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Osteosarcoma is one of the most common primary malignancies of bone in the pediatric and adolescent populations. +e
morphology and size of osteosarcoma MRI images often show great variability and randomness with different patients. In
developing countries, with large populations and lack of medical resources, it is difficult to effectively address the difficulties of
early diagnosis of osteosarcoma with limited physician manpower alone. In addition, with the proposal of precision medicine,
existing MRI image segmentation models for osteosarcoma face the challenges of insufficient segmentation accuracy and high
resource consumption. Inspired by transformer’s self-attention mechanism, this paper proposes a lightweight osteosarcoma
image segmentation architecture, UATransNet, by adding a multilevel guided self-aware attention module (MGAM) to the
encoder-decoder architecture of U-Net. We successively perform dataset classification optimization and remove MRI image
irrelevant background. +en, UATransNet is designed with transformer self-attention component (TSAC) and global context
aggregation component (GCAC) at the bottom of the encoder-decoder architecture to perform integration of local features and
global dependencies and aggregation of contexts to learned features. In addition, we apply dense residual learning to the
convolution module and combined with multiscale jump connections, to improve the feature extraction capability. In this paper,
we experimentally evaluate more than 80,000 osteosarcoma MRI images and show that our UATransNet yields more accurate
segmentation performance. +e IOU and DSC values of osteosarcoma are 0.922± 0.03 and 0.921± 0.04, respectively, and provide
intuitive and accurate efficient decision information support for physicians.

1. Introduction

Osteosarcoma is the most commonmalignant primary bone
tumor, with the highest incidence among adolescents [1].
Among all children and adolescents, osteosarcoma accounts
for the majority of diagnosed malignant bone tumors,
approximately 55% [2]. Cancer deaths due to osteosarcoma
account for up to 8.9% of all childhood and adolescent
cancer deaths [3]. In addition, osteosarcoma is highly
susceptible to pulmonary metastases if patients are not
diagnosed and treated early. Studies have found that
46–66% of patients with osteosarcoma in developing
countries already have metastatic disease at the time of
presentation [4]. Osteosarcoma is characterized by high

malignancy, aggressiveness, rapid disease progression, and
high mortality and is considered a serious threat to human
health worldwide.

For patients with osteosarcoma, if not diagnosed and
treated early, there is a tendency to develop extensive me-
tastases in other soft tissues [5]. In addition, no more than
20% of patients with advanced osteosarcoma survive longer
than 5 years [6]. And, medical imaging is considered to be an
important technique to help physicians assess the disease
and optimize preventive and control measures [7]. To better
plan patients’ treatment plans, monitor changes in their
condition, and perform prognosis, we often obtain valid
information on osteosarcoma through medical image seg-
mentation and quantitative assessment. Magnetic resonance
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imaging (MRI) has become a major tool for physicians to
diagnose and evaluate osteosarcoma due to its absence of
any ionizing radiation, safety and painlessness, low risk, and
minimal harm to the body.

Most developing countries face a huge dilemma in the
diagnosis and treatment of osteosarcoma. Take China as an
example. China is a vast country with unbalanced medical
development between regions, and the awareness of oste-
osarcoma is still unfamiliar in primary hospitals and even
some provincial and municipal hospitals. And the occur-
rence, development, transformation, or deterioration of
osteosarcoma are a dynamic process of change. With the
different age, gender, physique, and even living conditions of
patients, the morphology and size of osteosarcoma often
show great variability and randomness. +is places a high
demand on the expertise of physicians. However, the poor
and backward regions of China have poor medical equip-
ment and shortage of professional physicians [8]. On the one
hand, for atypical osteosarcoma conditions, physicians
manually identify, segment, and diagnose them, which is
prone to subjective assumptions and misdiagnosis. On the
other hand, the total amount of redundant data in MRI
images of osteosarcoma is huge and it is difficult to solve this
problem effectively with limited physician manpower alone.
+ese circumstances make early diagnosis and timely
treatment of osteosarcoma in poor areas particularly difficult.

Modern medical imaging technology is developing
rapidly, and computer-aided diagnosis (CAD) system is also
constantly innovating. Sathiyamoorthi et al. [9] used
adaptive histogram adjustment (AHA)-based algorithm for
image enhancement to improve the image in terms of
brightness and contrast. Gayathri et al. [10] have improved
the accuracy of the model by using sparse self-encoder as a
dimensionality reduction technique. CAD provides physi-
cians with effective information to support disease treatment
decisions, which to a certain extent alleviates the difficulties
in early diagnosis of osteosarcoma caused by the shortage of
specialized doctors in developing countries, and avoids
misdiagnosis due to the time and effort spent by doctors in
dealing with the complex diagnostic process and analyzing
large amounts of case data. In recent years, machine learning
has emerged and convolutional neural networks are widely
used in image segmentation [11], and many full convolu-
tional network (FCN)- [12] based methods have been
proposed to accurately segment medical images. It can also
be combined with squeeze-and-excitation (SE) block and
multidataset training to improve the overall generalization
ability of the model [13]. However, the low contrast between
patient organs and blurred boundaries of osteosarcomaMRI
images poses great difficulties for accurate detection and
segmentation.

As the most popular encoder-decoder network in
medical image segmentation [14], U-Net [15] segmented
small targets better, had a scalable structure [16], and was
widely used in osteosarcoma MRI image segmentation.
However, as the performance requirement of medical image
segmentation increases, U-Net shows the limitation of in-
formation decline due to the lack of ability to effectively
construct remote feature dependencies and capture global

contextual information. On the other hand, osteosarcoma
MRI images are susceptible to noise and prone to overfitting
resulting in edge feature loss.

Inspired by the self-attention mechanism of transformer
[17], this paper proposes a lightweight osteosarcoma image
segmentation architecture UATransNet by adding a mul-
tilevel guided self-aware attention module (MGAM) to the
encoder-decoder architecture of U-Net. We successively
perform dataset classification optimization and remove MRI
image irrelevant backgrounds, reducing the waste of com-
putational resources while optimizing the osteosarcoma
segmentation performance. We designed two components:
transformer self-attention component (TSAC) and global
context aggregation component (GCAC). TSAC adaptively
integrates local features with their global dependencies, and
GCAC optimizes the effect of feature representation by
aggregating contexts to learned features and better preserves
detailed information such as osteosarcoma edge features. In
this paper, we also apply dense residual learning [18] to the
convolution module, combined with multiscale jump con-
nection [19], to improve feature extraction. Meanwhile, the
UATransNet method has few parameters, simple compu-
tation, and low hardware equipment requirements, which
alleviates the difficulties of backward medical equipment in
developing countries [20–25], achieves a balance of speed
and accuracy, and greatly improves the diagnostic efficiency
of physicians.

+e detailed contributions of this study are as follows:

(1) In this paper, we optimize the classification of dataset
by mean-teacher model to alleviate the influence of
noisy labels on model training; remove irrelevant
backgrounds in osteosarcoma MRI images through
dataset preprocessing to reduce the burden of input
images on segmentation network; and then improve
the accuracy and segmentation efficiency of osteo-
sarcoma segmentation.

(2) +e incorporation of multilevel guided self-aware
attention module (MGAM) into the encoder-de-
coder architecture of U-Net, which combines deep
semantic information and spatial information
through jump connections, provides the necessary
fine-grained and high-resolution features for
deconvolution, and facilitates the recovery of spatial
information of osteosarcoma. In addition, the ap-
plication of dense residual learning to the convo-
lution module, combined with multiscale jump
connections and aggregation of different semantic
amplification sampling functions, facilitates the re-
duction of interference from osteosarcoma MRI
image noise, and better preserves detailed infor-
mation such as osteosarcoma edge features.

(3) Two components, transformer self-attention com-
ponent (TSAC) and global context aggregation
component (GCAC), are designed in UATransNet to
enhance the ability to construct remote feature de-
pendencies and capture global contextual informa-
tion. Among them, TSAC adaptively integrates local
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features with their global dependencies and GCAC
optimizes the feature representation effect of oste-
osarcoma by aggregating contexts to learned fea-
tures. Meanwhile, the UATransNet method has few
parameters, simple computation, and low hardware
equipment requirements, which alleviates the diffi-
culties of backward medical equipment in devel-
oping countries and achieves a balance of speed and
accuracy in osteosarcoma detection and segmenta-
tion, greatly improving the diagnostic efficiency of
physicians.

(4) Experimental analysis was performed using over
80,000 osteosarcoma MRI images acquired from
Xiangya II Hospital of Central South University. Our
proposed osteosarcoma image segmentation archi-
tecture exhibits better segmentation performance
compared with some state-of-the-art baselines.
Furthermore, it can enable the diagnostic accuracy of
osteosarcoma images to approach the level of expert
physicians, providing information support for de-
cision-making in regions and countries lacking high-
level physicians.

2. Related Work

Osteosarcoma is an aggressive malignant bone tumor that
occurs mostly in the extremity bones of children and ad-
olescents, with an extremely poor natural prognosis and a
tendency to develop blood metastases at an early stage.
Imaging is an important tool for the diagnosis and clinical
evaluation of osteosarcoma. In recent years, computer-aided
decision-making systems have become a popular research
direction in the medical field to analyze the health status of
patients mainly through healthcare data and diagnostic
images.

Due to the cellular heterogeneity in the dataset, pa-
thologists are often faced with high complexity processing
and disagreement in classifying osteosarcoma tumors.
Similarly, segmentation and classification of tissues in tumor
images remain extremely challenging due to interclass
similarity and intraclass variability, despite H&E staining.
Chen and Zhao [26] proposed convolutional neural network
(CNN) as a tool to improve the efficiency and classification
of osteosarcoma into tumor categories (live tumor, necrosis)
versus nontumor accuracy. Schlemper et al. [27] proposed a
novel attention gate (AG) model for medical image analysis
that can be easily integrated into standard CNN models,
providing efficient object localization while incorporating
manual annotations, which improves model sensitivity and
prediction accuracy. To solve the problems of easy over-
fitting of models, weak image feature extraction, and low
accuracy in automatic classification of surviving and ne-
crotic tumor regions of osteosarcoma, Fu et al. [28] designed
a deep model with a conjoined network (DS-Net) consisting
of an auxiliary supervised network (ASN) and a classification
network, which not only can effectively achieve histological
classification of osteosarcoma but also can be applied to
other medical image classification tasks that are affected by
small datasets.

Various osteosarcoma detection methods are used for
early detection of osteosarcoma, but evaluation of slides
under the microscope to detect the extent of tumor necrosis
and tumor outcome remains a major challenge in the
medical field. +erefore, Badashah et al. [29] developed an
effective detection method for early detection of osteosar-
coma using the proposed fractional-Harris Hawks optimi-
zation-based generative adversarial network (F-HHO-based
GAN). F-HHO was designed by integrating fractional cal-
culus and HHO, while GAN extracted image features based
on F-HHO algorithm and cell segmentation process, allowing
better performance in terms of accuracy, sensitivity, and
specificity. Currently, this evaluation is mainly donemanually
by pathologists observing slides under a microscope. How-
ever, the segmentation effect is limited due to the subjective
nature of the manual operation. Ho et al. [30] proposed an
effective labeling method for training CNNs, deep interactive
learning (DiaL), where after the initial labeling step, the
annotator simply corrects the mislabeled regions from the
previous segmentation predictions to improve the CNN
model until satisfactory predictions are obtained.

Diffusion-weighted imaging (DWI) can capture cellular
changes in tumor tissue without contrast injection in the
early stages of patient treatment, facilitating early diagnosis
and prognosis of malignant disease [31]. Osteosarcoma has
characteristics such as low signal-to-noise ratio and het-
erogeneous intensity, leading to great challenges in DWI
tumor segmentation. To address the significant challenges of
interpatient tumor variation and treatment option selection,
Zhao et al. [32] combined radiological features extracted
from diffusion-weighted magnetic resonance imaging
(DWI-MRI) and traditional clinical features for osteosar-
coma assessment to achieve better evaluation and could
improve the prediction of overall survival for localized os-
teosarcoma. +is approach may help to better select patients
who are most likely to benefit from enhanced multimodal
diagnosis and treatment.

In recent years, automatic segmentation based on deep
learning has been widely used. Among them, U-Net is one of
the most important semantic segmentation frameworks for
convolutional neural networks (CNNs) and is widely used
for lesion segmentation and classification in the field of
medical image analysis. U-Net [33] is successfully used
extensively in all major image modalities from CT scans to
X-rays and even microscopy and plays an extremely im-
portant role, thus serving as the main tool in medical im-
aging segmentation tasks [34]. Shuai et al. [35] proposed a
novel and more powerful architecture W-net++ based on
two cascaded U-Net and dense skip connections. In this
network, multiscale inputs are applied to the architecture to
recover spatial details lost due to multiple encoding and
secondary sampling of the encoder; adaptive depth super-
vision is introduced to guide multiscale learning of the
network to accelerate convergence and improve network
performance. It is also compared with the state-of-the-art
method through a 5-fold cross-validation of a homemade
osteosarcoma CT image dataset, which achieves automatic
and more accurate segmentation of osteosarcoma lesions in
computed tomography (CT) images.
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In order to better extract edge features and texture
features, etc. using the shallow edge output module, we
extract semantic features using the deep output module,
calculate the loss value between the predicted map and the
actual tumor image by the side output module, and then
backpropagate the loss information. Zhang et al. [36] pro-
posed a multisupervised residual network for osteosarcoma
image segmentation by adding three supervised side output
modules to the residual network supervised residual net-
work for osteosarcoma image segmentation. +en, the pa-
rameters of the residual network were modified by the
gradient descent method, which in turn guided the multi-
scale feature learning of the network to obtain more accurate
segmentation results.

Based on the above analysis, in order to better assist
clinical diagnosis and treatment, the research on osteosar-
coma image preprocessing, image segmentation, and image
analysis by model construction has been developed signif-
icantly in recent years. However, the MRI images of oste-
osarcoma are susceptible to noise and have complex edge
contours, making the segmentation effect poor. To optimize
the segmentation effect of MRI images of osteosarcoma, we
combine the depth-separable U-shaped network with
transformer and propose a new perspective to improve the
performance of semantic segmentation, which achieves
more effective feature fusion by multilevel guided attention,
i.e., collaborating with transformer’s self-attention and
global spatial attention, and multiscale exploration of
connected contextual semantic information to ensure the
semantic embedding consistency.

3. Methods

3.1. Overview of UATransNet. With the development of
intelligent medicine, image processing plays an indispens-
able role in the diagnosis, treatment, and prognosis of
diseases. Osteosarcoma MRI images have complex features
and contain a lot of redundant data, which makes manual
screening and detection by physicians alone time-con-
suming and laborious. U-Net is widely used for MRI image
segmentation of osteosarcoma because of its better seg-
mentation of small targets and scalable structure. However,
as the performance requirement of medical image seg-
mentation increases, U-Net shows the limitation of infor-
mation decline due to the lack of ability to effectively
construct remote feature dependencies and capture global
contextual information. On the other hand, osteosarcoma
MRI images are susceptible to noise and prone to overfitting
resulting in loss of edge features. Based on this, we propose a
lightweight UATransNet osteosarcoma image segmentation
model by combining the encoder-decoder architecture of
U-Net with transformer. We successively perform dataset
classification optimization and remove irrelevant back-
grounds from MRI images by averaging teacher models and
normalizing preprocessing. In order to break the limitation
of information degradation exhibited by U-Net due to the
lack of ability to effectively construct remote feature de-
pendencies and capture global contextual information, we
designed two components: transformer self-attentive

component (TSAC) and global contextual aggregation
component (GCAC). TSAC adaptively integrates local
features with their global dependencies to better preserve
osteosarcoma edge features and other detailed information,
and GCAC optimizes the osteosarcoma feature represen-
tation by aggregating context to the learned features.

In addition, this paper applies dense residual learning to
the convolution module, combined with multiscale jump
junction, to improve the feature extraction capability. Using
over 80,000 osteosarcoma MRI images acquired at Xiangya
II Hospital of Central South University for experimental
analysis, our proposed osteosarcoma image segmentation
architecture exhibits better segmentation performance
compared to some state-of-the-art baselines. In addition, the
diagnostic accuracy of osteosarcoma images is close to that
of expert physicians, providing intuitive and accurate in-
formation support for decision-making in regions and
countries that lack high-level physicians.

In this section, the proposed UATransNet model is
introduced in terms of dataset optimization, normalized
preprocessing, multilevel guided attention mechanism, and
multiscale jump connection. +e overall design of the
proposed UATransNet osteosarcoma image segmentation
model in this paper is shown in Figure 1.

3.2. Dataset Optimization. We selected over 80,000 osteo-
sarcoma MRI images as the dataset for our experiments, but
among them, some of the images had too small or blurred
osteosarcoma regions, which led to significant degradation
of the experimental model performance. To improve the
accuracy of the test, we combined the mean-teacher network
[37], ResNet [38], and residual learning to optimize the
classification of the initial dataset before the model
experiment.

To cope with the possible gradient disappearance
problem as the number of network layers increases, we use
residual connections and three 3× 3 convolutional blocks to
capture the high-dimensional feature information of the
image and use group normalization instead of batch nor-
malization in the Res-Block to cope with the possible per-
formance degradation caused by small batches, as shown in
Figure 2, where the Res-Block consists of convolutional
layers, GN, and residual connections. +en, 6-layer Res-
Block is then used to combine the maximum pooling layer to
simultaneously reduce the effect of feature maps. Finally, the
dataset is classified by a fully connected layer and the whole
architecture acts as a teacher model as well as a student
model.

First, we randomly divide the original dataset into two
parts, D1 and D2. Among them, the D1 dataset contains
Label1 and the D2 dataset does not contain the label. +e
overall design of the mean-teacher semisupervised algo-
rithm is shown in Figure 3.

Mean-teacher semisupervised algorithm: first, the D1
and D2 datasets are input to the student model, and the
predicted likelihood of Pstu de nt1 and Pstu de nt2 is output; the
D2 dataset is input to the teacher model, and the predicted
likelihood Pteacher2 is output. Second, the loss value V1 is
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calculated based on the loss function Loss1 and Pstu de nt1 and
Pteacher1 can calculate the loss value V1, which is calculated as
follows [39]:

Loss1 � −
1
n



n

t�0
lt · log pt(  + 1 − lt(  · log 1 − pt( ,

lt ∈ Label1, pt ∈ Pstu de nt1.

(1)

Similarly, the loss value V2 is calculated based on the loss
function Loss2 and Pstu de nt2 and Pteacher2. +e network
parameters of the teacher model of UATransNet θt

′ are
obtained by updating the network parameters of the student
model θt by moving average.

θt
′ � αθ’t−1 +(1 − α)θt. (2)

+e network parameters θt of student model are ob-
tained by updating the parameters through loss gradient
descent. Among them, the loss function contains two parts:

the first part is the supervised loss function, as shown in
equation (1). Loss1 is the cross-entropy loss function, which
mainly ensures the labeled training data fit; the second part is
the unsupervised loss function, which uses the Kull-
back–Leibler (KL) scattering relative entropy loss function
[40]; the KL formula is shown as follows. Its main purpose is
to ensure that the prediction results of the teacher network
are as similar as possible to the prediction labels of the
student network.

Loss � Loss1 + Loss2,

KL(Q ‖ P) � p(x) · log
p(x)

q(x)
.

(3)

However, there is a problem of asymmetry in the KL
function. In order to make the prediction distribution of the
teacher model and the student model consistent, we adopted
the Jensen–Shannon (JS) algorithm [41] to compensate for
the asymmetry problem, so Loss2 is calculated as follows:
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Figure 1: Illustration of the UATransNet medical image segmentation framework for osteosarcoma MRI. Among them, UATransNet
successively performs dataset classification optimization and removes MRI image irrelevant background by averaging teacher models and
normalized preprocessing. +en, UATransNet is designed with transformer self-attention component (TSAC) and global context ag-
gregation component (GCAC) at the bottom of the encoder-decoder architecture to perform integration of local features and global
dependencies and aggregation of contexts to learned features.
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Loss2�
1
2

KL Pstudent2 Pteacher2
���� +

1
2

KL Pteacher2
���� Pteacher2
���� .

(4)

Finally, we divided the osteosarcoma MRI image dataset
into effective part and difficult part with the proportion of
39.4% and 60.6%, respectively, and input them into the
UATransNet network model sequentially to achieve better
training effect.

3.3. Pretreatment. To remove irrelevant backgrounds from
the osteosarcoma MRI images and reduce the burden of the

input images on the network, we segmented the input os-
teosarcoma MRI images into osteosarcoma-suspected re-
gions and the processing steps are shown in Figure 4. +e
threshold value is adaptively adjusted according to the size of
the osteosarcoma to prevent undersegmentation or over-
segmentation [42].

3.3.1. Region-of-Interest Detection. First, a multiscale deep
belief network (m-DBN) and Gaussian mixture classifier
(GMC) [43] were used to extract suspicious regions, and a
rectangular boundary of a larger suspected region of oste-
osarcoma was framed as an input.
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Figure 2: +e left side of the figure is the architectural design of the student model/teacher model, and the right side is the overall
architecture of Res-Block consisting of convolutional layers, GN, and residual connections.
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3.3.2. Image Preprocessing. In the image matrix, the mini-
mum weight of histogram is 5%. +e upper bound and the
next bound of the adjusted weight are less than 5%. +e
image is then median filtered to remove noise using a
window of a certain size, which is 5% of the maximum value
of the length height of the region of interest. However, since
the use of median filtering [44] leads to the generation of
false contours, to protect the image edges, mean filtering is
used to reduce the effect of false contours. Finally, a Laplace
filter with the same window size is used to enhance the edges
of the region of interest.

3.3.3. Osteosarcoma Size Estimation. +e Otsu method [45]
was used to generate two regions based on the intensity
histogram of the image: the larger region and the smaller
region. In this way, the size of the osteosarcoma can be
roughly estimated as larger than the smaller region and
smaller than the larger region. Also, the segmentation point
of the intensity histogram generated by the Otsu method will
be used as the threshold for the fourth step of the seed region
growth algorithm.

3.3.4. Suspected Area Segmentation. Based on a priori
knowledge, in osteosarcomaMRI images, the tumor region is
generally brighter than the surrounding healthy tissue.
+erefore, thebrightermultiple pixel points in the center of the

region of interest are selected as the initial seed points. +e
following two principles are followed when selecting the pixel
points adjacent to the seedpoints tobeadded to theseedpoints:

μ − Ix′ ,y′



< θ,

Ix′ ,y′ > θ,
(5)

where μ is the average intensity of the image pixels in the
segmented region, Ix′ ,y′ is the intensity of the candidate pixel
points located at (x′, y′), and θ is the determined threshold.
+en, the threshold value obtained in the third step of oste-
osarcoma size estimation is used as the initial threshold value,
and when no remaining pixels satisfy the seed expansion
conditions specified by the above two equations, the size of the
segmented regionobtained in the current evolutionary stage is
checked in relation to the predicted osteosarcoma size; if the
currently obtained region size is smaller than the estimated
value, the threshold value is lowered to continue expanding
the region; if the currently obtained region is larger than the
estimated value, the segmentation is stopped.

+e threshold is adjusted adaptively according to the size
of the osteosarcoma, and the input osteosarcomaMRI image
is segmented into the suspected region of the osteosarcoma.
+e grayscale characteristics of the image can be directly
used, the calculation is simple, and the calculation efficiency
is high, but for a few grayscale differences that are not
obvious, images with a large disparity in the size and
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Figure 3: Optimization process of the osteosarcoma MRI image dataset based on mean-teacher semisupervised algorithm.
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Figure 4:+e input osteosarcomaMRI image is segmented into the suspected area of osteosarcoma to remove the irrelevant background in
the osteosarcoma and reduce the network burden.
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proportion of the target and the background, you need to
combine manual experience selection to have a better effect.
+erefore, this paper mainly focuses on most of the MRI
images of osteosarcoma with obvious gray difference.

3.4. Multilevel Guided Attention Mechanism (MGAM).
+e U-Net network model for segmenting osteosarcoma
MRI images is able to fuse deep semantic information (such
as the color and shape of the osteosarcoma) with the in-
formation contained in high-precision features but is unable
to model the contextual relationships of features that are far
away, resulting in insufficient accuracy for osteosarcoma
segmentation. Like the opposite, the transformer network
model employs a self-attentive mechanism, which facilitates
the extraction of global information but lacks information at
local details. Based on this, we propose a lightweight
UATransNet osteosarcoma image segmentation model with
a multilevel guided self-aware attention module (MGAM)
between the bottom encoder and decoder of the U-shaped
architecture, which helps to capture a broader and richer
contextual representation and better fuses the features of
semantic inconsistency between transformer and U-Net
network models. It is beneficial to reduce the interference of
osteosarcomaMRI image noise, so that detailed information
such as osteosarcoma edge features is better preserved and
excellent segmentation results can be obtained. In addition,
represented by MGAM, UATransNet has a small number of
parameters and simple computation, which reduces the
consumption of resources and achieves a balance of accuracy
and efficiency of osteosarcoma MRI image segmentation.

+e core component of the UATransNet proposed in this
paper: the multilevel guided self-aware attention module
(MGAM) consists of the transformer self-attention com-
ponent (TSAC) and the global context aggregation com-
ponent (GCAC).

3.4.1. Transformer Self-Attention Component (TSAC).
Referring to transformer’s multihead self-attention mech-
anism, UATransNet focuses on semantic information from
the global contextual representation subspace and first adds
the learned position encoding of the osteosarcoma MRI
image to the input of the encoder features and shares it
among all attention layers for a given query/key value se-
quence, enabling the capture of contextual information
about absolute and relative positions [46], which is then
computed separately in multiple single attention heads and
combined by another embedding.

+e concrete implementation of the TSAC is shown in
Figure 1. +e encoder feature Feature Map ∈ Rc×h×w as input
is first reconstructed as a query matrix Q ∈ Rc×(h×w) and key
matrices K ∈ Rc×h×w andV ∈ Rc×h×w [47], and theQ, K, andV
matrices contain the texture features of the osteosarcoma
MRI image.

Q � Feature · Wq,

K � Feature · Wk,

V � Feature · Wv,

(6)

where Wq, Wk, and Wv are embedding matrices for different
linear projections. +en, a scaled dot product operation with
softmax normalization between the transposed versions of
the query and key matrices is used to generate a matrix of
contextual attention maps CAM ∈ Rc×c and captures the
necessary fine-grained and high-resolution features in the
osteosarcoma MRI images. +e matrix exhibits similarity to
the global elements of the key matrix compared to the given
elements from the query matrix. To further implement the
aggregation of values weighted by attention weights, we
multiplied the contextual attention map CAM by V and
recovered the detailed information in the osteosarcomaMRI
images. Finally, in the TSAC, we can represent the multi-
headed attention as follows:

TSAC(Q, K, V) � softmax
Q · K

T

��
dk

 V. (7)

It should be noted that
��
dk


is the dimension of the

query/key sequence in equation (6). Finally, the feature map
of the osteosarcomaMRI image obtained by our dot product
operation optimization is also the final output of the
transformer self-attention component (TSAC) part.

3.4.2. Global Context Aggregation Component (GCAC).
UATransNet encodes broader contextual location infor-
mation into local features via GCAC and selectively ag-
gregates global context into the learned features. +e specific
implementation is shown in Figure 1. +is not only opti-
mizes the feature representation and helps to reduce the
interference of osteosarcoma MRI image noise but also
improves the intraclass compactness and facilitates the re-
covery of spatial information of osteosarcoma.

UATransNet first generates the feature maps Feature
c0
p

∈ Rc0×h×w and Feature
c1
p ∈ Rc1×h×w, where c1 � c0/8, re-

spectively, using two convolution operations via the encoder
feature Featureenco de r. +en, Feature

c0
p is reshaped into

U
c0
p ∈ Rc0×(h×w) and Feature

c1
p is reshaped into V

c1
p ∈ Rc1×

(h × w) and W
c1
p ∈ Rc1×(h×w). Next, the matrix multiplication

operation with softmax normalization is executed on the
reshaped V and W to obtain the position attention map
L ∈ R(h×w)×(h×w):

Li,j �
exp Vi · Wj 


n
i�1 exp Vi · Wj 

, (8)

where Li,j measures the effect of the ith location on the jth
location and n� h× w, where n is the number of pixels in the
osteosarcoma MRI image. +en, L is reshaped and multi-
plied withW, and the feature results for each location can be
expressed as

GCAC(U, V, W)j � 
n

i�1
Li,j, Wj . (9)

Finally, the feature results are reshaped to obtain the final
output of the global context aggregation component
(GCAC).
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In order to fully utilize the obtained contextual infor-
mation and spatial relationships, the multilevel guided self-
aware attention function module takes a dynamic planning
approach to optimally combine the original features and
attention feature embeddings of osteosarcoma through at-
tention embedding fusion, which is the important reason
why UATransNet can acquire spatial information of oste-
osarcoma and accurately segment the MRI images of
osteosarcoma.

FeatureMGAM � ∝ 1FeatureTSAC + ∝ 2FeatureGCAC

+Featureenco de r,
(10)

where ∝ 1 and ∝ 2 are scale parameters initialized to 0. In
this way, we can further optimize the feature representation
of osteosarcoma MRI images with semantic consistency to
obtain more accurate segmentation of osteosarcoma MRI
images and provide intuitive, accurate, and efficient decision
information support for physicians.

3.5.Multiscale Skip Connections. In this paper, feature maps
from all scales are directly connected to form a unified tensor
through cascade connection, and then, the features of the
target are extracted, as shown in Figure 5. Specifically, the
feature maps from different semantic scales of the osteo-
sarcoma MRI images are first upsampled to a common
resolution by bilinear interpolation; then, they are all directly
connected to form a unified feature representation, which is
expressed by the following equation:

F � f v F1( v F2(  · · · v Fn( ( , (11)

where υ (·), ⊕, and f (·) are the upsampling, concatenation,
and mixed convolution operations, respectively.

+ehigher-level networkhas a larger perceptual fieldwith
strong semantic information representation capability;
however, this structure results in low resolutionof feature and
lacks spatial geometric feature details; the lower-level net-
work has a smaller perceptual field with strong geometric
detailed information representation capability and weak
semantic information representation capability though high
resolution. In order to fuse multiscale features to be equally
effective in encoding global and local contexts, UATransNet
guides the upsampling process in the decoder subnetwork
through a new multiscale jump connection scheme, i.e., re-
sidual connection and dense connection, and the network
structure is shown in Figure 6. UATransNet is the decoder
subnetwork, through a series of upsampling, connection, and
convolution transformation operations to aggregate residual
or dense features at different semantic scales to segment
tumor regions of different sizes at multiple scales, thus im-
proving the semantic segmentation accuracy of
osteosarcoma.

3.5.1. Residual Connection. As an input module, the model
improves the structure of MRI images of osteosarcoma and
solves the problem of unbalanced classification of MRI
images of osteosarcoma (10).

F � fn Fn−1( vn Fn−1( . (12)

3.5.2. Dense Connection. To cope with the medical dilemma
of outdated hardware equipment in developing countries,
UATransNet employs a dense connection module in the
encoder-decoder architecture. Dense concatenation takes
the upsampled feature set of the previous encoder block as
the input to the current block and the output feature map as
the input to all subsequent blocks, as expressed in the up-
coming equation. One advantage of dense connectivity is
that it has fewer parameters than traditional convolutional
networks because it does not need to relearn redundant
feature maps, reducing the requirement for hardware
equipment and alleviating the difficulties of poor medical
equipment in poor areas.

Fn � fn vn F0( vn F1(  · · · vn Fn−1(  ( . (13)

UATransNet aggregates multiple decoder features at
different semantic scales by bilinear interpolation, which
better preserves detailed information such as osteosarcoma
edge features. In addition, the dense concatenation mech-
anism generates the most discriminative feature represen-
tation in contrast to using one-time cascade concatenation.
In these ways, the UATransNet osteosarcoma image seg-
mentationmodel can not only mitigate the loss of details due
to excessive upsampling but also alleviate the problems of
gradient disappearance and overfitting.

UATransNet successively performs dataset classification
optimization and removes MRI image irrelevant back-
ground by averaging the teacher model and normalized
preprocessing, which reduces the waste of computational
resources, reduces the requirement for hardware devices,
and greatly improves the efficiency of osteosarcoma seg-
mentation. +en, UATransNet integrates local features and
global dependencies in TSAC and GCAC at the bottom of
the encoder-decoder architecture, which effectively reduces
the interference of osteosarcoma MRI image noise. In ad-
dition, UATransNet applies dense residual learning to the
convolution module and combines multiscale jump con-
nections to better retain detailed information such as os-
teosarcoma edge features, which can provide doctors with

Cascade Connection

C F

Figure 5: Cascade connections connect feature maps from all
scales to form a unified tensor through operations such as
upsampling, concatenation, and hybrid convolution.
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fast and accurate decision suggestions, effectively simplify
the diagnosis process, save time, and reduce the burden of
tedious medical work for doctors.

4. Experiments

4.1. Dataset. +e dataset used in the experiment is over
80,000 osteosarcoma MRI images and related indexes of 286
osteosarcoma patients in Xiangya II Hospital of Central
South University in recent years provided by the Ministry of
Education Mobile Health Information-China Mobile Joint
Laboratory and Xiangya II Hospital of Central South Uni-
versity [1]. In order to better evaluate the semantic seg-
mentation effect of the model on osteosarcoma images in the
experiment, we performed data enhancement by rotating the
images by 90°, 180°, and 270° and then put them into the same
network segmentation to enhance the generalization ability
of themodel.+ere are 286 cases in this experimental dataset,
and we roughly divide them into training and testing sets by
7 : 3, respectively. Considering the variability of osteosarcoma
morphology and segmentation difficulty of patients in dif-
ferent age groups, we took age as the main information item
and selected 75.52% of the data, i.e., 216 cases, as the training
set, and 24.48%, i.e., 70 cases, as the test set randomly, based
on the principle that the approximate proportion of training
and test sets were drawn from the same age group. Patient-
related information is shown in Table 1.

4.2. Baselines. In our experiments, we applied two different
approaches to implement UATransNet, UATransNet Re-
sidual, and UATransNet Dense osteosarcoma segmentation
models based on residual connections and dense connec-
tions, respectively. In addition, we also used a wide range of
algorithms such as U-Net, PSPNet [48], MSFCN [49],
MSRN [50], FCN, and FPN [51] as baselines and our
proposed UATransNet Residual and UATransNet Dense for
comparative experimental analysis. A brief description of
these baseline models is given as follows:

(1) U-Net: the U-structure U-Net combines deep se-
mantic information and spatial information through
skip connections of the encoder and decoder, pro-
viding necessary high-resolution features for
deconvolution, which is beneficial to recover valu-
able spatial information

(2) +e core of pyramid scene parsing network
(PSPNet): PSPNet aggregates contextual information
from different regions to obtain global information
through the pyramid pooling module

(3) MSFCN: based on a fully convolutional network,
multiscale feature learning is performed with three
supervised output layers, and both local and global
features are captured

(4) Multiscale residual network (MSRN): convolutional
kernels of different sizes are introduced for adaptive
detection of image features at different scales

(5) Fully convolutional network: FCN classifies images
at the pixel level and uses a jump structure to achieve
fine segmentation

(6) Feature pyramid network (FPN): both high-resolu-
tion features in the lower layers and high semantic
information features in the higher layers are fused
and predicted separately for each fused feature layer

4.3. Implementation Details and Evaluation Metrics.
UATransNet was implemented using PyTorch, Cuda 11.3,
and all experiments were run on 1 RTX A4000 GPU with
32G of memory. Before training the UATransNet model, we
extended the dataset by scaling up (scaling down) images,
rotating images, and flipping images to enhance the ro-
bustness of the model. During training, our proposed
UATransNet framework was trained for 100 epochs with an
initial learning rate set to 0.001, which changed to 0.0001
when training reached 50 epochs and was dynamically

Table 1: +e baseline of patient characteristics.

Characteristics Total N� 286 Training set
N� 216 (75.52%)

Testing set
N� 70

(24.48%)

Age
<15
15–25
>25

71
186
29

66
129
21

5
57
8

2.5 : 6.5 :1 3.1 : 6:0.9 0.7 : 8.1 :1.2

Sex Female
Male

134
152

90
126

44
26

4.7 : 5.3 2.1 : 2.9 6.3 : 3.7

SES Low SES
High SES

117
169

99
117

18
52

4.1 : 5.9 2.3 : 2.7 1.3 : 3.7

Residual Connection

C

C

F

C

Dense Connection

C

C

F

C

Figure 6: Residual connections connect the input and output features of each decoder block as input to subsequent blocks. Dense
connections work by taking the upsampled features of previous decoder blocks as input and feeding their own feature maps into all
subsequent blocks together.
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adjusted using CosineAnnealingLR.+rough experiments, it
can be seen that each epoch in the training process takes
about 1–5minutes. Finally, 100 epochs of verification are
performed using the checkpoints that store the trained
models, and the changes in the evaluation metrics for each
epoch are recorded. +e verification time of each epoch is
about 6–10 s. In the process of parameter adjustment, we
mainly set different parameter combinations such as
∝ 1 � 1, ∝ 2 � 0, ∝ 1 � 0.75, ∝ 2 � 0.25, ∝ 1 � 0, ∝ 2 � 1,
∝ 1 � 0.5, ∝ 2 � 0.5, ∝ 1 � 0.25, and ∝ 2 � 0.75 by setting
different ∝ 1 and ∝ 2 values and observe PRE, IOU, DSC,
and other changes in the evaluation indicators to find the
parameter combination with the best performance of the
model.

To measure the similarity between the predicted mask
and ground truth, we used accuracy (ACC), precision (PRE),
recall (REC), dice similarity coefficient (DSC), intersection
over union (IOU), and F1-score (F1) as measures, which
were calculated in pixels and used to quantitatively evaluate
the performance of the UATransNet model for osteosar-
coma image segmentation. +e specific definitions of each
indicator are as follows:

ACC �
TP + TN

TP + TN + FP + FN
,

PRE �
TP

TP + FP
,

REC �
TP

TP + FN
,

IOU �
TP

TP + FP + FN
,

DSC �
2∗ I1 ∩ I2




I1


 + I2



,

F1 �
2 · PRE · REC
PRE + REC

.

(14)

4.4. Evaluation of Segmentation Effect. In the UATransNet
osteosarcoma image segmentation model, we first perform
classification optimization of the dataset, as shown in Fig-
ure 5, and we classify the dataset with small osteosarcoma
area and blurred boundaries between osteosarcoma tissue
and normal tissue, which require a lot of computational
power in the training process, as the difficult part, and the
dataset with clear outline of osteosarcoma image as the
effective part. We input the classification-optimized and
unprocessed datasets into the UATransNet osteosarcoma
image segmentation model to obtain the respective model
segmentation results, as shown in Figure 7. It is obvious that
the completeness and accuracy of the prediction results from
the classification-optimized dataset are significantly higher
than those from the unprocessed dataset directly into the
segmentation model and are highly similar to the true labels.
+is shows that the performance of the model has been
significantly improved after the optimization of the dataset.

As shown in Tables 2 and 3, comparing the confusion matrix
values of a certain validation process of the classification
model before and after dataset preprocessing, it can be seen
that by optimizing the composition of the dataset and im-
proving the effectiveness of image input, the ratios of TP and
TN have been greatly increased, an increase of 17.7% and
37.5%, respectively.

Figure 8 shows the results of segmentation of MRI
images of osteosarcoma by each model. As shown in the
figure, it can be found that our UATransNet can detect and
retain detailed information such as edge contours of os-
teosarcoma images more effectively than other baselines;
thus, the segmentation accuracy of osteosarcoma MRI
images is higher and best meets the segmentation criteria,
and the segmentation output approximates the underlying
facts.

In order to evaluate the performance of different oste-
osarcoma segmentation models more clearly and accurately,
we performed a quantitative representation of the seg-
mentation effect. We tested by training with 100 epochs,
using accuracy (ACC), precision (PRE), recall (REC), dice
similarity coefficient (DSC), intersection over union (IOU),
and F1-score (F1) as measures for comparative analysis. +e
comparative results of the evaluation metrics are shown in
Table 4.

As shown in Table 4, it can be seen that each baseline
model performs with its own advantages and disadvantages.
Among them, U-Net has a small number of parameters and
low spatial complexity, which is more conducive to the
training process, but the recall standard deviations are large
and easy to miss; PSPNet has a small FLOPS, which can save
a lot of computational cost in MRI image segmentation, but
the segmentation performance of this model is less satis-
factory; MSFCN and MSRN have good performance in each
segmentation index, and their FLOPS values are as high as
1524.34G and 1461.23G, respectively, which occupy too
much space; similarly, the parameters of FCN-16s and FCN-
8s are too large, which is not conducive to model training.
Finally, the FPNs with the best overall performance in the
baseline model have relatively large standard deviations for
each segmentation metric, and the confidence level is not
sufficient.

However, our proposed UATransNet Residual and
UATransNet Dense showed good performance in the os-
teosarcoma image segmentation task, and both models
outperformed other baseline models in accuracy (ACC),
precision (PRE), recall (REC), intersection over union
(IOU), dice similarity coefficient (DSC), and F1-score(F1).
UATransNet Residual and UATransNet Dense not only
greatly optimize the segmentation accuracy, but also their
FLOPs were only 161.01G and 163.20G, respectively, as
shown in Figure 9, which achieved the accuracy-velocity-
space occupation balance while greatly improving the seg-
mentation accuracy, providing a new solution for accurate
segmentation of osteosarcoma in developing countries. In
addition, because UATransNet Dense uses dense connec-
tions, which may lead to a large amount of redundant in-
formation, and the F1-score of UATransNet Residual is
about 0.53% higher than that of UATransNet Dense,
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showing a more sensitive diagnostic sensitivity and smaller
and more stable standard deviations.

As shown in Figure 10, the results showed that our
proposed UATransNet osteosarcoma segmentation model
performed well in terms of accuracy, with UATransNet
Residual and UATransNet Dense achieving 96.2% and 96.0%
accuracy for osteosarcoma segmentation, respectively; es-
pecially, UATransNet Residual was better than the other
baseline models in FCN-8s, which had the highest accuracy,
and was still 2.23% higher. In addition, the precision of the
UATransNet osteosarcoma segmentation architecture was

higher than the other four comparison baselines in almost all
of the 100 epochs and maintained at a high level. On the
other hand, the parametric numbers of UATransNet Re-
sidual and UATransNet Dense are 17.9M and 18.3M, re-
spectively, which are maintained at a lower level and are
more favorable for the training process, as shown in Fig-
ure 11. In addition, for medical image semantic segmen-
tation, it is most important to achieve accurate segmentation
and prediction, which will directly affect the clinician’s
diagnosis of the condition and the decision of the treatment
plan. +e performance of UATransNet Residual and
UATransNet Dense is excellent, with DSC values of 0.921
and 0.916, respectively, far exceeding other baselines, pro-
viding intuitive and accurate information to support phy-
sicians in developing countries.

For medical disease detection, if the recall rate is low, a
bad situation such as a missed diagnosis can easily occur.
+erefore, we pay particular attention to the analysis of the
recall rate when we evaluate the performance of the oste-
osarcoma image segmentationmodel. In this experiment, we
compared the recall rate of the UATransNet model with
other baseline models, as shown in Figure 12. As can be seen
from the chart, the recall rate of U-Net, FPN, and MSFCN
models fluctuated greatly in the early stage of training. And
the data of MSRN model fluctuate during the training
process. However, the UATransNet model has maintained a
higher recall rate than the other baseline models throughout
the experiment.

Table 2: Confusion matrix for a validation process of the classi-
fication model before dataset preprocessing.

Confusion matrix Predicted
Positive Negative

Actual Positive 45 10
Negative 7 8

Table 3: Confusion matrix for a validation process of the classi-
fication model after dataset preprocessing.

Confusion matrix Predicted
Positive Negative

Actual Positive 53 2
Negative 4 11

Input
A�er Dataset Optimization

Input the Dataset
Directly

Figure 7: +e prediction results after dataset optimization and input into the segmentation model are significantly better than the direct
input into the segmentation model and are highly close to the labeled values.
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In addition, we carefully analyzed how the accuracy of
UATransNet and the individual baseline models changed
with the progression of 100 epochs, as shown in Figure 13. In
the later stage of training, the accuracy of each model sta-
bilized between a certain range of values. Among them,
UATransNet has the highest accuracy rate of 99.1%. And, the
accuracy of UATransNet osteosarcoma segmentation ar-
chitecture shows excellent stability during the training
process of 100 epochs, which is basically higher than 95%, so
it can be seen that the segmentation prediction results
obtained by UATransNet are closer to the real results
compared with other baseline models. +e prediction results
obtained by UATransNet are closer to the real results than
other baseline models. Finally, the ranking of each baseline
model for osteosarcoma image segmentation is as follows:

UATransNet>U-Net> FPN> FCN-8s≈ FCN-
16s>MSRN>MSFCN.

+e F1-score is a statistical measure of the accuracy of a
binary classification model. It takes into account both the
accuracy and recall of the classification model. As can be
seen from Figure 14, after 100 epochs of training, the F1-
score of UATransNet finally stabilized at around 95%,
showing better robustness among the various osteosarcoma
segmentation models. As the average value of the recon-
ciliation of precision and recall, the F1-score taken as high as

Table 4: Quantitative analysis of different segmentation models in MRI images of osteosarcoma.

Model PRE REC IOU DSC F1 Parameters FLOPS
U-Net 0.922± 0.09 0.924± 0.08 0.867± 0.04 0.892± 0.04 0.923± 0.05 17.26M 160.16G
PSPNet 0.856± 0.09 0.888± 0.05 0.772± 0.04 0.870± 0.06 0.872± 0.03 49.07M 101.55G
MSFCN 0.881± 0.06 0.936± 0.03 0.841± 0.02 0.874± 0.03 0.906± 0.05 20.38M 1524.34G
MSRN 0.893± 0.03 0.945± 0.05 0.853± 0.05 0.887± 0.03 0.918± 0.04 14.27M 1461.23G
FCN-16s 0.922± 0.09 0.882± 0.06 0.824± 0.04 0.859± 0.07 0.900± 0.08 134.3M 190.35G
FCN-8s 0.941± 0.07 0.873± 0.05 0.830± 0.05 0.876± 0.04 0.901± 0.04 134.3M 190.08G
FPN 0.914± 0.11 0.924± 0.07 0.852± 0.05 0.888± 0.08 0.919± 0.07 88.63M 141.45G
UATransNet Residual 0.962± 0.03 0.945± 0.04 0.922± 0.03 0.921± 0.04 0.955± 0.05 17.9M 161.01G
UATransNet Dense 0.960± 0.05 0.941± 0.05 0.918± 0.02 0.916± 0.07 0.950± 0.06 18.3M 163.20G
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Figure 9: FLOPs for UATransNet and different advanced baseline
models.
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Figure 10: Comparison of the UATransNet osteosarcoma seg-
mentation model with other baselines in terms of precision
performance.

Origin Image U-Net FCN-16s FCN-8s FPN MSRN MSFCN UATransNet (Ours) Ground Truth

DSC 0.9328 0.8692 0.8901 0.8977 0.9427 0.9521 0.9933

DSC 0.8931 0.9144 0.8764 0.9026 0.8836 0.9096 0.9651

DSC 0.8716 0.8845 0.8558 0.8271 0.8679 0.8954 0.9329

Figure 8: Examples of the effect of osteosarcoma segmentation with UATransNet and different advanced baseline models on the test dataset
and the DSC values of the corresponding predicted images.
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95.5% fully illustrates the good segmentation performance of
UATransNet on osteosarcoma MRI images.

5. Discussion

Osteosarcoma MRI image segmentation helps physicians in
clinical diagnosis by providing precise contours of osteo-
sarcoma and assisting them in the clinical process. We
designed a novel network, UATransNet, based on a modified

U-Net, by introducing a self-attentive mechanism, incor-
porating a self-aware attention module, and combining it
with a mean-teacher model, which produced good seg-
mentation performance with IOU and DSC of 0.922± 0.03
and 0.921± 0.04, respectively. To further explore the effec-
tiveness of MRI image segmentation in supporting the
neuro-radiosurgery treatment planning stage, Rundo et al.
[52] and Militello et al. [53] used a semiautomatic seg-
mentation method based on an unsupervised fuzzy C-mean

0
0.8

0.85

0.9

0.95

Ac
cu

ra
cy

1

10 20 30 40

Epoch

50 60 70 80 90 100

MSFCN

MSRN

FPN

U-Net

UATransNet

Figure 13: Comparison of the UATransNet osteosarcoma segmentation model with other baselines in terms of accuracy performance.
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Figure 11: Comparison of parameters of UATransNet and different advanced baseline models and DSC values of predicted images on the
test dataset.
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Figure 12: Comparison of the UATransNet osteosarcoma segmentation model with other baselines in terms of recall performance.
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clustering algorithm for brain tumor necrosis identification
study. On the one hand, their method achieves lesion vol-
ume measurement; on the other hand, the method evaluates
based on spatial overlap and distance-based metrics with
strong robustness while still having good segmentation
performance and a DSC value of 95.93± 4.23. However, each
patient still generates a large number of MRI images in a
single diagnosis, resulting in a large consumption of com-
putational resources. In contrast, UATransNet has a small
number of parameters and simple computation, which
achieves a balance of image segmentation accuracy and
efficiency and provides a new solution idea for other organs
to perform necrosis detection.

6. Conclusions

+is paper proposes a novel lightweight osteosarcoma
image segmentation model, UATransNet, based on over
80,000 osteosarcoma image datasets collected from
Xiangya II Hospital of Central South University for ex-
tensive experiments. UATransNet significantly improves
the accuracy of osteosarcoma segmentation based on the
original computational power through dataset classifi-
cation optimization and preprocessing, and achieves the
trade-off between accuracy and speed; utilizes TSAC and
GCAC components are used to optimize the feature
representation effect of osteosarcoma; applying dense
residual learning to the convolution module, combined
with multiscale jump junction, better preserves the edge
features of osteosarcoma, provides effective decision in-
formation support for clinicians, and provides a new
option for early diagnosis and treatment of osteosarcoma
in developing countries.

However, this paper is not clear enough for edge seg-
mentation of osteosarcoma MRI images with little grayscale
difference. With the development of medical image seg-
mentation technology, in future research work, we will
comprehensively utilize and optimize the edge features and
texture features of osteosarcoma MRI images to further
optimize the segmentation effect of osteosarcoma MRI
images.
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