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ABSTRACT

An important milestone in revealing cells’ functions
is to build a comprehensive understanding of
transcriptional regulation processes. These pro-
cesses are largely regulated by transcription
factors (TFs) binding to DNA sites. Several TF
binding site (TFBS) prediction methods have been
developed, but they usually model binding of a
single TF at a time albeit few methods for predicting
binding of multiple TFs also exist. In this article, we
propose a probabilistic model that predicts binding
of several TFs simultaneously. Our method explicitly
models the competitive binding between TFs and
uses the prior knowledge of existing protein–
protein interactions (PPIs), which mimics the situa-
tion in the nucleus. Modeling DNA binding for
multiple TFs improves the accuracy of binding
site prediction remarkably when compared with
other programs and the cases where individual
binding prediction results of separate TFs have
been combined. The traditional TFBS prediction
methods usually predict overwhelming number of
false positives. This lack of specificity is overcome
remarkably with our competitive binding prediction
method. In addition, previously unpredictable
binding sites can be detected with the help of
PPIs. Source codes are available at http://www.cs
.tut.fi/�harrila/.

BACKGROUND

A significant proportion of cells’ functions is determined
by transcription of genes. Thus, it is important to
understand the transcriptional regulation which is to a

large extent controlled by transcription factors (TFs)
binding to DNA. DNA sites that are bound by a TF
can be identified by experimental methods, such as
electromobility shift assay (EMSA). Moreover, recent
high-throughput methods including chromatin immuno-
precipitation-chip (ChIP-chip) or -sequencing (ChIP-seq)
have increased our knowledge of the TF binding sites
(TFBSs) remarkably. However, these experimental
techniques are laborious and limited by the specificity of
antibodies and additionally, they allow to study only one
protein at a time in certain conditions. Hence, computa-
tional TFBS prediction methods have an important role in
revealing genome-wide transcriptional regulation.
Most of the existing TFBS prediction methods consider

the binding of a single TF at a time. These methods result
in lot of false positive predictions as individual sequence
motif models are sensitive but not very specific. Even
though searching of all possible binding sites of one TF
is important, it gives only a limited view of the whole
transcription regulation processes of a cell. Rather than
using only a single TF to regulate the expression of a gene,
several TFs participate in the process in a combinatorial
manner, in certain conditions and at the same time.
Further, other DNA binding TFs are also present in the
nucleus even though they may not regulate the gene of
interest directly. If these TFs have accessible binding
sites on the promoter of the studied gene, they can bind
to DNA and block the binding of the other TFs. For
example, in regulation of collagen type I (1) and in differ-
entiation processes of hematopoietic stem cells (2), specific
TFs can block the binding of other TFs that are
participating in the regulation. Therefore, the transcrip-
tion regulation process by TFs can be thought of as a
competition between TFs. Those TFs that have the
highest affinities to bind the sequence will, on average,
win the competition of the binding site, but even those
TFs that have lower affinities to this site have their
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chance as determined by the steady state of the physical
binding competition. Competition of binding sites is also
affected by explicit interactions between regulatory
TFs. For these reasons, studying the binding of all differ-
ent TFs simultaneously is biologically more realistic than
combining the predictions made for individual TFs.
A few schemas for predicting TFBS of multiple TFs at

the same time already exist. These methods basically use
two different approaches (3). The methods in the first
category search for closely located binding sites as it is
known that TFs interact with each other in the regulation
process, and thus the TFBSs should be near to each other
to allow interactions. These proximal TFBSs can then be
applied to further searching and grouping to find
regulating factors as has been done in (4–6). The other
methods search for so-called cis-regulatory modules.
These modules are clusters of binding sites for TFs
that are known to affect expression together and to
possibly interact with each other. Methods for searching
cis-regulatory modules are presented, for example, in
(7) where hidden Markov models and expectation
maximization are used and in (8) which applies Gibbs
sampler to the model.
In this article, we present a new method for predicting

binding of several TFs simultaneously. Our method makes
Bayesian inference for integrated probabilistic sequence
specificity models and TFBSs and uses the prior knowl-
edge of existing protein–protein interactions (PPIs) in pre-
diction. Modeling results in a carefully constructed set of
binding sites in the mouse genome show remarkable
improvement compared with the cases where the individ-
ual prediction results of separate TFs have been
combined. Especially the number of false binding sites
is decreased significantly and previously unpredictable
binding sites can be identified. A comparison with
a widely used multiple TFBS prediction method,
MSCAN (6), also shows the better performance of our
model.

MATERIALS AND METHODS

MultiTF-PPI: a probabilistic model for competitive
TF binding with PPIs

We formulate a PPI guided probabilistic model for com-
petitive TF binding prediction, MultiTF-PPI. The goal of
our method is to develop a biologically realistic model that
mimics the situation in the cell. Thus, we take into account
the existence of several TFs in the regulating process and
their cooperation in the form of explicit and implicit
interactions. As the knowledge of existing PPIs is not
always available, we also provide a version of our
multiple TF predictor without PPIs, MultiTF. In our
modeling schema, we explicitly model simultaneous
binding of several TFs to the same DNA sequence,
which corresponds the situation where a large number of
TFs compete for the binding to the same sites on a
promoter. The proposed MultiTF-PPI method uses a
similar idea as our previously developed probabilistic TF
binding prediction method (9) which was developed for
analyzing binding of a single TF together with additional

sequence-level information. Here, we apply Bayesian
inference to model binding of several TFs simultaneously
as we know that practically all TFs can bind to any DNA
sequence stretch, where the strength of binding is deter-
mined by the sequence affinity of each TF. Our
probabilistic approach differs from the traditional use of
deterministic binding sites model, such as position-specific
frequency matrices (PSFMs), by modeling PSFMs as
random variables and thereby providing a way to learn
binding site characteristics from the data as well. In
addition, as a result of using probabilistic framework,
our method can detect both weak and strong TFBSs.
This further justifies our modeling schema as also weak
binding sites are known to be important for regulation
processes (10). Furthermore, MultiTF-PPI provides all
prediction results in terms of probabilities, which also
allows us to answer quantitative questions of the TF
binding. Most importantly, MultiTF-PPI also includes
explicit interactions between TFs. The consequences of
these interactions on TF binding are propagated into TF
binding probabilities.

MultiTF-PPI is constructed in two steps: construction
of the competitive binding model (MultiTF part), and
incorporating interactions between regulatory TFs (PPI
part). Our competitive method first models the binding
of several TFs to a whole promoter sequence. Binding
affinity of each TF is represented by a PSFM and
nonbinding sites are represented by the standard
Markovian background model. Using these definitions
alone, it is straightforward to compute the probability of
a sequence given the binding locations of a set of TFs.
Instead of the standard frequentist computation, we
implement a Bayesian alternative that integrates out the
model parameters and computes the posterior probability
of the given TFBSs. Computing Bayesian posterior
probabilities for all TFBS locations and summing the
probabilities of relevant locations gives a principled way
of computing binding probabilities for any TF–TFBS pair
or set of those pairs. Direct computation of the Bayesian
probability for all TFBS locations is intractable. To this
end, we devise our model with a flexible Markov chain
Monte Carlo (MCMC) estimation method. This model
allows modeling competitive binding of any number of
TFs to DNA together with arbitrary complex PPIs.

Explicit PPIs are incorporated into MultiTF via an
informative prior of TFBSs. The prior is constructed
such that sufficiently closely located binding sites for
TFs that have reported interactions are more probable
a priori. We consider two different PPI priors: a piecewise
flat prior where interacting TFs are assigned a higher
probability as long as the TFBSs are within a length
threshold, and a triangular prior where the prior
strength is proportional to the distance of interacting
TFs. The model version without interactions and prelim-
inary results are also presented in our workshop report
(11). See following sections for full details of the methods.

MultiTF: probabilistic model

Our probabilistic model for competitive TF binding pre-
diction is built on the standard probabilistic building
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blocks. Let X=(x1,. . .,xL) denote a gene promoter, where
xi2fA,C,G,T} and L is the length of the sequence.
Sequence specificities of TFs are modeled using the
PSFM. Let yk denote the ‘k-length PSFM for TF k,
where yk(xi,j) defines the probability of having nucleotide
xi at the j-th position of the PSFM. Note that the location
within a PSFM yk(�,j) is indexed as j=1,. . .,‘k. PSFMs for
m TFs are collectively denoted by �=(y1,. . .,ym).
Nonbinding sites are modeled using the d-th order
Markovian background model f, where f(xi)=
f(xi|xi-1,. . .,xi-d) specifies the probability of observing
nucleotide xi given the previous d nucleotides. To model
the binding of multiple TFs simultaneous, let
A=(a1,. . .,ac) denote the start positions of c nonover-
lapping binding sites on X, and vector �=(�1,. . .,�c)
specifies which of the m TFs bind at each of the loca-
tions (i.e. �i2f1,. . .,m}). Given these model assumptions,
it is straightforward to compute the probability of
sequence X as

PðXjA,�,�,�Þ ¼ PðXj�Þ
Yc
j¼ 1

Wð�jÞaj
, 1

where PðXj�Þ ¼ PðXjA ¼ ;,�Þ ¼
QL

i¼ 1 �ðxiÞ and

Wð�jÞaj
¼

Q‘�j�1
i¼ 0

��j ðxaj þ i,iþ 1Þ

�ðxaj þ iÞ
, if 1 � aj � L� ‘j þ 1,

0, otherwise:

8><
>: 2

Because binding specificities are known to contain a
considerable amount of uncertainty, we let PSFMs as
well as Markovian background model to be random
variables and make Bayesian inference. We use Dirichlet
priors for the PSWMs and the background model.
Hyperparameters (pseudocounts) of the PSWMs are
specified by the normalized TRANSFAC matrixes which
is known to implement a strong regularization (12).

To make predictions of binding sites, a key quantity
is the posterior probability that a set of TFs, defined
by �, bind at specific locations defined by A, given a
sequence X

PðA,�jXÞ / PðXjA,�ÞPðA,�Þ: 3

The marginal likelihood is obtained by integrating over
the parameters

PðXjA,�Þ ¼

Z
�,�

PðXjA,�,�,�ÞPð�,�jA,�Þd�d�, 4

where the likelihood term is defined in Equations (1) and
(2), and Pð�,�jA,�Þ ¼ Pð�Þ

QjAj
i¼ 1 Pð�iÞ is the product of

independent Dirichlet priors. Conjugate prior allows a
closed-form solution to the marginal likelihood. Let nijk
denote the number of times a nucleotide i is seen at the j-th
position of the k-th PSFM (pseudocounts of the
PSFMs aijk are defined analogously), and let nij

0 denote
the number of times a d-length nucleotide sequence j is
followed by nucleotide i in the background model
(pseudocounts of the background model aij0 are defined
analogously). Define njk ¼

P
i nijk, �jk ¼

P
i �ijk,

n0j ¼
P

i n
0
ij, and �0j ¼

P
i �
0
ij. Equation (4) can be

written as

PðXjA,�Þ ¼
Y4d
j¼ 1

�ð�0jÞ

�ð�0j þ n0jÞ

Y
i2fA,C,G,Tg

�ð�0ij þ n0ijÞ

�ð�0ijÞ

�
Ym
k¼ 1

Y‘k
j¼ 1

�ð�jkÞ

�ð�jk þ njkÞ

Y
i2fA,C,G,Tg

�ð�ijk þ nijkÞ

�ð�ijkÞ
,

5

For the basic method without PPIs, the prior P(A,�)
is defined as PðA,�Þ ¼

P
c¼0 PðA,�jcÞPðcÞ ¼ PðA,�jc ¼

jAjÞPðc ¼ jAjÞ, where c is again the number of TFBSs,
P(A,�|c) is uniform for a given c, and P(c) is an
exponentially decreasing function [see (9) for details].

MultiTF-PPI

Interactions between regulatory proteins are incorporated
into the model via an informative prior P(A,�), which
probabilistically biases the search of TFBSs to those
locations and configurations (A,�) where interacting
TFs are within a close distance. Let g(.) be a potential
function that depends on the smallest distance between
two TFBSs yrs=minf|as+ ‘s–ar|,|as – ar – ‘r|}, r 6¼ s. We
consider two potential functions, constant

gcðyÞ ¼
w1, if y � t1,
1 otherwise

�
, 6

and truncated triangular

gtðyÞ ¼

w2, if y � t2,
w2�1
t2�t3
ðy� t3Þ þ 1, if t2 � y � t3

1, otherwise:

8><
>: , 7

The informative prior is defined as follows

PðA,�Þ /
Yc�1
r¼ 1

gðyrðrþ 1ÞÞ, 8

where the empty product equals one and g is either gc or
gt. In the analysis, we used parameters t1=80, w1=3,
t2=60, t3=12 and w2=4.

MCMC estimation

Direct computation of the posterior for all (A,�) is impos-
sible. We develop a Metropolis–Hastings (MH) algorithm
to sample from P(A,�|X). The sampler is similar with
the one proposed in (9) except that it is now extended
to multiple TFs. Our MH implementation uses the follow-
ing proposal distribution, G(A0,�0|A,�), to propose new
TFBSs (A0,�0) given the current state (A,�):

� with probability p, for a randomly chosen TF, propose
a new nonoccupied and nonoverlapping TFBSs
uniformly randomly, if a free TFBS exists,
� with probability 1-p, delete a randomly chosen TFBS
from (A,�), if a TFBS exists.
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Proposed moves are accepted with the probability that
satisfies the detailed balance condition

R ¼ min 1,
PðA0,�0jXÞ

PðA,�jXÞ

GðA,�jA0,�0Þ

GðA0,�0jA,�Þ

� �
: 9

The sampler operates in a finite space and is easily seen
to be ergodic by showing irreducibility and aperiodicity.
Hence, the chain is guaranteed to converge to the correct
posterior in the limit of infinite samples. After a
burn-in period B, we collect a sample ((A(B+1),�(B+1)),
(A(B+2),�(B+2)) , . . . , (A(B+N),�(B+N))). For finite
samples, we monitor the convergence by running two
parallel chains and measure the L1-distance between bind-
ing probabilities of each TF over the whole promoter. The
sample size N is increased as long as all the L1 distances
are below a threshold (1� 10�4).

Statistical inference

We are interested in computing two types of poste-
rior probabilities, the probability that TF k binds the loca-
tion j, and the probability that TF k binds somewhere in
the promoter. Define Ajk ¼ fðA; �Þ : 9i : ai ¼ j ^ �i ¼ kg.
The first quantity can then be easily computed

Pð‘TF k binds at location j of sequence X ’Þ

¼
X

ðA;�Þ2Ajk

PðA; �jXÞ: 10

The second binding probability can be computed
similarly by defining Ak ¼ fðA; �Þ : 9i : �i ¼ kg and
summing

Pð‘TF k binds the promoter sequenceX’Þ¼
X
ðA;�Þ2Ak

PðA;�jXÞ:

11

A useful alternative to Equation 11 is to take the max-
imum of the binding probabilities over a promoter, i.e.

Pð‘TF k binds the promoter sequence X’Þ

� max
j

X
ðA;�Þ2Ajk

PðA; �jXÞ: 12

Note that, despite the max operation, Equation (12)
includes all the aspects of competitive binding and PPIs.
The above probabilities can be directly estimated from the
MCMC chain using sample averages which converge to
true posterior probabilities almost surely.

Data

We validated our results with the test set used in (9) that
was originally generated from ABS (13) and OregAnno
(14) databases (test data set is publicly available at
http://www.probtf.org/). We filtered the primary test set
by removing sequences (and binding sites) for which non-
redundant PSFMs for the TFs were not known. After this
we had 29 promoter sequences. Promoter sequences were
cut 50 nt before the first known TFBS and 50 nt after the
last one. The lengths of sequences varied between 110 nt
and 1322 nt.

Nonredundant set of PSFMs used in this study was
collected from TRANSFAC [(15); Release 10.3]. After
this, 27 different TFs had binding sites in the test set
and this set of TRANSFAC matrices was used in all
predictions. Markov model parameters were estimated
from a set of 250 upstream noncoding sequences that
are believed not to contain TFBSs.

Used PPIs were collected from the Biomolecular
Interaction Network Database [BIND; (16)], the
Biological General Repository for Interaction Datasets
[BioGRID; (17)] and the Human Protein Preference
Database [HPRD; (18)]. Only interactions for animals/
mammalians were used, depending on the databases
possibilities. As the same protein can have many different
aliases, these were searched from GenBank (19) to avoid
excluding the existing interactions.

RESULTS

Competitive binding modeling reduces false positives

We tested the MultiTF by computing the TFBS
predictions for our test set. These predictions were
compared with the results where individual predictions
for each TF (9) were combined. Individual predictions
for TFs using the method from (9) without any additional
data is known to perform slightly better than the widely
applied standard scanning methods for binding site pre-
diction (20–22) and hence represents a valuable point of
comparison. Overall, the results of MultiTF show sub-
stantial improvement when compared with the combined
individual predictions. The individual predictions often
result in physically impossible situations where several
TFBSs are overlapping, which is illustrated in Figures 1
and 2. In the first figure the three known TFBSs for mouse
leptin promoter are shown. TF Sp1 is known to bind to
region �100/�95 of the promoter (relative to transcription
starting site), cEBP to region �58/�28 and TBP to the
region �33/�28 (23). However, other TFs could also
bind to the promoter, especially MYB, Sp1 and TEAD
have high affinities to the cEBP binding site as
demonstrated in Figure 2.

As an example case we predicted TFBSs for the mouse
leptin promoter region �145/�1 with MultiTF, MultiTF-
PPI and combined individual predictions and the results
of these predictions are shown in Figures 3 and 4. In the
first figure, only the predictions for three TFs that are

SP1
cEBP

TBP

GGGCGG GTTGCGCAAG TATAAG

–100 –50–75 –25 TSS

Figure 1. Known binding sites for mouse leptin (U36238) promoter.
Interactions known to exist (from databases) between TFs are marked
with shaded curves. TSS denotes the transcription starting site.
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known to bind the promoter, Sp1, cEBP and TBP are
shown and in the other figure the predictions for all 27
TFs used in the analysis are shown. For Sp1, the binding
site at �100/�95 was correctly predicted with all of the
methods. However, with individual combined prediction,
analysis resulted in four false binding site predictions for
Sp1, whereas with MultiTF only one false prediction was
made. The individual combined predictions also resulted
to the situation where the cEBP binding site have four
different candidate TFs to bind, cEBP (the true one),
MYB, SP1 and TEAD (Figure 4a). On the other binding
sites the situation was similar. Thus, our results suggest

that the commonly used combined individual prediction
approach to TFBS prediction generates a large number of
false positives and complicated overlapping results, with
increasing severity when the number of TFs is increased.
With MultiTF, this problem is clearly diminished as the
number of false positives is reduced from 10 to 2 (in
addition, in both predictions there always exist some
very weak binding sites). Thus, MultiTF overcomes the
main problem of traditional methods, which is the
number of false positives. Furthermore, with MultiTF
the binding of cEBP was predicted correctly instead of
choosing some of the other three false TFs. The known
binding site for TF TBP on leptin promoter could not be
predicted with either of the methods, which stems most
probably from TBP’s incompatible binding specificity
model. The results for the rest of the data set were
similar as combined individual predictions led to several
overlapping and contradicting predictions and MultiTF
predicted far less binding sites. A more comprehensive
comparison of results is shown in the next sections.

Interactions between regulatory TFs strengthen
TFBS predictions

We compared MultiTF-PPI with the other methods after
adding an informative prior for TFBSs constructed from

Figure 3. Predictions for mouse leptin promoter. Predictions are presented only for those TFs that are known to bind to the promoter. Known
binding sites are shaded. (a) Individual predictions, (b) MultiTF, (c) MultiTF-PPI, piecewise flat prior, and (d) MultiTF-PPI, triangular prior.

SP1

SP1cEBPTEAD1MYB

–100 –50–75 –25 TSS

Figure 2. TFBS binding site predictions when individual predictions
are combined. The SP1 binding site is predicted correctly but for the
cEBP binding site predictions suggest also binding for MYB, SP1 and
TEAD. Only predictions on these two binding sites are shown.
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PPIs. We used two different priors, the piecewise prior and
the triangular prior. For the MultiTF-PPI with piecewise
prior, we increased the prior with a factor of three if the
binding sites were closer than 80 nt and for the triangular
prior, we started from the weight four with the distance 12
and weight strength dropped linearly to the one when
distance between binding sites were 60 or more. These
weights and distances gave the best results when testing
different values for the parameters (for weights we tested
parameters between two and five and for distances values
between 10 and 100). The distance between piecewise prior
is �7.6 DNA turns and 5.7 for the triangular prior, so in
both models there exist several proximal major and minor
grooves which the interacting TFs can use for binding.
In general, with piecewise flat prior the best results were
obtained with weight three with varying distance from 40
to 90 nt ,whereas with triangular prior the starting weights
four and five with maximum distance for weighting from
40 to 60 nt had the best performance.
The prediction results with MultiTF-PPI gave generally

similar results compared with MultiTF (e.g. Figure 3c
and d and Figures 4c and d). However, in several cases,
interactions improved predictions with strengthening the
binding affinity of a real binding site or by weakening the
affinity of a false one. Producing predictions with MultiTF

may result for finding only weak binding signals as can be
seen in Figure 5, which illustrates the TFBSs predictions
for the acetylcholinestherase (ACHE) promoter. Promoter
has six annotated binding sites for three different TFs, of
which the first two adjacent Sp1 binding sites compete
with the EGR1 of binding (see the shaded truncated
binding sites in the Figure 5) (24). First, note the
enormous amount of false positive predictions for the
combination of individual predictions in Figure 5a.
Again it is indeterminable which of the overlapping
predictions are the right ones as apart from Sp1, also
GATA4, TEAD1 and HNF4 are predicted to bind on
to the promoter with a high affinity. With MultiTF
(Figure 5b) majority of false predictions are diminished
totally or partly. However, even though the number of
false positives is dramatically reduced, only the first two
binding sites of Sp1 are predicted clearly, whereas the
third shows only a weak binding site. When the prediction
is run with MultiTF-PPI, the situation changes. The
method incorporates for the binding model the effect of
known homotypic interaction of Sp1 and the heterotypic
interaction between Sp1 and EGR1. Prediction results
show (Figure 5c) that with piecewise flat prior both
of the Sp1 binding sites are predicted correctly.
Nonetheless, use of the interactions raises the amount of

Figure 4. Predictions for mouse leptin promoter. Predictions are presented for those TFs that bind with affinity more than 0.1. Known binding sites
are shaded. (a) Individual predictions, (b) MultiTF, (c) MultiTF-PPI, piecewise flat prior and (d) MultiTF-PPI, triangular prior.
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false predictions of that of the MultiTF. However, the
amount of false positives is still far from the number of
that obtained with combined individual predictions.
Furthermore, if one is interested only in the regulating
set of TFs, the false positives of MultiTF-PPI are not
interfering the result. When we perform the prediction
using triangular prior, the situation changes a little. The
Sp1 binding is predicted similarly as with the piecewise flat
prior except the first binding sites. Instead of predicting
two first Sp1 sites, we have predicted EGR1 binding site
which could not be predicted with the other method
versions. As Sp1 and EGR1 really compete for on this
binding site in the cell, the competitive modeling schema
as such can mimic the biological regulation process.

Incorporating PPIs into the competitive binding model
does not only reduce the false positive rate (FPR) but also
can lead to finding of new binding sites that cannot be
predicted with other models. An example of this can be
seen in Figure 6 where the predictions and real binding
sites for the activating transcription factor 2 (ATF2,
preciously known also as CREB2) promoter are shown.
The promoter has five different binding sites for Sp1 which
is known to form homocomplexes. With combined

individual predictions, only one Sp1 binding site can be
predicted and further, there exists several strong binding
sites for eight other TFs. With MultiTF the false
predictions are reduced to only three additional TFs, but
the single predicted Sp1 binding site is very weak. When
the MultiTF-PPI is used, three of the five Sp1 binding sites
are predicted correctly. Neither individual predictions nor
MultiTF could predict these binding sites at all. The false
predictions of the PPI model are extra occurrences of Sp1
and no other TFs have strong false affinity to the
promoter unlike with individual combined or MultiTF
prediction methods have.

Competitive methods improve TFBS predictions

Above, we have showed concrete examples of how
our models ameliorate the TFBS predictions. We also
evaluated the overall performance of our methods to
identify TF target genes with receiver operating character-
istic (ROC) curves and the area under the curve (AUC).
The ROC curves in Figures 7 and 8 [obtained with
Equations (12) and (11), respectively] show large improve-
ment in the performance of all the competitive
methods relative to the combined individual predictions.

Figure 5. Predictions for mouse acetylcholinesteterase promoter. Predictions are presented for those TFs that bind with affinity more than 0.1.
Known binding sites are shaded. (a) Individual predictions, (b) MultiTF, (c) MultiTF-PPI, piecewise flat prior and (d) MultiTF-PPI, triangular prior.
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In Figure 7, after the competitive binding modeling
with or without PPIs, binding estimates are obtained by
computing the maximum binding probability over the
promoter sequence, whereas in Figure 8 binding estimates
are computed using the total binding probability. Based
on these ROC curves, the maximum binding probability
approach (computed from MultiTF-PPI output) seems
to give comparable or slightly better discrimination
performance than the total probability approach. This
better discrimination is possibly due to low specificity of
the PSFM models, which, therefore, can result in several
weak false positive binding site predictions. Although such
weak false predictions have a low probability, summing
over the whole promoter can decrease the relative impor-
tance of the real, high-probability binding sites and thus

increase the background noise. The biggest improvement
is found with small and most preferable FPRs.
Competitive models are far more discriminative from the
random case than the individual predictions. The same
result can be found as the AUC scores [for the Equation
(11)] in Table 1, where we also report the AUC scores for
the case where the sum individual predictions are
normalized to be one at most in a single binding site.
The normalization, however, weakens the power of indi-
vidual predictions and thus we have compared our
methods with the nonnormalized case. For FPR 0.1, the
AUC of the MultiTF-PPI with both of the priors is twice
as large as the AUC of combined individual predictions.
Further, the AUC of the sole MultiTF improves the indi-
vidual predictions with >45% higher AUC score. In total,

Figure 6. Predictions for mouse activating transcription factor 2 promoter. Predictions are presented for those TFs that bind with affinity more
than 0.1. Known binding sites are shaded. (a) Individual predictions, (b) MultiTF, (c) MultiTF-PPI, piecewise flat prior and (d) MultiTF-PPI,
triangular prior.
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the MultiTF-PPI with triangular prior shows to be slightly
better than the version with piecewise flat prior. The
MultiTF-PPI improves the simple MultiTF when FPR is
<0.3 and thus is favorable especially for appropriate,
small FPR values.

We also tested the effect of randomly generated inter-
action data on predictions. Random PPIs were generated
by preserving the number of PPIs in the original data
(see details from Supplementary Data). Supplementary
Figures S1 and S2 show the expected behavior that
MultiTF-PPI with random PPIs performs worse than
with the correct PPIs. Surprisingly, MultiTF-PPI with
random PPIs seems to perform slightly better than
MultiTF without interactions. Because the PPI adjacency
matrix is relatively dense in our case, on average one-
fourth of the randomly generated PPIs were also correct
ones. The slight improvement in the results compared with
the MultiTF predictions can be understood by the fact
that the proposed method incorporates PPIs probabil-
istically by biasing (but not explicitly forcing) binding
sites of interacting proteins close to each other. Overall,
this suggests that the method is not sensitive to noisy inter-
action information.

We also compared our results with those of MSCAN,
method that searches functional TFBS clusters. We run

the program with default parameters and changed only
the minimum number of hits to one to allow also the
occurrence of single binding sites in the predictions.
With MSCAN, we achieved TPR 0.0250 with FPR
0.0042. When we compared our results with the other
methods both the prior forms of MultiTF-PPI outweigh
MSCAN clearly, with piecewise flat prior TPR being
0.0909 and with triangular prior true positive rate (TPR)
being 0.0649. With MultiTF, the nearest FPR point is at
0.0057 where TPR is 0.0390. However, MSCAN performs
better than normalized combined individual predictions:
with FPR of 0.0042, TPR is only 0.0130.
The running time of the algorithm depends on several

parameters, including promoter sequence length and the
number of TFs. The running time also depends on a user-
tunable parameter for the MCMC estimation convergence
threshold, for which we have used a rather stringent
threshold of 1� 10�4. In our simulations, typical
running times are of the order of 30min per promoter.
In applications, reasonably well-converged results can
be obtained with much less stringent convergence
thresholds, say 1� 10�2, which decreases the running
time considerably.
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Figure 8. ROC curves for different methods [computed with
Equation (11)].

0 0.2 0.4 0.6 0.8 1
0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

combined individuals
individuals normalized
MultiTF
MultiTF−PPI, piece wise prior
MultiTF−PPI, triangular prior

Figure 7. ROC curves for different methods [computed with
Equation (12)].

Table 1. AUC scores for different methods

FPR 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Individual 0.0127 0.0253 0.0421 0.0651 0.0919 0.1214 0.1524 0.1865 0.2228
Individual normalized 0.0104 0.0237 0.0412 0.0644 0.0904 0.1194 0.1503 0.1845 0.2213
MultiTF 0.0185 0.0370 0.0606 0.0884 0.1179 0.1513 0.1849 0.2201 0.2578
MultiTF-PPI, piecewise flat prior 0.0252 0.0465 0.0705 0.0957 0.1215 0.1505 0.1826 0.2168 0.2554
MultiTF-PPI, triangular prior 0.0252 0.0467 0.0709 0.0961 0.1220 0.1514 0.1841 0.2192 0.2556
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DISCUSSION

In this article, we have presented a probabilistic method,
MultiTF-PPI that predicts the binding of many TFs
simultaneously. Our method is based on biologically real-
istic assumptions and uses probabilistic framework to
model the competition for the binding of several TFs on
the promoters. We have added the known PPIs to the
model as a prior knowledge to improve predictions. This
model can increase the binding affinity of a TF that
interacts with already bound TFs or prevents displacing
a bound TF that interacts with other TFs. We also present
a method without PPIs. Both of our proposed methods
are useful tools when predicting the TFBSs on DNA
sequences. Methods can be used both in the situations
where no prior knowledge of regulating factors exists
and in the cases when the regulating set (or part of it)
for TFs of a particular gene is already known. In both
the cases, realistic prediction results are obtained as the
well-known problems in traditional TFBS prediction, such
as high number of false positives and overlapping TFBSs,
are overcome.
If the set of regulating TFs is unknown, our method

allows to use a large set of possible regulators in the pre-
diction. Additionally, interfering TFs can also be added to
the model to better mimic the transcription process in
nucleus. Even though a set of several regulating proteins
is used, the number of predicted TFBSs remains reason-
able, which is usually not the case when predicting the
binding sites of TFs separately. In the situations where
some information about of regulating TFs is available,
our methods can also be applied with those TFs that are
known to regulate the gene. This allows the use of knowl-
edge of existing protein data obtained with mass
spectrometry-derived methods or with the other quantita-
tive measurements’ along the same lines as has been done
in (10). Further, other additional data sources can be
added to the model as a prior knowledge as illustrated
in (9). This kind of valuable prior knowledge can be
obtained, for example, from nucleosome locations (25)
and conservation data (26), which are shown to improve
motif discovering and TFBS predictions. These additional
information sources are easily incorporated and combined
into our model.
The use of our competitive TFBS methods allows also

to find TFBSs that cannot be found by individual
predictors. This overcomes some of the problems that
are encountered while using PSFMs as a binding model.
PSFMs have been built using a varying number of verified
binding sites, which results to varying quality of the
matrices. Thus, many TFs can be predicted to have only
a weak affinity on DNA. These binding affinities can be,
nevertheless, strengthened by using PPIs.
Besides the quality of PSFMs, also the characteristics of

the PPI databases can increase the noise level of the
predictions. Many PPIs can be found from proteome-
wide databases, but most of the interactions are reported
to take place in regulation process of certain genes in
certain conditions. PPIs may also require a specific order
of interacting proteins or the interactions may exist only
with a fixed distance, albeit bending of DNA allows some

flexibility on this. These different preferences of distances
between different PPIs would be useful to incorporate into
the model. Another source of uncertainty is caused by
complexes that are formed by several TFs. In these
complexes all of the TFs do not bind to DNA at all. We
tried to integrate this information to the model, too, but
when we allowed interactions also via one transmitter
protein, the modeling results deteriorated. Nonetheless,
this result was quite expected, as the noise in the PPI
databases cumulates and can affect the results even more
than with the direct PPIs. As part of future work, we will
study if information about known or predicted protein
complexes can improve the prediction accuracy. The
third problem of using PPI data is the lack of knowledge
whether some factors can interact at all. However, it is
currently impossible to gather comprehensive information
about noninteracting proteins as all the possible
conditions and gene regulation processes cannot be
tested experimentally.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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9. Lähdesmäki,H., Rust,A.G. and Shmulevich,I. (2008) Probabilistic
inference of transcription factor binding from multiple data sources.
PLoS ONE, 3, e1820.

10. Segal,E., Raveh-Sadka,T., Schroeder,M., Unnerstall,U. and
Gaul,U. (2008) Predicting expression patterns from
regulatory sequence in Drosophila segmentation. Nature, 451,
535–540.
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