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ABSTRACT

Computationally retrieving biologically relevant cis-
regulatory modules (CRMs) is not straightforward.
Because of the large number of candidates and the
imperfection of the screening methods, many
spurious CRMs are detected that are as high scoring
as the biologically true ones. Using ChIP-information
allows not only to reduce the regions in which the
binding sites of the assayed transcription factor (TF)
should be located, but also allows restricting the valid
CRMs to those that contain the assayed TF (here
referred to as applying CRM detection in a query-
based mode). In this study, we show that exploiting
ChIP-information in a query-based way makes
in silico CRM detection a much more feasible
endeavor. To be able to handle the large datasets,
the query-based setting and other specificities
proper to CRM detection on ChIP-Seq based data,
we developed a novel powerful CRM detection
method ‘CPModule’. By applying it on a well-studied
ChIP-Seq data set involved in self-renewal of mouse
embryonic stem cells, we demonstrate how our tool
can recover combinatorial regulation of five known
TFs that are key in the self-renewal of mouse embry-
onic stem cells. Additionally, we make a number of
new predictions on combinatorial regulation of these
five key TFs with other TFs documented in TRANSFAC.

INTRODUCTION

In eukaryotes, transcriptional regulation is mediated by
the concerted action of different transcription factors

(TFs) (1). Searching for cis-acting regulatory modules
(CRMs), or combinations of motifs that often co-occur
in a set of coregulated sequences, helps in unraveling the
mode of combinatorial regulation. CRM detection is
customarily being applied on a set of intergenic regions
located upstream of coexpressed genes; such genes are for
example identified by microarray experiments. Except for
de novo methods (2,3), most CRM detection methods rely
on a motif screening step. In this step, all sites that match
given motifs of TFs, are located in the selected sequences
(4,5). Subsequently, a combinatorial search is performed
to identify a set of motifs (called a CRM), that occur
frequently in the given set of intergenic sequences.
Usually, a score is assigned to each of the obtained
CRMs that assess their statistical significance in a set of
background sequences (4,5). Some methods apply a highly
structured definition in which a CRM consists of combin-
ations of motifs that need to occur in a specific order, with
specific orientations, and within certain distances (6–8).
Although the overrepresentation of a structured CRM in
a gene set is likely to be biologically relevant (9,10), the
degree to which biologically relevant CRMs are structured
is still largely unknown (11). Therefore, most methods rely
on less constrained CRM models, hereafter referred to as
unstructured CRM detection methods (4,5,12–16),
The combinatorial search underlying CRM detection is

highly complex. Adding to this complexity, is the fact that
often the regions containing the binding sites are not well
delineated [e.g. when starting from a coexpressed gene
sets, the intergenic sequences typically range several
1000s of base pairs upstream of the transcription start
site (TSS)]. Such long intergenic sequences reduce the
signal/noise ratio to such extent that in silico CRM detec-
tion becomes ineffective. Hence the search for combina-
torial regulation is often limited to the proximal promoter
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region, whereas at least some of the sites responsible for
the observed expression behavior might also be located in
regions distant from the TSS of the given genes (such as
for instance in enhancers). Nowadays chromatin-immuno-
precipitation (ChIP)-based techniques are becoming
increasingly popular for the genome-wide identification
of TF binding sites (17,18). Such techniques make it
feasible to locate, at least for the assayed TF, the approxi-
mate binding regions. Using ChIP-bound sequences thus
allows largely reducing the regions in which the binding
sites of the assayed TF should be located (typically 500 bp
instead of thousands of bp) (19,20) and does not restrict
the search for CRMs to the proximal promoter region
(7,21–23).
In addition to these obvious advantages, using

ChIP-information also allows for a query-based search
strategy. Instead of searching for all possible CRMs in
the input set as is traditionally being done, we can limit
our search to those CRMs that contain the ChIP-assayed
TF (7,8). Incorporating knowledge of the assayed TF
during CRM detection in such a query-based way allows
predicting complex CRMs in which the assayed TF is
involved. In this work, we studied the extent to which
using ChIP-derived information can help in increasing
the performance of CRM detection, compared to the
application of CRM detection in a traditional
non-query-based setting. To this end, we developed a
novel powerful CRM detection method ‘CPModule’, an
unstructured CRM detection method based on a con-
straint programming for itemset mining framework (24).
Besides handling the specific challenges of CRM detection
on ChIP-Seq based data, CPModule can be used in both a
query and non-query-based mode. Its exhaustive search
strategy allows making an assessment of the total
number of valid CRMs that are present in the input set
and of the degree to which a CRM of interest gets
prioritized among the total number of candidates.
Applying CPModule on a well-studied ChIP-Seq data

set involved in self-renewal of mouse embryonic stem cells
(25) showed that using a query-based setting is in most
cases the only sensible way to perform CRM detection.
Besides recovering well described benchmark CRMs, we
also make several novel predictions on the combinatorial
regulation of the five key regulators, involved in the
process of self-renewal, with other TFs documented in
TRANSFAC (26).

MATERIALS AND METHODS

Motif screening and filtering (Figure 1A)

Motif screening
The motif models used for screening are position weight
matrices (PWMs) from TRANSFAC (26). To remove
redundancy among the PWMs, each of them was
compared to all the other PWMs using the program
MotifComparison (27). MotifComparison calculates the
Kullback–Leiber distance between matrices; PWMs
showing a mutual distance <0.1 were grouped. All
PWMs in a group were removed except for one represen-
tative one. This resulted in a final list of 516 PWMs. Motif

screening was performed with the tool Clover (28). Given
a PWM of W nucleotides and a sequence, it calculates a
score for each subsequence of length W. A threshold on
the score determines whether the subsequence is
considered a potential binding site of the motif, also
called a hit or a motif site. The default threshold of 6.0
was used to define a stringent screening, resulting in few
hits per motif and sequence on average, while a threshold
of 3.0 corresponds to a non-stringent screening resulting in
many more hits.

Filtering based on nucleosome occupancy
We filtered potential motif sites by removing sites that
exceed a given value for the nucleosome occupancy score
(NuOS). To calculate the nucleosome occupancy score of a
potential motif site, we first assigned a nucleosome
occupancy probability to each base pair position, using
the prediction model ‘NuPoP’ of Xi et al. 2010 (29). The
nucleosome occupancy score was then calculated as the
geometric mean of the nucleosome occupancy probabilities
at all positions of the potential motif site (30).

To determine the optimal threshold values for the
NuOS, we tested the effect of different filtering thresholds
on their ability to: (i) reduce the number of motif site
predictions per region and per TF, while (ii) not too
much compromising the sensitivity of recovering true
binding sites (see Supplementary File S1). Based on
these tests, predicted motif sites located within a low prob-
ability of nucleosome occupancy (<10%) (when using a
filtering based on the NuOS) were retained.

CRM detection using constraint programming for itemset
mining (Figure 1B)

CPModule uses as input the motif sites located in the input
sequences by motif screening. The result of the screening
and filtering step is for each motif M and sequence S a set
of motif hits MH M,Sð Þ ¼ l1,r1ð Þ, . . . ,ðln,rnÞ

� �
. Motif M

has a hit at ðli,riÞ with 1 � li � ri � jSj; here ðli,riÞ is an
interval between start position li and stop position ri on
the sequence S. Sj j corresponds to the length of sequence S.

The combinatorial search problem of finding a motif set
is solved by using the constraint programming (CP) for
itemset mining framework (24). The core of CPModule
enumerates all possible motif sets, where a motif set
M ¼ M1, . . .Mnf g is defined as a subset of all screened
motifs. A CRM is a motif set M that is valid given a set
of domain-specific constraints (more details provided
below): (i) the frequency constraint, which requires that
the motif set occurs in a predefined minimal number of
sequences S from the input set, (ii) the proximity
constraint, which requires that hits of motifs in a set
should occur in each other’s proximity. The maximal
distance � of the region in which hits should co-occur is
specified by the user and controls the level of proximity,
(iii) the redundancy constraint, which requires that the
motif set M must be non-redundant with respect to its
supersets. Optionally, (iv) a query constraint ensures
that a given query motif must be part of the motif set
found (Figure 1B).
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More formally, a motif set M ¼ M1, . . .Mnf g will only
be considered as a potential CRM in a sequence S if and
only if its set of hit regions (HR) on that sequence S is not
empty, where the set of hit regions (HR) consists of those
ranges l,l+�ð Þ of � base pairs in which all selected motifsM
are present, e.g. they have at least one hit with interval
l
0

,r
0� �
in that range:

HR M,Sð Þ ¼ l,l+�ð Þ : 1 � l � Sj j,8M 2M :
�
9 l

0

,r
0� �
2MH M,Sð Þ : l � l

0

< r
0

� l+�
� ð1Þ

Given a set of sequences S, the subset of sequences in
which the set of hit regions is not empty is denoted by
’ðM,SÞ.

To find the motif sets that fulfill the above require-
ments, we use a general and principled approach based
on ‘constraint programming’. In constraint programming,
problems are modeled as constraint satisfaction problem
in terms of constraints on variables. The constraint
specification is then solved by a general purpose, yet

highly efficient algorithm. Consequently, we need to
encode our problem as a constraint satisfaction problem.
We do so as follows. Motif sets are represented by
Boolean variables: there is a Boolean variable ~Mi for
every possible motif, indicating whether this motif is
part of the motif set M. If a certain ~Mi ¼ 1, then we say
that the motif is in the motif set; otherwise the motif is not
in the set. Furthermore, we have a Boolean variable ~Sj for
every genomic sequence, indicating whether the motif set
will be considered as a potential CRM in a sequence, i.e.
whether Sj 2 ’ðM,SÞ. Lastly, we define a Boolean variablefseqMij for every motif i and every sequence j. The variablefseqMij indicates whether motifMi is in the proximity of all
motifs in motif set M on sequence j.
The ‘constraints’ are imposed on these variables as

follows:

Proximity constraint
The proximity constraint couples the fseqMij variables to
the variables representing the motifs. Formally, we define

Figure 1. CPModule analysis flow. (A) The input consists of a library of PWMs and a set of sequences. In the first step, prior to the actual CRM
detection a screening with public motif databases is performed. Here, we combine standard PWM screening with filtering based on nucleosome
occupancy. Motif sites displaying a high nucleosome occupancy are filtered out (indicated as the transparent shapes in A). (B) The second step
consists of the actual combinatorial search. Here, we use a constraint programming for itemset mining approach to enumerate all valid motif sets,
i.e. combinations of motifs (i) that occur frequently in the input set (frequency constraint). Only valid motif sets will be considered (indicated in
regular boxes), while invalid ones will not (indicated in dashed boxes); (ii) of which the motif sites contributing to the motif set occur in each other’s
proximity (proximity constraint). Only valid motif sets will be considered (indicated in regular boxes), while invalid ones will not (indicated in dashed
boxes); (iii) that are non-redundant (redundancy constraint). The motif sets in the dashed box are redundant with the motif set in the regular box and
will not be considered; (iv) that contain a query-motif (query-based constraint), which corresponds in this work to the motif of the ChIP-assayed TF.
Valid motif sets are indicated in regular boxes. (C) Valid motif sets or CRMs are finally assigned a P-value that expresses their specificity for the
input set.
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the fseqMij variables as follows for every motif on every
genomic sequence:

8ij : fseqMij ¼ 1$ ð9 l,rð Þ 2 HR M,Sj

� �
9 l

0

,r
0� �
2MH Mi,Sj

� �
: l � l

0

� r
0

� rÞ
ð2Þ

In other words, if in a particular genomic sequence a hit
of a particular motif is within a hit region (HR) of the
motif set, this motif’s variable for that sequence must be
1. Observe that fseqMij=1 will hold for all motifs in the
motif set M, for all sequences that are in ’ðM,SÞ; however,
there may be additional motifs that have hits in the prox-
imity of regions in HRðM,SjÞ.

Frequency constraint
The constraint that imposes a minimum size on ’ðM,SÞ is

formalized as:
P
j

~Sj � min frequency. Here, the ~Sj

variables are defined in terms of the fseqMij variables,
such to ensure that sequences are only counted ( ~Sj ¼ 1)
if all selected motifs (8i : ~Mi ¼ 1) occur within each
other’s proximity in that sequence (gSeqMij ¼ 1):

8j : ~Sj ¼ 1$ ð8i : ~Mi ¼ 1! gSeqMij ¼ 1Þ ð3Þ

Redundancy constraint
The redundancy constraint requires that we cannot add a
motif to a motif set without losing one sequence in its
corresponding sequence set ’ðM0,SÞ. This can be
enforced as follows on the Boolean variables:

8i : ð8j : ~Sj ¼ 1! gSeqMij ¼ 1Þ ! ~Mi ¼ 1, ð4Þ

stating that a motif must be part of the set ( ~Mi ¼ 1) if
on all selected sequences (8j : ~Sj ¼ 1) the motif is within

the proximity of the others (gSeqMij ¼ 1).

Query-based constraint
The query-based constraint requires that each motif set
contains at least a given motif. This can be enforced by
requiring that the corresponding Boolean variable ~Mi

satisfies the constraint that ~Mi ¼ 1. Note that the proxim-
ity constraint will ensure that only motif sets will be
considered with hits close enough to this given motif.
This combination of constraints is solved by a con-

straint programming system by means of a depth first
backtracking search. The search strategy alternates
between branching, in which a variable is assigned a
value from its domain (Boolean value), and propagation,
the process of using a constraint to remove values from
the domain of variables. The search strategy is similar to
strategies that have been used in itemset mining (24). The
main difference with traditional itemset mining is the
inclusion of proximity constraints and the inclusion of a
redundancy constraint for this type of data. The advan-
tage of using an existing CP system (31) is that additional
constraints can be added in a modular and straightfor-
ward way, preventing the reimplementation of the
itemset mining strategy from scratch. For more details
on the implementation of the different constraints we
refer to ref. (32).

Genome-wide enrichment score calculation and ranking
(Figure 1C)

To assess the significance of the found motif sets (CRMs),
we calculate for each an enrichment score (P-value)
adapting the strategy proposed in Gallo et al. (33). The
main modification is that we use a set of background
sequences in the calculation of this score. These back-
ground sequences are used to estimate the proportion
p of sequences in the whole genome that contain the
motif set. We compare the number of observed input
sequences that contain a particular motif set ’ðM,SÞ
with the number of sequences that is expected to contain
this motif set. The latter is estimated by counting the
number of background sequences containing the motif
set ’ðM,SbackgroundÞ. This set is obtained after applying
exactly the same screening and filtering strategy on the
background sequences as was applied on the input
sequences. Based on this estimate of the probability to
observe a valid motif set in a random set, we calculate
a genome-wide enrichment score (P-value) by means of
a cumulative binomial distribution:

P� value Mð Þ ¼
XSj j

i¼ ’ M,Sð Þj j

Sj j

i

� �
pið1� pÞ Sj j�i: ð5Þ

Where P ¼ j’ðM,SbackgroundÞj=jSbackgroundj; S is the set of
input sequences; jSj is the number of input sequences;
Sbackground is the set of background sequences.

The background sequences were derived by sampling
from the mouse genome [Version mm9, NCBI Build 37,
UCSC database (34)], a large number of intergenic
sequences (2000 background sequences for the synthetic
data, 5000 background sequences for each of the
ChIP-Seq assays). To exclude the possibility that the com-
position of the background set would influence the
estimated background occurrences of the CRMs, we
compiled background sets consisting of either putative
promoter sequences, that is sequences located upstream
of a gene’s transcription start site, or sets made from back-
ground sequences located in putative enhancer regions,
that is sequences corresponding to regions bound by the
enhancer binding proteins factor CTCF [downloaded
from ENCODE (35)]. In our experiments, the compos-
ition of the background sets did not influence our final
ranking. All results presented in the article use a back-
ground set based on proximal promoter regions.

When dealing with ChIP-Seq data, where each sequence
is a region around an assayed transcription factor site, we
selected the background sequences such that each
sequence contains at least one motif site of the assayed
TF (which does not overlap with a ChIP-bound region).
In this setting, the number of background sequences that
qualifies is variable for each data set. To have an equal
number of sequences for each background set, we
randomly sampled for each data set 5000 sequences
from the set of qualifying background sequences (5310
was the maximal number of sequences that could be
obtained for the data set with the smallest cognate back-
ground set). Note that with this strategy we approximate
the P-value calculation in a conservative way as we cannot
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exclude that the background contains sequences with true
sites of the assessed TF that remained unbound under the
assessed conditions.

The motif sets are ranked according to their enrichment
score [P-value (M), Equation (5)]. Note that with this
ranking, for two redundant motif sets that occur in the
same sequences, the smaller motif set will never score
better than the larger one i.e. if M1M2, with ’(M1,S)
=’(M2,S), motif set M2 will never score worse than M1.
This motivates the use of the redundancy constraint
during the combinatorial search as it removes from a set
of redundant motif sets only the least interesting sets,
which would get a very low rank in any case.

Benchmarking on synthetic data

We first use a synthetic data set to compare CPModule
with different CRM detection tools. The synthetic data is
retrieved from Xie et al. (36). The data consists of 22
genomic sequences each 1000 base pairs in length. In 20
sequences, sites sampled from the TRANSFAC PWMs of
respectively OCT4, SOX2 and FOXD3 were inserted in a
region of at most 164 bp (so the CRM encompasses
maximally 164 bp). Each PWM was sampled three times
per sequence. The last two sequences had no sites inserted.

CPModule was compared with related tools for
unstructured CRM detection such as ModuleSearcher,
obtained from the author (37) on 6 July 2008; Compo
obtained from the author (14) on 14 August 2010; Cister
and Cluster-Buster downloaded from the authors website
(15,16) on 22 June 2010 and 21 June 2010, respectively; all
methods were given the non-redundant motif list
described in section ‘Motif screening’.

CPModule was run with a frequency threshold of 60%
and a proximity threshold of 165 bp (as this was the
maximum distance used when generating the data).
Nevertheless, CPModule was shown not to be very sensi-
tive to the exact value of the proximity threshold (see
Supplementary File S2). For the other CRM detection
tools, we similarly used the best parameter values accord-
ing to the characteristics of the synthetic data (length of
the sequences, the distance between two insertion sites,
and the maximum size of CRM) and default values other-
wise. Supplementary Table S1 lists the non-default param-
eters for the used tools.

We evaluated the performance of the different CRM
tools using the motif (mCC) and nucleotide correlation
coefficients (nCC) (5). At the motif level (mCC), a pre-
dicted motif for a sequence is a true positive (TP) if that
motif was indeed part of the CRM on that sequence,
otherwise it is a false positive (FP). If a motif was not
predicted to belong to a CRM on that sequence,
although it should have been according to the benchmark,
it is counted as a false negative (FN), otherwise as a true
negative (TN). As the motif level evaluation does not take
the predicted sites into account, a solution is also
evaluated at the nucleotide level (nCC): for every nucleo-
tide we verify whether it was predicted to be part of the
CRM and whether it should have been predicted or not,
again resulting in TP, FP, FN and TN counts. These
counts are aggregated over all sequences to obtain the

total counts of the predicted CRM. Based on these
counts, a correlation coefficient (CC) is defined as follows:

CC ¼
TP� TN� FN� FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP+FNÞðTN+FPÞðTP+FPÞðTN+FNÞ
p ð6Þ

The value of this coefficient ranges from �1 to 1. A
score of +1 indicates that a prediction corresponds to
the correct answer. Random predictions will generally
result in CC values close to zero. Ideally, a CRM should
score good at both the motif and nucleotide level.

CRM detection on real data

The real data set was derived from genome-wide ChIP
data obtained with DNA sequencing (ChIP-Seq) for the
KLF4, NANOG, OCT4, SOX2 and STAT3 transcription
factors, as described by Chen et al. (25). For each tran-
scription factor, the input set consists of 100 sequences,
each corresponding to 500 bp centered around one of the
top 100 ChIP-binding peaks of the assayed TF. Binding
peaks were taken from the GEO file GSE11431 (38).
Screening is performed using the 516 TRANSFAC

PWMs described above (section ‘Motif screening’).
However, as a KLF4 PWM was missing in TRANSFAC,
we added to our list the PWM described by Whitington
et al. (39). Whitington et al. (39) constructed the KLF4
PWM using de novo motif detection on a set of sequences
involved in the development of mouse embryonic stem
cells, derived from a ChIP-chip experiment by Jiang et al.
(40) independent from the one used in this study.
We applied our method using three different screening

results: (i) high-stringency screening; (ii) low-stringency
screening; (iii) and low-stringency screening in combin-
ation with NuOS filtering. Proximity thresholds for
CPModule were varied stepwisely as mentioned below
(section ‘Results’ section). The frequency threshold was
set at 60% unless mentioned otherwise.

RESULTS

CPModule: CRM detection based on constraint
programming for itemset mining

Algorithmic design
In contrast to what is often assumed for CRM detection
on coexpressed genes, we do not expect that all sequences
derived from a ChIP-Seq experiment contain the same
CRM. Indeed in the same list of ChIP-bound sequences,
different CRMs might be present depending on which
other TFs are needed next to the ChIP-assayed one to
mediate coregulation of certain subsets of the genes in
the list.
Since the same CRM must not be present in all

sequences, one cannot simply take the intersection of
motifs that appear in the sequences. Instead, all possible
combinations of motifs have to be considered as candidate
CRM, and validated against the data. This makes CRM
detection a combinatorial and computational hard
problem. Furthermore, it is not known in advance which
TFs are part of the CRM hence one would like to consider
all TFs having a known motif model. Using a large
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number of candidate motifs makes the problem more
difficult, as 100 candidate motifs means there are 2100 can-
didate motif sets; the problem is even more severe when
using the entire TRANSFAC database, which contains
more than 500 motif models. Additionally, ChIP-Seq
derived datasets are large in the number of sequences
(usually hundreds of peaks are detected for the assayed
TF). For each candidate motif set, all these sequences will
have to be processed. The fact that each motif can have
multiple hits on a single sequence complicates things even
further. Despite the fact that several methods for CRM
detection have been developed in the past (4), the afore-
mentioned computational issues are still challenging for
CRM tools that find complex CRMs consisting of an
arbitrary number of TFs.
To deal with these computation issues, we developed

CPModule, a CRM detection method based on constraint
programming (CP) for itemset mining (24) (for a full
description of the method see ‘Materials and Methods’
section). CPModule searches for combinations of motifs
(cis-acting regulatory modules) that are sufficiently
specific for a given input set. Using a library of PWMs,
a set of coregulated sequences is screened and filtered to
obtain a list of hits per motif and sequence (Figure 1A).
CPModule then uses this input list to enumerate all
possible combinations of motifs (motif sets) that meet a
set of predefined constraints (Figure 1B). These con-
straints define what we consider biologically relevant
CRMs: first, a CRM should occur in a minimal number
of input sequences (frequency constraint, Figure 1B) to be
sufficiently specific for the input set, but it does not neces-
sarily have to cover all sequences. Second, we assume that
motif sites of a CRM are more likely to reflect true com-
binatorial regulation when they occur in each other’s
proximity on a single sequence than when they are scat-
tered over long genomic distances. Therefore, the motif
sites composing a CRM should occur within a maximal
genomic distance from each other (proximity constraint,
Figure 1B). This is not guaranteed to always be the case,
which is compensated by the frequency constraint that
does not require all sequences to contain the CRM.
Because motifs can have multiple binding sites on the
same sequence, we observed that several of the CRMs
found were redundant. We consider a found CRM to be
redundant to another one if it contains a subset of the
motifs of the other CRM and occurs in exactly the same
sequences. In this case, the smaller CRM will have a lower
statistical score anyway; hence we can discard such CRMs
from consideration. To make the search more effective, we
will avoid redundant CRMs during search (redundancy
constraint, (Figure 1B). Finally, in ChIP-Seq assayed
data, one can use the fact that at least the assayed TF
should be part of the CRM. For this purpose, we add a
query-based option in which a ‘query motif’ can be
provided that has to be part of the CRM. Using this
knowledge before and during search (query-based con-
straint, Figure 1B) can make the problem computationally
much more feasible.
When using the constraint programming for itemset

mining framework with the above constraints, the result
is a large collection of CRMs found to fulfill those

constraints. We explicitly chose not to statistically
evaluate the CRMs during search as this can quickly
become computationally intensive, especially when
evaluating the specificity of a CRM using a large collec-
tion of background sequences. Instead, we calculate an
enrichment score (P-value) in a post-processing step and
rank the CRMs according to this score (see Figure 1C and
‘Materials and Methods’ section). The added benefit is
that our system does not return one CRM as being the
most significant CRM, rather it returns an ordered list
which a domain expert can choose from.

Benchmarking CPModule
Before applying our method on a real ChIP-Seq data set
we compared its performance with that of a number of
well performing CRM tools, namely ModuleSearcher (37),
Compo (14), Cister (16) and Cluster-Buster (15).

Cister (16) and Cluster-Buster (15) are representative
single-sequence tools. They scan each sequence individu-
ally, searching for potential CRMs that best match a
predefined structure as imposed by model parameters
(here a hidden Markov model). In contrast to multiple
sequences tools, such as CPModule, they do not explicitly
test whether the detected CRMs are specific for the input
set as a whole. Nevertheless, these tools are very good at
detecting CRMs in individual sequences. Because they
treat sequences individually, they are computationally
more efficient than multiple sequence tools. However,
they cannot take advantage of the fact that sequences
are coregulated.

Like CPModule, ModuleSearcher (37) and Compo (14)
are multiple sequence tools. Both of them come with their
own motif screening tool. ModuleSearcher searches for
motif sets by using a genetic algorithm, a heuristic
search method that maintains of pool of solutions which
are modified to find ever better solutions. This type of
search is more ad hoc and gives no guarantees that the
best CRMs are found. Compo on the other hand uses
techniques from itemset mining, as does CPModule.
However, they differ in a number of ways: Compo is a
specialized algorithm while CPModule uses a generic
constraint-based methodology, allowing to incorporate
extra constraints such as the redundancy constraint
and the query-based constraint in a principled way.
Additionally, while Compo has a strong focus on multi-
parameter search and optimization, CPModule does
exhaustive search and calculates the significance of a
CRM using a large collection of background sequences
in a second step.

For benchmarking we used the synthetic data
constructed by Xie et al. (36). This data set contains
intergenic sequences in which ‘true motif sites’ are
inserted. The performance of CRM detection was
assessed by comparing the best scoring solution of each
algorithm with the known ‘true’ solution. The quality of
the solutions was evaluated both at the motif and nucleo-
tide level using respectively a motif correlation coefficient
(mCC) and a nCC (5) (see ‘Materials and Methods’
section).

Finding CRMs in multiple long sequences using all 516
TRANSFAC PWMs is a challenging task. Table 1 shows
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a comparison of the different tools on our synthetic
benchmark data. The single sequence tools Cister (16)
and Cluster-Buster (15) perform rather poorly (<0.25
for both mCC and nCC). Because they screen sequences
individually, they predict CRMs with a large number of
motifs that differ from sequence to sequence, resulting in
bad scores. ModuleSearcher (41) could not handle the
large number of PWMs and repeatedly ran into memory
problems, even with 2GB of RAM allocated. When
limiting the maximum number of motifs in a CRM to
10 or less, Compo (14) found the solution reported in
Table 1. It scores very well at the nucleotide level (0.68),
meaning that it finds the binding region on the sequences
quite accurately. However, at the motif level it performs

rather poorly (0.27); it wrongly identifies the motifs that
bind in the identified regions. CPModule scores worse
(0.55 versus 0.68) at the nucleotide level than Compo,
but scores considerably better (0.57 versus 0.27) at the
motif level.
To allow for a more thorough comparison of different

the tools, we reanalyzed the dataset using each time a
subset of the 516 motif models. Starting from the PWMs
of the three inserted TFs, we gradually increase the
number of total PWMs by sampling them from the set
of 513 remaining ones. This results in an increasingly
larger input in terms of candidate motifs, which contain
increasingly more false motif models. This makes the
problem increasingly harder. Figure 2 shows the motif
and nucleotide-level correlation coefficients (CC) of the
different tools on the data. The number of motif models
used is shown on the x-axis (for each sample size, 10
different samples are created and all tools are run using
the same sample sets). The single-sequence-based tools
Cister (16) and Cluster-Buster (15) perform best in the
presence of few sampled PWMs and deteriorate as more
PWMs are added. With few PWMs their predictions are
accurate, especially regarding the binding region of the
CRMs (nucleotide level). However, because they treat
sequences independently, different false positive motifs

Figure 2. Performance comparison of CRM detection tools. All CRM detection tools were run on the synthetic data set of Xie et al. (36). Screening
was performed with the PWMs used to generate the synthetic data in combination with an additional set of PWMs sampled from TRANSFAC (the
number of PWMs added to the true PWMs is indicated on the x-axis). (A) mCC, (B) nCC.

Table 1. Comparison of CRM prediction algorithms

Cister Cluster-Buster ModuleSearcher Compo CPModule

mCC 0.16 0.05 / 0.27 0.57
nCC 0.23 0.23 / 0.68 0.55

The tools were run on the synthetic data set of Xie et al. (36) using a
stringent screening with 516 TRANSFAC PWMs. Slash indicates
termination by lack of memory.
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are predicted on each sequence separately. This becomes
worse as the number of sampled PWMs increases, leading
to decreasing scores. For the multiple sequence tools
Compo (14), ModuleSearcher (41) and CPModule this
problem is less pronounced. The behavior of Compo
changes as the number of motifs increases: at the motif
level, the score has a decreasing trend, while at the nucleo-
tide level the score increases. Looking at the CRMs found,
we observe that Compo finds CRMs with only one true
motif and increasingly more false motifs as the number of
PWMs increases, explaining the motif-level behavior.
Unexpectedly, adding these false motifs seems to contrib-
ute rather than to deteriorate the precision at the nucleo-
tide level. The shorter predicted binding regions obtained
by adding more motifs seem to coincidentally better ap-
proximate the regions in which also the true CRMs are
located. The scores of CPModule and ModuleSearcher
score well on both the motif- and nucleotide-level, while
being less affected by the number of motifs used.
However, ModuleSearcher is unable to scale to more
than 400 motifs because of memory issues, while this is
not a problem for CPModule.
These results show that CPModule is competitive with

state-of-the-art tools in detecting CRMs in sets of
coregulated sequences. This, in combination with its
capability of handling a large number of sequences,
prioritizing CRMs by means of ranked lists and the
ability to be used in a query-based mode, make it ideally
suited for this study and for the analysis of ChIP-Seq data
in general.

Assessing the added value of ChIP-based information on
detecting CRMs involved in mouse embryonic stem cell

Description of the experimental set up
To show the effect of using ChIP-Seq information on
improving the performance of CRM detection, we
relied on publicly available ChIP-Seq experiments con-
ducted by Chen et al. (25). The data consist of
ChIP-Seq experiments for five key TFs involved in
self-renewal of mouse embryonic stem cells, namely
KLF4, NANOG, OCT4, SOX2 and STAT3 for which
it is known that combinatorial interactions exist
amongst at least some of these five TFs. These previously
known interactions, corresponding to nine different
CRMs were used as a benchmark (Figure 3). Starting
from the data of a ChIP-Seq experiment of a single
assayed TF, we used CRM detection to discover,
in silico, the other TFs with which the assayed TF con-
stitutes a CRM. We then tested to what extent we could
recover the previously described benchmark CRMs using
either a query-based or non-query-based setting. The
non-query-based setting mimics the traditional way in
which CRM detection is being performed, that is trying
to prioritize a CRM that is enriched in a set of sequences
without using any further prior information. In the
query-based setting, only CRMs that contain a motif
for the assayed TF are searched for. Prior to the CRM
detection, we first optimized screening thresholds to
reduce the effect of the screening on the success of the
CRM detection.

Figure 3. Known combinatorial regulation of the five assayed TFs. Network representing combinatorial interactions between the five transcription
factors (KLF4, SOX2, OCT4, NANOG and STAT3) involved in embryonic stem cell development. Edges indicate that a combinatorial interaction
between the indicated TFs exists as reported in literature (with a combinatorial interaction referring to the fact that at least subsets of genes contain
binding sites for both TFs in each other’s neighborhood). Dashed lines correspond to the interactions in the benchmark that were missed by
CPModule. Solid lines correspond to the interactions in the benchmark that were recovered by CPModule. The thin line indicates that the interaction
was detected using CPModule on the ChIP-Seq data set of one TF while the thick line indicates that the interactions was detected by using either
ChIP-Seq dataset of the TFs involved in the interaction.
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Screening and filtering
We started from the top 100 binding peaks identified for
each ChIP-Seq-assayed TF (assuming that those represent
the most reliable binding sites). It was recently shown that
the sites of the assayed TF do not exactly coincide with
their binding peaks, but can be located as far as 250 bp
from the actual peak (42,43). Therefore, we used a
sequence region of 500 bp centered around each of the
top 100 peaks as input sequences.

Ideally, the result of the screening should have a high
sensitivity, while containing only few false positive motif
sites. Using a stringent threshold would bias towards only
finding the most ‘conserved motif sites’. However, true
sites do not necessarily correspond to the most conserved
ones (44,45). Using a low stringency filtering might con-
trarily result in the inclusion of too many false positives,
possibly deteriorating the CRM detection. Therefore, we
used in addition to a screening with either a high or a low
stringency threshold, also a low stringency screening
combined with a filtering based on nucleosome position-
ing as nucleosome positioning plays a role in determining
the accessibility of a site (39). As the information on
condition- and tissue-dependent nucleosome occupancy
is not readily available, we relied on the NuOS which
has also previously been used in the context of motif
detection (30) (see ‘Materials and Methods’ section).
Motif sites located in regions that show a high NuOS
are considered to be transcriptionally inactive (46) and
were therefore filtered out.

One advantage of starting from ChIP-Seq based infor-
mation is that it allows to approximate, at least for the
assayed TF, the effect of the screening/filtering on the
recovery rate of its binding sites. This effect on recovering
the binding sites of the assayed TF can be seen as repre-
sentative for the effect of the screening/filtering on
recovering sites of any other TF. In Figure 4, we display
for each input set (sequences corresponding to the 100
binding regions of each assayed TF) the sensitivity in
recovering binding sites of the assayed TF after applying
different screening/filtering procedures. The sensitivity is
expressed as the percentage of the input set in which a
motif site of the assayed TF could be detected. A sensitiv-
ity of 100% thus corresponds to retrieving at least one
motif site for the assayed TF in each of the 100 high
scoring binding regions. As can be expected, a stringent
screening results in a rather low sensitivity for most of the
binding regions of the assayed TFs (sensitivity <50%).
Lowering the screening stringency largely increases this
sensitivity. At least 80% of the binding peaks for respect-
ively KLF4 (84%), NANOG (80%), OCT4 (98%), SOX2
(95%) and STAT3 (100%) were found to contain a motif
site for their respective TFs. However, this increased
sensitivity comes at the expense of also predicting many
more potentially false positive sites. The number of false
positives that result from a screening/filtering procedure is
harder to estimate as we have no clue about the identity or
location of the true sites. Therefore, we estimated the false
discovery rate by the average number of motif sites per TF
and per sequence region retained after applying different
screening procedures (Figure 4B). The average number of
sites per screened TF should be sufficiently low. Note that

this average number does not exclude that some TFs can
have multiple motif sites in the same sequence while others
might have none. Applying a low stringency screening
resulted in each of the analyzed data sets in the detection
of, on average, four motif sites per TF and per sequence
(Figure 4B). This was much lower in case stringent
screening was used.
Combining the non-stringent screening with a filtering

based on nucleosome occupancy (that is removing sites
predicted to be located in nucleosome occupied regions)
seems to offer a good trade-off between the sensitivity and
the number of false positive sites as is shown in Figure 4.
Compared to stringent screening, applying the filtering
after a non-stringent screening largely increases the sensi-
tivity for most of the assayed TFs, while still maintaining
the number of predicted sites per TF within a reasonable
range. In the remainder of the analysis, filtering was
applied on the low stringency predicted sites of all TFs
except for those of the assayed one. For the assayed TF,
filtering was omitted as the ChIP-derived evidence experi-
mentally supports that each ChIP-bound region contains
binding sites of that TF.

CRM detection
CPModule was run using for each assayed TF the
sequences of the top 100 peak regions, as well as the
motif sites identified by the screening and filtering. For
the proximity threshold, we started for each data set
from 150 bp and step wisely (50 bp at the time) extended
this value to maximally 400 bp. The value of the frequency
threshold was set to 60%. Predicted CRMs were ranked
according to their P-values. The higher the rank of a
benchmark CRM (that is a previously known CRM, see
Figure 3), the better the algorithm was able to prioritize
the CRM amongst the total number of predicted CRMs.
The results obtained by running CPModule after

screening with a stringent threshold (for all TFs except
the assayed one) (Supplementary Table S2) shows that a
stringent screening threshold lowers the sensitivity of
retrieving true binding sites to such extent that none of
the benchmark CRMs can be retrieved at the predefined
frequency threshold of 60%. Only by subsequently
lowering the frequency threshold to 50% allowed recover-
ing a benchmark CRM (1 out of the 9). To calculate
benchmark recovery we considered all solutions obtained
with all possible proximity thresholds irrespective of their
rank. Without filtering, the number of binding sites per
motif and sequence became so high that the search for
CRMs was computationally prohibitive.
The most informative results and highest coverage of

benchmark CRMs was obtained using CPModule with
non-stringent screening and filtering based on the NuOS.
Seven of nine of the previously described CRMs involving
KLF4, NANOG, OCT4, SOX2 or STAT3.
Table 2 shows for each of the assayed TFs and for each

proximity threshold, the highest ranking recovered bench-
mark CRM together with its rank amongst the total
number of solutions. In addition to their rank we show
for each CRM its support as an additional quality criter-
ion, indicating how many of the 100 given peak regions
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contained the predicted CRMs (the higher this value, the
more specific the detected CRM is for the given dataset).
For all data sets, at the one but lowest proximity

(200 bp) most of the benchmark CRMs were retrieved (6
of the 9 benchmark CRMs). Further increasing the prox-
imity threshold results in the same benchmark CRMs also
obtained with a lower threshold, albeit most of the time at
a lower rank and/or in combination with other motifs.
Increasing the proximity threshold will increase the
number of valid CRMs. For NANOG, one additional
benchmark CRMs were retrieved at a higher proximity
threshold than the one for which the first CRM containing

the assayed TF was found. Most of the TFs involved in
the benchmark interactions, therefore, have binding sites
in a rather close proximity on the genome.

Predicted CRMs were also validated using the available
ChIP-Seq experimental information: if a previously
described interaction between the analyzed TF and any
of the other four benchmark TFs was predicted by
CPModule, the ChIP-Seq data of the other TFs were
used to experimentally verify whether their predicted
sites in the retrieved CRMs coincided with their binding
peaks. Predicted sites of TFs for which experimental
data was available, overlapped for at least 10%

Figure 4. Effect of different screening/filtering combinations on motif prediction results. (A) Effect of using different screening/filtering combinations
on the sensitivity of recovering true sites of the assayed TF. Sensitivity is assessed by the percentage of binding peak regions in which a motif site of
the assayed TF could be detected. (B) Effect of using different screening /filtering combinations on the average number of remaining motif sites per
sequence and per TF for each of the ChIP-assayed data sets. In each panel, we used a stringent screening, a non-stringent screening without filtering
and a non-stringent screening with a filtering based on NuOS (different categories are indicated in the order as mentioned above by bars with
increasing gray scales), respectively.
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(and often more) with their corresponding binding
peaks (Column ‘Validation’ in Table 2). This indicates
that most of the benchmark CRMs predicted by
CPModule reflect true CRM signals present in the
ChIP-Seq data.

The added value of using ChIP-Seq derived information
becomes obvious when comparing the rank obtained for
each benchmark CRM in the ‘non-query-based’ setting
with the one obtained using the ‘query-based’ setting.
The first setting mimics a classical CRM detection set
up, i.e. when searching for CRMs that are statistically
overrepresented in a set of coregulated sequences. The
query-based setting differs from the classical setting by

only listing CRMs that contain a site for the ChIP-
assayed TF. Table 2 shows that in the query-based
setting, the rank of the benchmark CRMs is in many
cases much better than the rank in the non-query-based
setting. This is especially true for KLF4, NANOG, SOX2
and STAT3. For OCT4, the ranks are more similar for
both settings, but in the query-based setting much less
candidate CRMs are returned, and hence the computation
is much more efficient. Our results show that exploiting
ChIP-Seq information, by constraining the candidate
CRMs to those that only contain the assayed TF, not
only leads to a compact result set with in many cases a
better ranking of the true CRMs, but more importantly

Table 2. Benchmark CRMs obtained with CPModule in combination with filtering (non-stringent screening with filtering for all TFs except the

assayed one)

ChIP-Seq-
assa-
yed TF

CRM Support
(%)

Proximity
threshold
(bp)

Query-based Non-query-
based

Validation (%)

Rank/Total Rank/Total

KLF4 KLF4, STAT1 66 150 19/23 845/849 22.73
KLF4, OCT1 60 200 19/46 5562/5694 33.33
KLF4, STAT1, [CEBP] 61 200 22/46 5635/5694 23.33
KLF4, STAT4, [SMAD] 61 250 16/98 6160/7029 22.95
KLF4, OCT1 60 250 65/98 6994/7029 33.33
KLF4, STAT4, [T3R] 63 300 23/183 6903/7704 22.22
KLF4, OCT1 61 300 131/183 7651/7704 32.79
KLF4, STAT4, STAT1, [CDXA, LEF1] 60 350 29/284 25 056/26 843 23.33
KLF4, OCT1 61 350 212/284 26 771/26 843 32.79
KLF4, STAT4, [SMAD, T3R] 60 400 5/468 24 930/3 1549 21.67
KLF4, OCT1, [CDXA] 60 400 207/468 31 220/31549 33.33

NANOG NANOG, STAT5A_03, STAT5A_04 62 150 1/11 5930/5941 19.35
NANOG, STAT5A_04, [PU1] 60 200 1/39 40 171/43 093 23.33
NANOG, STAT5A_03, [PU1] 61 250 1/71 62 475/64 059 21.31
NANOG, OCT1 60 250 21/71 64 006/64 059 68.33
NANOG, OCT1, [FAC1] 60 300 1/145 66 186/80859 70.49
NANOG, STAT3, [FAC1] 62 300 3/145 77 724/80 859 26.67
NANOG, STAT5A_04, [PU1, FAC1] 60 350 1/406 159 818/217 328 25.00
NANOG, OCT1, STAT5A_04, [FAC1] 60 350 2/406 167 806/217 328 66.67 (OCT1);

26.67 (STAT5A_04)
NANOG, STAT5A_04, [PU1, HNF3, AR] 60 400 1/883 204 024/299 409 23.33
NANOG, OCT1, STAT6, STAT5A_04, [FAC1] 60 400 2/883 224 495/299 409 70.00 (OCT1);

26.67 (STAT6)
OCT4 OCT4, STAT6, [XFD2, FOXJ2, FOXP3] 63 150 6/1322 30/11966 14.75

OCT4, SOX2 60 150 1272/1322 10 348/11 966 78.33
OCT4, STAT4, STAT6, [PAX2, PAX4, TITF1] 62 200 1/13 141 6/111 817 16.39
OCT4, SOX2, [PAX2] 62 200 11 740/13 141 83 797/111 817 79.03
OCT4, STAT4, STAT6, [PAX4, PAX2, ELF1] 66 250 1/29 767 23/182 697 16.67
OCT4, SOX2, [CDXA] 60 250 28 080/29 767 1671 42/182 697 81.67
OCT4, STAT3 61 300 1/73 091 7/235 252 14.75
OCT4, SOX2, [CDXA, PAX2] 60 300 68 944/73 091 217 331/235 252 75.00
OCT4, STAT3, [CDXA] 60 350 1/290 997 1/859 377 12.90
OCT4, SOX2, [PAX2, FOXP3] 60 350 106 443/290 997 296 722/859 377 73.33
OCT4, STAT3, STAT5A_03 60 400 1/383 001 11/108 0139 14.75
OCT4, SOX2, [PAX2, FOXP3] 60 400 150 936/383001 449 140/1 080 139 73.33

SOX2 SOX2, OCT4 68 150 1/6318 322/46 471 88.24
SOX2, STAT5A_04, [NKX62, AR, HELIOSA] 60 150 3/6318 840/46 471 23.33
SOX2, STAT5A_04, [GEN_INI2_B, FOXJ2,

HNF3ALPHA, CEBP, AR]
60 200 2/90 416 55/512 702 25.00

SOX2, OCT4, [CDXA, TST1] 61 200 4/90 416 106/512 702 27.87
SOX2, STAT1, STAT5A_04, [SRY, CAP, NFAT,

TEF, AR, CDX, HMGIY, BRCA]
60 250 1/168 760 55/790 791 25.00

SOX2, OCT4, [CDXA, CDX2] 62 250 4/168 760 183/79 0791 87.10
SOX2, OCT4, [CDXA, CDX, CEBP] 60 300 1/303 533 94/1 256 190 86.89
SOX2, STAT, STAT5A_03, [CAP, NFAT,

GEN_INI2_B, FOXJ2, CEBP]
60 300 2/303 533 238/1 256 190 21.67

(continued)
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they also show that in the absence of such information,
CRM detection becomes almost infeasible.

Novel predicted CRMs involved in embryonic
stem cell regulation

Besides the results on the benchmark set, we also
displayed for all assayed TFs their top three ranking
CRMs predicted by CPModule, for the different proxim-
ity thresholds (Supplementary Table S3). Note that those
CRMs score in most cases much better than the bench-
mark CRMs.
Functional analysis (Ingenuity Pathway analysis and

literature-based analysis) of the 56 TFs that were
involved in the predicted CRMs of respectively KLF4,
NANOG, OCT4, SOX2 or STAT3, showed that most
the TFs have functions related to development (embryonic
development, cellular development, tissue development,
organ development, organismal development), cellular
growth and proliferation, cancer and tissue morphology
all functionalities that could be related to ESC cell growth,
death and differentiation (see Supplementary File S3).

For a handful of the predicted CRMs (KLF4-STAT4;
OCT4-CDXA; OCT4-PAX2; OCT4-STAT; OCT4-SRY;
SOX2-OCT4), it was previously proven that their contri-
buting TFs were involved in combinatorial regulation (see
Supplementary Table S3 for a list of references).

For most of the other CRMs we could find indirect
literature-based support, suggesting the plausibility of
the predicted interactions, for instance for NANOG-
FAC1, the putative transcriptional regulator FAC1 has
shown to be expressed in embryonic and extra-embryonic
tissues of the early mouse conceptus and was shown to be
essential for trophoblast differentiation during early
mouse development (47), making an interaction between
NANOG and FAC1 plausible. Other examples are
described in Table 3.

DISCUSSION

In this work, we developed CPModule, a novel approach
for CRM detection with a performance that is competitive
to that of other state-of-art tools, while being able to

Table 2. Continued

ChIP-Seq-
assa-
yed TF

CRM Support
(%)

Proximity
threshold
(bp)

Query-based Non-query-
based

Validation (%)

Rank/Total Rank/Total

STAT3 STAT3, OCT4, [CAP] 61 150 36/5649 43/6426 36.07
STAT3, SOX2, [IRF1] 61 150 2651/5649 3018/6426 31.15
STAT3, OCT4, [CEBP] 61 200 301/32 257 312/33 640 29.51
STAT3, SOX2, STAT6, [YY1] 60 200 4532/32257 4675/33640 30.00
STAT3, OCT4, [CAP, TEF1, YY1, PR] 60 250 57/54 549 61/56 473 31.67
STAT3, SOX2, STAT6, [SRY, IRF1] 60 250 6363/54 549 6666/56 473 28.33
STAT3, OCT1, [CAP, FOXM1, YY1, PR] 60 300 186/73 378 188/74 106 33.33
STAT3, SOX2, STAT6, [XPF1] 60 300 8442/73 378 8517/74 106 28.33
STAT3, OCT, STAT5A_03, STAT6, [HOXA3,

AP2REP, PU1]
60 350 6/243 758 6/243 979 35.00

STAT3, SOX2, STAT1, STAT4, STAT5A_04,
STAT6, [HNF3, YY1]

60 350 21 046/243 758 21 066/243 979 26.67

STAT3, OCT, STAT5A_03, [AP2REP, PU1, XPF1] 61 400 12/308 757 12/308 993 36.07
STAT3, SOX2, [HOXA3, AP2REP] 62 400 21 375/308 757 21 385/308 993 29.03

In this table, only benchmark CRMs recovered by CPModule are displayed, For reasons of conciseness, we only display for each parameter setting
the best ranked versions of each of the benchmark CRMs, for instance, whereas Oct4-Sox2 was found to be the best ranked CRM at a proximity
threshold of 150, more combinations of Oct4, Sox2 in combination with other TFs were also detected at this setting of the proximity parameter albeit
at lower ranks. These alternative versions with lower rank are not displayed in the table.
If PWMs for TFs belonging to the same family are very similar, we also considered those CRMs as true that contained rather than the TF reported
in literature another member of the same family (48) (i.e. this was the case for TFs of the STAT and OCT family).
The set of sequences corresponding to the top 100 scoring peak regions of the assayed TF, were screened with a set of 517 TRANSFAC motifs using
a non-stringent screening threshold. Filtering was applied on all motif sites except on the ones of the assayed TF. ChIP-Seq-assayed TF: TF from
which the top 100 binding peaks were used to perform the analysis. CRM: obtained CRMs that correspond to previously well described CRMs for
the assayed TF; [between brackets are indicated other TFs that were predicted to belong to the same CRM, but that have not previously been
described to interact with the assayed TF]. Support: the percentage of sequences from the input set in which this CRM occurs (always higher than
the frequency threshold). Proximity threshold (bp): the proximity threshold with which the displayed CRM was found. Query-based Rank/Total: the
rank this CRM received in the query-based setting/the number of solutions containing the motif for the ChIP-Seq-assayed TF. Non-query-based
Rank/Total: the rank this CRM received in all of the solutions/the total number of valid CRMs. Validation: we started from the ChIP-Seq data of
one TF and predicted using CRM detection with which other TFs the assayed TF interacts. We verified whether the motif sites contributing to the
predicted CRMs fell within the binding peaks of the other ChIP-Seq-assayed TF.
Table 2 reads as follows, for instance, when starting from the ChIP-Seq data of SOX2, we predicted a previously described CRM containing
SOX2-OCT4. This retrieved CRM was ranked first amongst the 6318 potential CRMs that contained SOX2 (rank in the query-based mode) and
ranked 322 out of the total number of 46 471 possible CRMs in the non-query based mode. SOX2 and OCT4 co-occurred in 68% of the SOX2
ChIP-Seq identified regions (Support) within a distance of 150 bp and the identified sites for OCT4 in the predicted CRM fell within the identified
OCT4 ChIP-Seq regions in 88.24% of the cases. As an example of how the same CRM can be detected at different proximity thresholds: the CRM
containing KL4-OCT1 was recovered at a proximity constraint of 200, 250, 300 and 350, but with an increasingly lower absolute rank in the
non-query-based setting.
With the current screening/filtering all runs could be performed except those for SOX2 with proximity thresholds of 350 bp and 400 bp, respectively.
These did not finish after 7days.
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handle larger data sets (such as 100 sequences in combin-
ation with a library of 517 PWMs). The advantage of
CPModule is that it builds upon a constraint programming
for itemset mining framework (24). This approach provides
fast search techniques similar to those in itemset mining,
while allowing to freely impose additional constraints on
the CRMs. These constraints such as the proximity and
redundancy constraint can help prioritizing likely CRMs.
At this point our system focuses on finding loosely
structured CRMs that satisfy multiple constraints, such
as a minimum frequency constraint or a constraint on the
maximum distance between binding sites. It can easily be
extended to find unstructured CRMs under additional
constraints. The discovery of structured CRMs, similar to
the approaches proposed by Noto and Craven (2006) and
by Cartharius et al. (8) in FrameWorker, is outside the
scope of the current approach.

The flexible framework also allows us to use CPModule
in a query-based setting when dealing with ChIP-Seq
derived data, that is, we can search only for CRMs that
contain the assayed TF. Because of its enumerative
approach, CPModule outputs all valid CRMs as an
ordered list rather than returning one CRM as being the
most significant CRM. Having an idea of the rank of a
true CRM amongst the total number of valid CRMs gives
an intuition on the difficulty of computationally retrieving
a true CRM in a particular data set. We used this property
to assess the contribution of ChIP-Seq data in its ability to
prioritize true CRMs. Our results on real datasets showed
that in the absence of ChIP-Seq based information,
biologically relevant CRM detection is almost infeasible.

The success of CRM detection also depends on the
quality of the input data, which is the set of motif sites
predicted by screening using motif models such as PWMs.
A too dense collection of motif sites (hits) obtained by a
non-stringent screening threshold usually results in too
many motif combinations, which either make the

problem intractable or lower the quality of the outcome;
more false positive hits in the screening will also result in
the detection of more spurious CRMs. Just increasing the
stringency of the screening seems not to be the best option
as many true sites, and thus also true CRMs, appear to be
missing. Using a lower screening threshold in combination
with a filtering procedure based on nucleosome occupancy
provided in our case a good trade-off between keeping the
number of false positives in a reasonable range and
recovering true sites. We applied this filtering to sites of
all TFs other than those of the assayed TF. By increasing
the recovery rate of sites of the assayed TF, we maximize
the chance of finding CRMs and instances of CRMs that
contain the assayed TF, as those are the ones we are
primarily interested in. Using a more stringent filtering
for all other TFs will help reducing the spurious CRMs,
but might come at the expense of not being able to detect
some of the true interactions between the assayed TF and
other TFs in TRANSFAC (which might explain why we
couldn’t recover all previously described benchmark
CRMs). With more experimental data on condition-
dependent nucleosome occupancy and other cell specific
features becoming available, filtering will become more
reliable and will surely further improve the success of com-
binatorial CRM detection.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S3, Supplementary Figures
S1–S2 and Supplementary References [62–112].
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Suggested CRM Indirect evidence

NANOG-FAC1 The putative transcriptional regulator FAC1 is expressed in embryonic and extraembryonic tissues of the early mouse
conceptus. Study (47) showed that FAC1 is essential for trophoblast differentiation during early mouse
development. Thus, there might be an interaction between NANOG and FAC1.

OCT4-FOXM1 Foxm1 has been hypothesized to be one of the candidates to help reprogramming somatic cells into iPSCs (Induced
pluripotent stem cells) (49). FOXM1 is a major stimulator of cell proliferation (50), so it might interact with KLF4
in the self-renewal process.

SOX2-CDXA Binding of homeobox domain from CDX1 protein and SOX2 protein was shown to occur in a system of purified
components (51). Note that we identified a CRM with CDXA and not with CDX1. However CDXA and CDX1
belong to the same protein family and have very similar motif models.

SOX2-BRCA Roles of BRCA in both homologous recombination and non-homologous end joining DNA repair have been shown
(52,53). Such function of BRCA might also play a role during the self-renewal process to repair DNA damage.

STAT3-HOXA3 As HOXA3 is involved in wound repair (54), interaction with STAT3 in the self-renewal process is plausible.
STAT3-GATA1 GATA1 was known to be one of the major transcription factors that stimulated cardiogenesis during development

(55–57) even though it is frequently used as a marker for endodermal derivatives during differentiation of
pluripotent stem cells (58). Interaction with STAT3 in the self-renewal process is therefore plausible.

STAT1-STAT3-STAT6 Binding of human STAT3 protein and human STAT6 protein has been shown in a 2-hybrid assay (59). STAT1 and
STAT3 can form heterodimers (60,61). Note however that with STAT motif models it is difficult to make the
distinction between the different STAT members.

Indirect evidences derived from literature searches which give indications on possible interactions between the indicated TFs found in the predicted
CRMs.
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