenatal stress or with calretinin or calbindin in early postnatal amygdala38 after 

prenatal dexamethasone exposure.

Prenatal stress and inhibition in the adult brain

Despite only a few results investigating developmental mechanisms of prenatal stress on 

inhibitory systems, these circuits are altered in the brains of mature prenatally-stressed 

animals (Table 2). Due in part to a lack of information about how prenatal stress effects 

proceed developmentally, it is unclear how GABAergic system changes arise—since many 

different neural components are altered in the mature brain of animal models of prenatal 

stress, the critical mediation of GABAergic system effects may be through, to name only 

two possibilities, altered glutamatergic or dopaminergic functioning. It is also plausible that 

effects are mediated in the opposite direction, with initial GABAergic changes resulting in 

altered consequences in other circuitry or, even more simply, a change in the balance 

between excitation and inhibition. Here, we will focus on GABAergic alterations, as the 

effects of prenatal stress across neural systems are beyond the scope of this review. 

Summarizing GABAergic modifications that occur with this pertinent early life event serves 

Fine et al. Page 4

Mol Psychiatry. Author manuscript; available in PMC 2014 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not to reduce this risk to its impacts on a single system but to acknowledge the, at times 

overlooked, role in prenatal stress of this GABAergic neural circuitry.

One of the most consistent consequences of prenatal stress is altered hypothalamus-

pituitary-adrenal (HPA) axis reactivity. In general, adult offspring that experienced prenatal 

stress show increased reactivity of the HPA axis39 as well as elevations of baseline 

corticosterone 40-42 with some sex differences.43 A possible mechanism by which HPA 

changes may occur is through decreased hippocampal mineralacorticoid and glucocorticoid 

receptors that occur with prenatal stress.43, 44 However, altered inhibitory circuits in and 

projecting to the hypothalamus may also account for increased HPA reactivity

Complex excitatory and inhibitory circuitry controls stress responsivity through connectivity 

of other brains regions with the hippocampus and hypothalamus.45 Many of these 

projections are GABAergic that either target the hypothalamus directly or inhibit regions 

that, in turn, influence the hypothalamus. In the hypothalamus, prenatal stress increases 

GABAergic synapses, as measured by presynaptic vGAT immunocytochemistry.46

Prenatal stress also causes decreased expression of inhibitory proteins in forebrain CNS 

regions upstream of hypothalamus. Rat offspring of “stressed” mothers, through restraint or 

external corticosterone administration, have fewer post-synaptic benzodiazepine binding 

sites and GABAA receptor subunits in the hippocampus47, 48 and amygdala.49, 50 The cause 

of these post-synaptic modifications is unclear—it may be a direct consequence of prenatal 

stress on receptors or a compensation due to changes in ligand activity. Decreased inhibitory 

functioning after prenatal stress is seen in presynaptic GABAergic neurons themselves as 

well as on the post-synaptic side. Neurons expressing calretinin and calbindin, calcium-

binding proteins necessary for mature inhibitory neuron functioning, are reduced in lateral 

amygdala in female offspring after prenatal dexamethasone.51 While these results are 

limited to one region—not apparent in other amygdala subregions or in the hippocampus—

prenatal exposure was also limited to glucocorticoids. Generalized stress may exert different 

and more global effects than one hormone alone. In full prenatal stress models, inhibition 

across different regions is also reduced. GAD activity as measured by GABA generation 

with fluorimetry is lower in the hippocampus of prenatally stressed females.52 GAD67 

protein and mRNA levels are also lower after prenatal stress in frontal cortex throughout 

early postnatal development and into adulthood.32, 53 These findings suggest that frontal 

cortex and hippocampus, both of which regulate the HPA axis through inhibitory projections 

to hypothalamus, may exert less inhibition after prenatal stress, at least at baseline. Studies 

of how the hippocampus changes in response to acute stress demonstrate that the direction 

of stress-reactive expression of GAD enzymes is not fundamentally changed.48 Typically, 

GAD65 decreases after a single exposure to stress hormone and increases after two 

exposures. Prenatal stress causes only a small increase in this reactivity48 in mRNA 

expression per cell, not overall expression in the region. This change may be a 

compensatory response to the presence of fewer GAD-expressing cells after prenatal stress.

There is some data on whether GABAergic cells are generated in the same numbers to 

populate various regions of the CNS after prenatal stress. In mice heterozygous for GAD67, 

GABAergic cells born at E15 during prenatal stress and those of the parvalbumin subtype 
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are deficient in dorsal, medial regions (medial frontal cortex and hippocampus).30 This was 

not true of wild-type animals in the same study, suggesting that GAD67 expression may 

interact with prenatal stress in influencing inhibitory neuron development. Some additional 

insight into how inhibitory neuron number may be affected comes from the alterations in 

migration seen after prenatal stress26 but also from in vitro studies. Cultured hippocampal 

neurons differentiate less into GAD-expressing cells after prenatal stress.54 These results 

suggest that the processes contributing to GABAergic cell numbers may be disrupted by 

prenatal stress and may result in changes in the cell population.

These neural changes are relevant to the consistent influence of prenatal stress on anxiety-

like behavior.55, 56 Prenatally-stressed animals also show reduced social interaction,57, 58, 

particularly in the setting of increased maternal susceptibility to stress.59 Anxiety has been 

shown to be increased after prenatal stress in the absence of changes in GABA release in the 

hippocampus.60 The circuitry of the amygdala and hippocampus that is responsible for 

regulating anxiety requires complex inhibitory neuronal components. However, GABAergic 

cells in the amygdala and hippocampus also send longer distance projections to the 

hypothalamus whose functioning would not be evident by GABA release in hippocampus.45 

If GABAergic cells within amygdala and hippocampus are functioning abnormally, they 

may disrupt prenatally stressed animals’ abilities to normally regulate behavior.

Inhibitory neuronal function in hippocampus and amygdala that may underlie such behavior 

is altered at the physiological level with prenatal stress. During development and in mature 

animals, seizure susceptibility in a kindling model is increased by prenatal stress,61 possibly 

due to a vulnerability of hippocampal inhibitory systems to secondary insults. In contrast, 

prenatal stress decreases the occurrence of seizures from ventral hippocampal stimulation in 

adult rats, concurrent with a decrease in glutamatergic release and no hippocampal 

GABAergic alteration.60 The reconciliation of these results may be due to in vivo vs in vitro 

differences in protein measures but may also suggest that prenatal stress has effects 

specifically on the resilience of inhibitory neural systems.

Certainly, changes to inhibitory neurons in the forebrain occur in the context of many other 

changes to excitatory neurons, glial populations, monoaminergic projections and other 

entities.62 These varied changes may be causally linked. Insights into how inhibitory 

changes may result from or lead to other neural changes in the context of prenatal stress can 

come from a more deep understanding of each neural system and testing how protection of 

one through development may rescue another. Such investigations will be helpful for 

clinical science in which the time course of events in disease on the cellular and molecular 

level is difficult to understand.

Clinical Relevance

Research on the molecular and cellular effects of prenatal stress in humans is an area for 

significant growth. There are no studies in humans exposed to prenatal stress examining 

impacts on GABAergic systems. Prenatal stress exposure has been shown to alter HPA axis 

functioning in children63 and to change cortical thickness,64 both of which could involve 

inhibitory neuron changes or leave them unaffected. However, the importance of prenatal 
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stress as a risk factor for several psychiatric disorders means that the occurrence of 

GABAergic abnormalities in these conditions may be related to prenatal stress exposure. 

Here we will review some of the critical links of prenatal stress to schizophrenia, anxiety, 

autism and Tourette syndrome, all disorders which are hypothesized to involve significant 

disruptions in CNS GABAergic circuitry.

Schizophrenia

There are multiple sources of evidence for the link of prenatal stress to risk for 

schizophrenia. Maternal depressed mood during pregnancy combined with parental history 

of psychosis elevated risk of schizophrenia in offspring.65 Likewise, a higher incidence of 

schizophrenia was observed in offspring whose mothers experienced the death of a relative 

during the first trimester66 or had unwanted and hence stressful pregnancies.67 Finally, 

prenatal exposure to the German military invasion of the Netherlands during World War II68 

and to a devastating tornado in Massachusetts increased schizophrenia prevalence.69

Many lines of evidence suggest that this disorder may be related to deficits in inhibition, 

particularly in the dorsolateral prefrontal cortex (dlPFC). Subjects with schizophrenia show 

a reduction in GAD67 expression in the dlPFC.70-72 (OR: reviewed in 73). The reduction in 

GAD67 levels appears to disproportionately affect PV+ interneurons.74 Parvalbumin mRNA 

expression is also decreased;75-77 however, PV+ interneuron density is unchanged,74, 78-80 

suggesting the deficit is one of signaling rather than cell number. In addition, most studies 

have shown that levels of the GABAA α175, 81-83 and β282 subunit receptors are reduced, 

particularly in dlPFC layers 3 and 4. Together, these data suggest a deficiency in GABA 

transmission, both presynaptically (in the enzymes that produce GABA) and 

postsynaptically (in receptor expression). There are no links between maternal stress and 

GABAergic deficits in schizophrenia--reconstructing prenatal exposures in postmortem 

studies is not feasible. The co-occurring links of psychosis with both maternal stress and 

inhibitory changes, however, suggests that trajectories of development similar to those seen 

in animal models could lead to reduced inhibitory capacity in patients with schizophrenia.

Gene associations with neuropsychiatric disorders appear, superficially, to have little 

significance for the environmental risk of prenatal stress. However, neural disruptions 

implicated by genetic deficits may demonstrate common pathways by which environment 

and genetics each act or may only become disrupted when genetic and environmental risk 

occur together. While no evidence exists for interactions of GABAergic risk alleles with 

prenatal stress, such candidate genes could be examined alongside retrospective data on 

prenatal stress. However, it is significant to the implication of inhibitory systems in 

schizophrenia that associated genes, even in isolation, also have roles in inhibitory neuron 

signaling. Genes for neuregulin-1 (NRG-1) and its receptor ErbB4, a receptor tyrosine 

kinase preferentially expressed in PV+ interneurons,84-86 have both been implicated in 

schizophrenia.87-90 Signaling by Nrg1 and ErbB4 controls connectivity between GABAergic 

interneurons84 and tangential migration of interneurons into the cortex.21DISC1, a gene 

associated with schizophrenia91 may also affect PV neurons92 and the migration of cortical 

interneurons.93 Mouse modeling of 22q11.2 syndrome, which carries a strong risk for 

schizophrenia shows disrupted interneuron migration as well.94
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Autism Spectrum Disorders

As in schizophrenia, prenatal stress has been correlated with autism spectrum disorder 

(ASD) incidence: autistic traits in progeny are predicted by stressful events during 

pregnancy.95 In particular, increased ASD risk has been associated with prenatal exposure to 

stressful life events,96 family discord,97 and hurricanes/severe tropical storms.98

Many studies have explored the relationship between ASD and alterations in inhibitory 

function. Post-mortem studies have revealed a reduction in GAD65 and GAD67 in the 

parietal cortex and cerebellum of patients with autism.99, 100 Changes in GABAA and 

GABAB receptor expression have also been observed.101-106 Decreased GABA 

concentration was observed in the frontal cortex of a small sample of children with autism 

via [1H]MRS107 and lower GABAA receptor levels were found in small samples of patients 

with autism via SPECT108 and PET.109 As in schizophrenia, in autism, PV+ interneurons 

appear to play a particularly critical role. A meta-analysis revealed that in multiple mouse 

models of ASD, PV+ cells are reduced110

Many the genes implicated in ASD play a role in inhibition. For example, contactin-

associated protein 2 (CNTNAP2) plays a role in interneuron (particularly PV+ interneurons) 

number, neuronal migration, seizure risk, and changes in behavior—hyperactivity, less 

cognitive flexibility, and less social interaction-- relevant to autism..111 Deletion of 

CADPS2 or MET, other ASD-associated genes, led to a reduction in cortical PV+ 

interneurons in mice.112, 113

ASDs are frequently comorbid with epilepsy, a disorder with clear impairment in CNS 

inhibition. Additionally, alterations in inhibition are also seen in other disorders that have 

social impairment like autism, Fragile X syndrome and Rett syndrome. FMR1-knockout 

mice (models of Fragile X) show a reduction in and abnormal morphology of cortical PV+ 

interneurons114 as well as reduced expression of GABA receptor subunits.115-119 In the 

amygdala, FMR1 knockouts have reduced GAD expression, smaller and less frequent 

inhibitory currents, and diminished GABA release.120 Mice lacking Mecp2 (models of Rett 

syndrome) display alterations in inhibition in the cortex,121 brainstem122 and 

hippocampus.123

While the significance of prenatal stress for GABAergic changes in autism has not been 

demonstrated, the same potential exists as for schizophrenia, with links between prenatal 

stress mechanisms and neurobiological markers advancing our understanding of overall 

pathophysiology. With an earlier age of onset, autism does present a possible opportunity to 

more accurately document retrospective prenatal stress and prospectively examine inhibitory 

functioning through, for example, magnetic resonance spectroscopy (MRS).

Childhood Anxiety

Anxiety disorders are arguably the most common behavioral problem of childhood124 and 

have links with prenatal stress. More stressful life events during pregnancy were associated 

with higher assessments of fear in toddlers.125 When mothers experienced anxiety early in 

pregnancy, both preschool-age and school-age children were more likely to have self-

report126 and parental report127 of emotional problems including anxiety. And internalizing 
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symptoms in preschool children were related to maternal emotional problems in 

pregnancy.128 While some evidence suggests that the apparent influence of prenatal stress 

on childhood anxiety is due only to confounds with postnatal parenting,129 most studies 

have concluded that both prenatal stress and postnatal parenting exert important 

effects.125-127

There is some evidence that GABAergic systems, among others, are relevant for anxiety. 

While postmortem studies of anxiety disorders are limited, in vivo imaging demonstrates 

that cortical GABAA receptor binding is reduced in the cortex of adults with anxiety 

disorders130 with GABAA receptors in prefrontal cortex implicated specifically in post-

traumatic stress disorder131 and frontal cortical GABAA receptors associated with panic 

disorder.132 Genetic studies in anxiety disorders have not yielded strong findings implicating 

any specific neurobiological feature, including inhibitory neurons.133, 134 Despite this 

paucity of clinical neurobiological findings, the well-known anxiolytic effects of GABA-

acting benzodiazepines which may be one way in which a consistent neural system can be 

implicated in this heterogeneous group of disorders.

Tourette syndrome

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by verbal and motor 

tics. It too has a documented relationship with prenatal stress; one study showed that in 

offspring with TS, the degree of stress experienced during the first trimester of pregnancy 

correlated with tic severity.135 Much of the research on Tourette syndrome has focused on 

the role of the basal ganglia, which contain many different types of inhibitory neurons. The 

density of PV+ interneurons is decreased in the striatum and external segment of the globus 

pallidus of TS patients but increased in the internal segment of the globus pallidus; the 

authors suggest that this could be due to a defect in tangential migration of interneurons 

during development.136, 137 Additionally, TS patients have decreased binding of GABAA 

receptors in the globus pallidus and ventral striatum and increased binding in the substantia 

nigra.138 Lhx6, a gene necessary for the specification of cortical and striatal PV+ and SST+ 

interneurons,139, 140 has a positive association with TS.141 Genetics and neurobiology have 

implicated inhibitory systems in TS at least in part.

Inhibitory Function as a Target for Treatment

The inhibitory deficiencies outlined here suggest that drugs that enhance GABAergic 

function could be potential treatments for these psychiatric illnesses. BL-1020, a drug with 

GABAA receptor agonist activity is one such possibility.142 In recent clinical trials, 

treatment of schizophrenia patients with BL-1020 changed positive and negative symptoms, 

cognitive functioning, and overall global improvement.143, 144 Administration of 

bumetanide, which inhibits the chloride importer NKCC1 (thereby increasing levels of 

GABAergic inhibition), led to improvement on global measures of autism in children.145 

Similarly, the GABAB receptor agonist arbaclofen (STX209) ameliorates key Fragile X-

associated synaptic impairments in FMR1-knockout mice.146 In trials, Fragile X patients 

given arbaclofen showed improvement in social measures through possible direct effects on 

inhibitory signaling.147 Additionally, some drugs that have been used in TS treatment target 

GABAergic systems, such as clonazepam (a benzodiazepine)148 and baclofen (a GABAB 
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receptor agonist).149 Levetiracetam, a GABAergic anticonvulsant, has found mixed results 

in trials.150-153 Clearly, inhibitory systems are a promising target for treatment of 

neuropsychiatric illness.

Neurodevelopmental insights from models of prenatal stress should also inform the 

identification of new treatments. With respect to developmental mechanisms, the clinical 

target is prevention, whether through blocking the primary effects of prenatal stress on the 

embryonic and fetal brain or facilitating recovery during early postnatal life. As more is 

learned about specific components of prenatal stress that impact inhibitory circuitry, factors 

such as physical exercise,154 and inflammatory mediators155 that impact these processes 

may become important targets for prevention and supporting endogenous compensatory 

mechanisms.156

Conclusion

Investigating the links between prenatal stress, inhibitory systems of the forebrain and 

behavioral/emotional consequences is important for gaining deeper insights into psychiatric 

pathophysiology. The mechanisms that have been shown to be significantly affected in 

prenatal stress animal models and related clinical populations overlap significantly with the 

development and functioning of inhibitory neurons. Precisely how developmental events 

proceed on a different course in inhibitory neuronal systems exposed to stress remains to be 

studied. Further understanding of these neurodevelopmental phenomena will determine 

possible interventions for patients and prevention of risk to the finely tuned circuitry of the 

brain.
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