
ORIGINAL RESEARCH
published: 16 August 2021

doi: 10.3389/fped.2021.711104

Frontiers in Pediatrics | www.frontiersin.org 1 August 2021 | Volume 9 | Article 711104

Edited by:

Avihu Z. Gazit,

Washington University School of

Medicine in St. Louis, United States

Reviewed by:

Danny Eytan,

Technion Israel Institute of

Technology, Israel

Stephanie R. Brown,

University of Oklahoma, United States

*Correspondence:

Melania M. Bembea

mbembea1@jhmi.edu

Specialty section:

This article was submitted to

Pediatric Critical Care,

a section of the journal

Frontiers in Pediatrics

Received: 17 May 2021

Accepted: 12 July 2021

Published: 16 August 2021

Citation:

Bose SN, Greenstein JL, Fackler JC,

Sarma SV, Winslow RL and

Bembea MM (2021) Early Prediction

of Multiple Organ Dysfunction in the

Pediatric Intensive Care Unit.

Front. Pediatr. 9:711104.

doi: 10.3389/fped.2021.711104

Early Prediction of Multiple Organ
Dysfunction in the Pediatric Intensive
Care Unit
Sanjukta N. Bose 1,2, Joseph L. Greenstein 1, James C. Fackler 3, Sridevi V. Sarma 1,4,

Raimond L. Winslow 1,4 and Melania M. Bembea 3*

1 Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, United States, 2Department of

Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States, 3Department of

Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States,
4Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States

Objective: The objective of the study is to build models for early prediction of

risk for developing multiple organ dysfunction (MOD) in pediatric intensive care unit

(PICU) patients.

Design: The design of the study is a retrospective observational cohort study.

Setting: The setting of the study is at a single academic PICU at the Johns Hopkins

Hospital, Baltimore, MD.

Patients: The patients included in the study were <18 years of age admitted to the

PICU between July 2014 and October 2015.

Measurements and main results: Organ dysfunction labels were generated every

minute from preceding 24-h time windows using the International Pediatric Sepsis

Consensus Conference (IPSCC) and Proulx et al. MOD criteria. Early MOD prediction

models were built using four machine learning methods: random forest, XGBoost,

GLMBoost, and Lasso-GLM. An optimal threshold learned from training data was used

to detect high-risk alert events (HRAs). The early prediction models from all methods

achieved an area under the receiver operating characteristics curve ≥0.91 for both

IPSCC and Proulx criteria. The best performance in terms of maximum F1-score was

achieved with random forest (sensitivity: 0.72, positive predictive value: 0.70, F1-score:

0.71) and XGBoost (sensitivity: 0.8, positive predictive value: 0.81, F1-score: 0.81) for

IPSCC and Proulx criteria, respectively. The median early warning time was 22.7 h for

random forest and 37 h for XGBoost models for IPSCC and Proulx criteria, respectively.

Applying spectral clustering on risk-score trajectories over 24 h following early warning

provided a high-risk group with ≥0.93 positive predictive value.

Conclusions: Early predictions from risk-based patient monitoring could provide more

than 22 h of lead time for MOD onset, with ≥0.93 positive predictive value for a high-risk

group identified pre-MOD.
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INTRODUCTION

Pediatric multiple organ dysfunction syndrome (MODS) occurs
in more than 25% of children admitted to the pediatric intensive
care unit (PICU) (1–3) and is one of the leading pathways to
mortality in critically ill children (4). MOD has been defined as
the presence of two or more concurrent organ dysfunctions (4–
7). Multiple underlying conditions could lead to MOD, although
sepsis stands out as the most commonly associated condition
(3, 8–10) followed by trauma, burns, pancreatitis, inborn errors
in metabolism, transplantation, and others (4). The all-cause
incidence of MOD ranges between 6% in 283 admissions from
a single PICU and as high as 57% in 3,671 admissions across
nine PICUs (1, 2, 4, 9, 11–14). A higher number of dysfunctional
organ systems is associated with increased risk of mortality
regardless of the study population (8, 15, 16) with more than
75% difference in mortality between patients with the lowest
and highest numbers of organ failures (9, 10). In a prospective
study of 831 patients in a single PICU, more than 90% of
deaths were associated with MODS (5, 6). Of children admitted
to the PICU, 14–30% encounters have MOD on PICU day 1
(1, 14, 17) consisting of the largest proportion (78%) of all
PICU MOD cases (18). New and progressive MOD (NPMOD)
is defined as concomitant dysfunction of two or more organ
systems occurring after PICU admission with no or single
organ dysfunction, or additional dysfunctional organs following
admission with MOD (19). NPMOD has been proposed as
primary or secondary outcome instead of mortality in several
pediatric critical care studies as PICU mortality has declined
significantly over the last decades (19–22). There continues to be
insufficient knowledge of the physiologic trajectory of patients
who develop new, progressive, or persistent multiple organ
dysfunction. We hypothesized that a complex set of physiologic
patterns likely preceded adverse events such as simultaneous
failure of more than one organ system.

Due to the inherent diversity in the cause and sequence of
physiologic events that lead to MOD, the need to understand
the risk factors for, and progression of, the syndrome calls for
investigating ways to predict MOD, with the ultimate goal of
optimizing monitoring, staffing, and early intervention regimens
based on the progression of the underlying condition. The
primary objective of this study was to develop data-driven early
prediction models for identifying patients with increased risk
of transitioning from no-MOD to MOD state. The secondary
objective of this study was to explore if the time-evolving risk
of developing MOD among positive predictions presented any
clustering patterns and, if so, whether these patterns could be
used as a risk-stratification method.

MATERIALS AND METHODS

Study Design and Patients
We conducted a retrospective cohort study including all children
<18 years admitted to the Johns Hopkins PICU between July
2014 and October 2015. This dataset included time series
physiologic monitoring data from bedside monitors as well as
electronic medical record data including ICD-9/10 diagnostic

and procedure codes, vital signs, drug infusions, respiratory
support, laboratory results, fluid input–output, and transfusion
data. We excluded PICU encounters with missing hospital
admission and discharge times, missing demographics, or vital
signs, those with <2 h of PICU data preceding time of death
and those with PICU day 1 MOD without recurrent transitions
from no-MOD to MOD state. We further excluded no-MOD
to MOD transitions with <15min of data available prior to
MOD transition. This study was approved by the Johns Hopkins
Institutional Review Board (IRB00210572).

Multiple Organ Dysfunction Definitions and
Multiple Organ Dysfunction Label
Evaluation
MOD is defined by the simultaneous presence of two or more
organ dysfunctions (5–7, 18, 23). For this study, we used two
widely accepted sets of organ dysfunction criteria published
by Proulx et al. (4, 18) and International Pediatric Sepsis
Consensus Conference (IPSCC) (7). We assigned and updated
organ dysfunction labels every minute using the preceding 24-h
windows, starting at 24 h from the time of PICU admission until
PICU discharge. Organ dysfunction was evaluated starting 24 h
from the time of PICU admission because no data was captured
prior to PICU admission and reporting delay in laboratory test
results might cause the first few hours to be labeled as not having
organ dysfunction due to non-availability of measured data.
Therefore, PICU encounters where MOD occurred within 24 h
after admission and never recurred during the PICU course and
those with <15min of data prior to transition from a no-MOD
to MOD state any time during the PICU course were excluded as
data available prior to MOD transition was deemed insufficient.

We generated continuous binary MOD labels based on the
presence of two or more simultaneous organ dysfunction as
defined by the Goldstein (7) and Proulx criteria (4, 18). In
order to populate infrequently measured physiologic data for
continuous MOD labeling, we used carry-forward interpolation
for a maximum period of 24 h (allowing up to 30 h only if a new
test was ordered within 24–30 h of the previous) for laboratory
tests and 6 h for vasoactive drug administration and continuous
renal replacement therapy. We did carry forward interpolation
for vital signs like non-invasive blood pressure, temperature,
etc., which were not measured every minute. We defined MOD
transition as the event when a patient transitioned from no organ
or single-organ dysfunction to a state of at least two concomitant
organ dysfunctions. We defined the interval of time over which
the number of organ dysfunction remained the same as the dwell
time in that state.

Features
A total of 228 features extracted from minute-to-minute bedside
monitor data and electronic medical record data were used
to train predictive models. A missingness indicator variable
was created for each infrequently measured value that is not
routinely collected from all patients (see Section 1.1 in the
Supplementary Materials and Supplementary Table 1).
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Model Building and Evaluation
The primary objective of this study was to build prognostic
models, which could learn to distinguish physiologic patterns in
the data collected prior to the development of MOD from those
collected from non-MOD patients and provide a quantitative
sense of likelihood of an impending no-MOD toMOD transition.
We used different machine learning methods to build models
that continuously output probability of developing MOD on a
scale of 0–1, which we refer to as risk score in this study. The
risk scores were also filtered by taking the median over the
preceding 5min windows to avoid sudden abrupt changes in risk
scores from any outliers in minute-to-minute captured features.
Using the time-varying risk scores evaluated on data collected
prior to MOD transition as well as non-MOD patient data, we
learned an optimal threshold value using the receiver operating
characteristic (ROC) curve for each model. Since several criteria
to choose thresholds from ROC curves have been described,
we compared our model performances based on two different
methods: point nearest from (0, 1) on ROC curve and point
corresponding to maximum F1-score. We defined a high-risk
alert event (HRA) as an instance when the risk score exceeded
the optimal threshold and then remained above the threshold for
at least 15min. We defined the entire interval over which risk
score stayed above the threshold as the high-risk interval (HRI),
and the lead time between HRA and MOD transition as the early
warning time (EWT).

We divided the complete set of eligible targets and controls
into training and test sets by randomly splitting them in a 4:1
ratio in a stratified manner to preserve the relative ratio of MOD
to non-MOD PICU admissions so that all MOD transitions
from the same patient during a PICU stay are in the same data
partition. We built predictive models for MOD transition events
using training data consisting of up to 24 h of data collected
prior to each MOD transition (target) and an equal number of
randomly selected samples from no-MOD admissions (control).
To test the model performance, we used the entire length of
available data from both target and control periods to evaluate
time-varying probability of developing MOD. The training
set was subjected to 10-fold cross validation for parameter
tuning and training performance assessment. We compared our
model performance in terms of sensitivity, specificity, AUROC
(area under ROC curve), accuracy, F1-score, PPV (positive
predictive value), and NPV (negative predictive value) (24) (see
Supplementary Section 1.2 on performance metrics). We also
presented precision-recall curves in addition to ROC curves to
account for the large class imbalance in the dataset.We compared
the distribution of EWT, EWT normalized by length of available
time and HRI across all positive predictions and reported if any
difference in the distribution of these entities was observed across
true positives and false positives using Wilcoxon rank sum test.

We compared the performance of models built using the
following four methods: extreme gradient boosting (XGBoost)
(25, 26), random forest-based probability machines (random
forest) (27, 28), gradient boosted generalized linear models
(GLMBoost) (29–31), and L1-regularized generalized linear
models (LassoGLM) (24). All models were built in R (version

3.5.3) using the open source CRAN packages: xgboost (26),
ranger (27), mboost (32), and glmnet (24), respectively, for the
above methods. The choice of the above four methods was driven
by the amount of available data, range of model complexity,
and their capability of pruning features to yield a parsimonious
model. The entire analysis, including model building, threshold
selection, performance evaluation, and feature importance
computation, was carried out independently for each of the above
four applied methods.

Apart from being able to detect HRA events and evaluate
EWTs in MOD transition cases, we also performed spectral
clustering (33) on the risk score trajectories post-HRA to
explore if the data resolved into distinct patterns and whether
the accuracy of our predictions differ across different clusters.
The spectral clustering method used in our analysis determined
the number of clusters using the largest eigengap metric in the
graph spectrum of similarity matrix built based on the K-nearest
neighbor algorithm between each pair of positive predicted risk
score trajectories in a 24-h window post-HRA. We also reported
the positive predictive values across different risk groups by
dividing the positive predicted cases into quartiles of risk scores
at HRA, similar to analysis performed across deciles of risk scores
by Liu et al. (34). Wilcoxon rank sum tests were used to compare
the distribution of continuous variables such as EWT, HRI, etc.,
among different groups.

The choice of machine learning methods, training-test
splitting, model building and threshold determination,
performance metrics, and use of clustering and quartiles of
risk-score at HRA to explore the presence of any underlying
patterns in the risk score trajectories post-HRA were planned
a priori. The observations made about differences in the
distribution of EWT, HRIs (both unnormalized and normalized
by length of available data) were based on inspection of the
results obtained with our planned analysis.

Feature Importance Evaluation
Global feature importance was computed on XGBoost and
random forest model using the average fractional contribution
of each feature in the total information gain or reduction
in Gini index, respectively (using built-in functions in the
XGBoost and ranger CRAN packages). For GLMBoost and
LassoGLM, their risk scores are computed in the same
manner as ordinary generalized linear models, and hence, the
trained set of coefficients for each feature reflected its relative
importance within a model. Since all of these four methods use
different metrics to define variable importance, we reported the
quantitative importance scores as relative importance on a scale
of 0–100 such that the feature with the highest importance has
a relative importance equal to 100. These feature importance
metrics may not be accounted for perfectly if a variable is used
more often in a model in lieu of a different feature that is highly
correlated with it. For GLM (generalized linear model)-based
models, relative importance was calculated as the absolute value
of model coefficient for a feature divided by the highest absolute
value of model coefficient across all features.
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RESULTS

Study Population Characteristics
The final cohort included 2,023 patients with 2,565 PICU
encounters (Figure 1 and Table 1). MOD was present in 893
(36.2%) and 692 (28.1%) of PICU encounters, using the IPSCC
and Proulx criteria, respectively. Most MOD was present on
PICU day 1, rendering a final data set of 293 and 687 MOD
transitions using the IPSCC and Proulx criteria, respectively,
that had >15min of data prior to the time of transition. Rates
of individual and multiple organ dysfunction are shown in
Table 1. In bivariate analysis, age, weight, cardiac surgery during
the admission, a diagnosis of status asthmaticus, pneumonia,
sepsis, cardiac arrest, or renal insufficiency, chronic conditions
(35, 36), and interventions including transfusions and ECMO,
were significantly associated with MOD (p < 0.05) during the
PICU encounter (Supplementary Table 2).

Continuous Organ Dysfunction Labels
Continuous evaluation of organ dysfunction status showed
higher temporal instability in the Proulx criteria compared
with the IPSCC criteria. The median (IQR, range) number
of transitions in the number of organ dysfunctions across all
PICU encounters with MOD was 3 (1–65) using the Proulx
criteria vs. 2 (1–43) using the IPSCC criteria. The median
(IQR, range) number of no-MOD to MOD transitions were 1
(11,0,1,2,3,4,5,6,7,8) for IPSCC criteria and 1 (1–16) for Proulx
criteria. The median (IQR) dwell time in MOD state (at least two
organ dysfunctions) was 24 (7.3–35.7) h using the Proulx criteria
vs. 30 (9.6–90.1) h using the IPSCC criteria (Figure 2).

Model Performance
Figure 3 illustrates an example of HRA and associated EWT
along with another example where the patient never developed
MOD during the PICU stay (see Supplementary Figure 1 for
more examples of time-varying risk scores). The mean [standard
deviation (SD)] of AUC on the cross-validation folds were
0.89 (0.04), 0.89 (0.05), 0.89 (0.04), and 0.90 (0.04) (IPSCC
criteria) and 0.93 (0.02), 0.93 (0.02), 0.92 (0.02), and 0.93
(0.02) (Proulx criteria) for XGBoost, random forest, GLMBoost,
and LassoGLM methods, respectively. All cross-validation set
performance metrics obtained using tuned model parameters are
shown in Supplementary Figures 2, 3. The final model trained
on the entire training set using tuned parameters that maximized
cross-validation set performance and yielded AUC 0.92, 0.93,
0.91, and 0.92 (IPSCC criteria) and 0.92, 0.93, 0.91, and 0.92
(Proulx criteria) with XGBoost, random forest, GLMBoost, and
LassoGLM methods, respectively, on the test set. All results
discussed below refer to metrics evaluated on the test set
unless specified otherwise. The ROC and precision-recall curves
for all methods are shown in Figures 4, 5, respectively. The
performance metrics for all methods are presented in Table 2. All
four methods exhibited high specificity, withmoderate sensitivity
related to the low prevalence of MOD transition events in
the data set. All models were able to learn a high degree of
separation between the positive and negative classes reflected
by the high AUC values (>0.91). Performance metrics were

comparable across the four methods when maximum F1-score
was used for optimal threshold detection. The highest positive
predictive value (PPV) was obtained using the LassoGLM
method (PPV, 0.72) for IPSCC criteria and XGBoost, GLMBoost,
and LassoGLM methods (PPV, 0.81 for each method) for
Proulx criteria, respectively, with maximum F1-score used for
optimal threshold determination. Maximum F1-score criteria
for threshold selection yielded consistently higher PPV than
the point nearest (0, 1) on the ROC curve. The high negative
predictive values (>0.92 for both IPSCC and Proulx criteria)
for all methods indicate a low false alarm rate. Random forest
(0.71) and XGBoost (0.81) were the best models in terms of
maximum F1-score obtained using IPSCC and Proulx criteria,
respectively. Precision-recall plot showed that the sensitivity
could be boosted to ≥0.9 at the cost of reduced PPV (≤0.5) and
vice versa (Figure 5).

Supplementary Figure 4 shows the histograms of EWT across
all four methods for the two sets of MOD criteria. The median
EWTs for true positives detected by random forest, XGBoost,
GLMBoost, and LassoGLM were 22.7, 29.8, 28.3, and 28.5 h for
IPSCC criteria and 35.4, 37.0, 32.1, and 35.5 h for the Proulx
criteria, respectively. The histograms of EWT normalized by
the length of available data (Supplementary Figure 5) show
that the majority of positive predicted cases were detected with
HRA at the first instance of available data. The observed HRA
event relative to the length of available data was significantly
different between true positives and false positives [median (95%
confidence interval) of pairwise differences was −0.29 (−0.53,
−0.10), p < 0.001 for random forest with IPSCC criteria, and
−0.12 (−0.19,−0.06), p< 0.001 for XGBoost with Proulx criteria
using Wilcoxon rank sum test], and usually, HRA occurred
relatively sooner in true positives for all methods as well as for
both criteria. The HRIs for more than 64% of true positives were
the same as their EWTs, implying that the risk scores stayed
above the threshold after HRA for those cases. The distribution of
HRI normalized by EWT was significantly different between true
positives and false positives [median (95% confidence interval)
of pairwise differences was 0 (−0.52, 0), p < 0.001 for random
forest with IPSCC criteria, and −0.02 (−0.46, 0) for XGBoost
with Proulx criteria using Wilcoxon rank sum test] across all
methods and for both MOD criteria (Supplementary Table 3).

Risk Group Stratification
Within the group of positive predictions, the risk scores of the
true positives were consistently much higher than the threshold
following the HRA event, while those of the false positives tended
to be only marginally above threshold, rendering these cases less
distinct from the true negatives than the true positives. We used
time-evolving risk score trajectories from 24-h time windows
following HRA from all positive predicted cases in our test set
to perform spectral clustering. The positive predicted risk score
trajectories separated into two clusters (labeled as high risk and
low risk) or three clusters (labeled as high risk, moderate risk,
and low risk), depending on the method and on the set of MOD
criteria used (Figure 6). All methods for both IPSCC and Proulx
criteria yielded PPV ≥0.93 in the high-risk cluster, emphasizing
higher confidence in predictions within that group (Table 3).
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FIGURE 1 | Study flowchart.

Time to observed HRA relative to the length of available data
was significantly smaller [median (95% confidence interval) of
pairwise differences was 0 (−0.02, 0), p< 0.001 for random forest

with IPSCC criteria, −0.16 (−0.34, −0.03) for XGBoost with
Proulx criteria using Wilcoxon rank sum test] in the high- and
moderate-risk groups than the low-risk group for all methods
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TABLE 1 | Multiple and individual organ dysfunction rates using the International Pediatric Sepsis Consensus Conference (IPSCC) and Proulx et al. criteria of multiple

organ dysfunction across 2,565 pediatric intensive care unit (PICU) encounters.

IPSCC criteriaa Proulx criteriaa Concordanceb

MOD

Multiple organ dysfunction (MOD) on PICU day 1 791 (30.84) 504 (19.65) 78.52%

Progressive MOD 146 (5.69) 68 (2.65) 94.39%

New and progressive MOD 893 (34.81) 692 (26.98) 77.97%

Organ dysfunction

Respiratory 1,165 (45.42) 1,515 (59.06) 72.71%

Neurological 955 (37.23) 274 (10.68) 73.45%

Cardiovascular 329 (12.83) 714 (27.84) 73.06%

Hepatic 347 (13.53) 103 (4.02) 86.82%

Hematological 279 (10.88) 198 (7.72) 92.32%

Renal 117 (4.56) 82 (3.2) 97.15%

Gastrointestinalc – 19 (0.74) –

aPresented as counts (frequencies in %).
bConcordance measured as percentage of agreement between IPSCC and Proulx criteria.
cGastrointestinal organ dysfunction is only defined in Proulx criteria and not in IPSCC criteria.

FIGURE 2 | Dwell times in multiple organ dysfunction state using (A) International Pediatric Sepsis Consensus Conference (IPSCC) criteria and (B) Proulx et al. criteria

for organ dysfunction.

except LassoGLM with IPSCC criteria (Supplementary Table 4).
These risk groups appeared to follow similar patterns prior to
HRA and showed a significant difference in their risk score
trajectories immediately following HRA. This observation raised
the intuitive question as to whether the instantaneous value of
risk score at HRA was directly related to the accuracy of our
predictions. We divided all positive predicted labels into four
groups based on quartiles of risk scores at HRA and observed
a monotonic increase in PPV with increasing average risk score
at HRA across these quartiles for all models using IPSCC criteria
and for GLMBoost and LassoGLM models using Proulx criteria

(Supplementary Table 5). The PPV in the highest quartile for all
methods was ≥0.93.

Feature Importance
Our models were trained using a large number of features,
and each machine learning method employed a different
feature selection scheme. We found that a small subset of
features had a relatively high contribution to these models.
Supplementary Tables 6, 7 show a list of the 20 most important
features with their relative importance metric scaled to range
0–100 in each model and for each set of MOD criteria.

Frontiers in Pediatrics | www.frontiersin.org 6 August 2021 | Volume 9 | Article 711104

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Bose et al. Early Prediction of Organ Dysfunction

FIGURE 3 | Example of time evolving risk scores in (A) a multiple organ dysfunction (MOD) transition case during a pediatric intensive care unit (PICU) encounter and

(B) a no-MOD patient.

FIGURE 4 | Receiver operating characteristic (ROC) curves for (A) IPSCC and (B) Proulx criteria for organ dysfunction. AUROC (area under ROC curve) values are

indicated in the figure legend.

DISCUSSION

Predictive Power of Prognostic Models
The objective of this study was to explore suitable machine
learning methods to build prognostic models for early
identification of increased risk of transition from a no OD
or single-organ dysfunction state to MOD in the general PICU
population. The machine learning methods used in this study
were selected based on the amount of available training data

and the ability to tailor feature selection. All four methods

achieved comparable and appreciable results for both diagnostic

criteria for MOD. Maximum F1-score was preferred over the

point nearest (0, 1) on the ROC curve for optimal threshold

determination because it maximizes sensitivity (recall) and PPV
(precision) instead of specificity in order to account for the class

imbalance between target and control cases. AUC for all methods
being higher than 0.9 for both IPSCC and Proulx criteria implied
that our trained models were able to distinguish with high degree
of accuracy data prior to MOD transition vs. data from no-MOD
admission cases.

The considerably large median EWT indicates that our
proposed models could alert physicians almost a day in advance
for most MOD cases in PICU allowing sufficient time for early
therapeutic intervention. The relatively low temporal variation
in risk score trajectories is primarily due to low underlying
physiologic data measurement frequencies, especially laboratory
tests, which are normally performed in intervals of several hours
and sometimes only once or twice a day. The sustained high-
risk scores post-HRA serves as evidence that the probability
of developing MOD can be used as a continuous indicator of
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FIGURE 5 | Precision-recall (PR) curves on test set using (A) IPSCC criteria and (B) Proulx et al. criteria for organ dysfunction. AUPRC (area under PR curve) values

are indicated in the figure legend.

TABLE 2 | Performance metrics evaluated on test set for IPSCC and Proulx et al. criteria of multiple organ dysfunction.

Metrics Random forest XGBoost GLMBoost LassoGLM

Nearest

from (0, 1)a
Max

F1-scorea

Nearest

from (0, 1)a
Max

F1-scorea

Nearest

from (0, 1)a
Max

F1-scorea

Nearest

from (0, 1)a
Max

F1-scorea

IPSCC criteria

Sensitivity 0.83 0.72 0.78 0.63 0.89 0.68 0.88 0.65

Specificity 0.84 0.94 0.88 0.94 0.76 0.93 0.82 0.95

Positive predictive value (PPV) 0.50 0.70 0.56 0.68 0.41 0.67 0.48 0.72

Negative predictive value (NPV) 0.96 0.95 0.95 0.93 0.97 0.94 0.97 0.93

Accuracy 0.84 0.90 0.86 0.89 0.78 0.89 0.83 0.90

Area under receiver operating

characteristic curve (AUROC)

0.93 0.92 0.91 0.92

Proulx criteria

Sensitivity 0.85 0.82 0.82 0.80 0.85 0.79 0.85 0.77

Specificity 0.87 0.92 0.93 0.94 0.89 0.94 0.89 0.94

Positive predictive value (PPV) 0.68 0.76 0.78 0.81 0.70 0.81 0.70 0.81

Negative predictive value (NPV) 0.95 0.94 0.94 0.94 0.95 0.93 0.95 0.93

Accuracy 0.87 0.89 0.90 0.91 0.88 0.91 0.88 0.90

Area under receiver operating

characteristic curve (AUROC)

0.93 0.92 0.93 0.92

aNearest from (0,1) on ROC curve and maximum F1 score are two different criteria used for threshold selection.

severity over time. Models built for Proulx criteria demonstrates
that a larger number of target samples can significantly boost
the sensitivity without impacting the specificity and, hence, also
yields slightly higher PPV.

Risk Group-Based Prediction
Risk-group stratification among positive predicted labels was
pivotal in assigning confidence to the model predictions. We
chose spectral clustering over more conventional clustering
algorithms such as k-means to avoid assuming homogeneity
in the density of different clusters. The risk stratification
method was highly effective in identifying the high-risk group

(≥93% prediction accuracy) and, therefore, could be used as an
additional alert for severe cases with extremely high likelihood
of developing MOD. Moreover, the risk score trajectories of
high-risk groups showed very high (0.7–1.0), non-decreasing,
and steady evolution of risk scores over time and exhibited
tighter clustering around mean tendency than the moderate- and
low-risk groups.

Due to the observed large separation in the risk score
trajectories at HRA across different risk groups, we were able
to also separate the patients into groups based on quartiles
of their risk scores at HRA. The PPV in these four groups
were monotonically increasing with increasing average risk in
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FIGURE 6 | Spectral clustering on risk score trajectories for (A) IPSCC and (B) Proulx criteria. Solid lines indicate mean, and shaded regions indicate mean ±

standard deviation of risk score trajectories within each cluster.

each group, and the highest quartile yielded 100% PPV for all
methods (except Lasso-GLM with IPSCC criteria) and both sets
of diagnostic criteria. Therefore, in addition to HRA predictions,
assigning confidence based on the risk group assignment
would reduce the burden of false alarms and allow patient
severity monitoring.

Organ Dysfunction Labels
The observed rate of MOD during the PICU stay obtained
using IPSCC and Proulx criteria (36.2 vs. 28.1%) was similar
to the results presented by Villeneuve et al. (1) (37.3 vs.
21.4%, respectively). The discordance in MOD rates is primarily
attributed to different rates of cardiovascular and neurologic
dysfunction. Notably, the continuous binary MOD labels

generated using IPSCC criteria had higher temporal stability than
the Proulx criteria.

Feature Selection and Importance
Conventional regression-based methods suffer from multiple
correlated variables and require manual feature pruning or
regularized regression. We took advantage of the built-in feature
selection process of the methods used for training. Decision tree-
based methods like random forest and XGBoost are ensembles
of multiple decision trees that use a random subset of relevant
features and a specified maximum depth to prune features.
GLMBoost uses gradient boosting with component-wise linear
models, which prunes features by restricting the number of
boosting iterations and selecting only one feature in each
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TABLE 3 | Positive predictive value and early warning times across risk groups obtained using spectral clustering.

Method Positive predictive value Early warning time (h)a

High-risk

group

Moderate-risk

group

Low-risk group High-risk group Moderate-risk

group

Low-risk group

IPSCC criteria

Random forest 1.00 – 0.50 21.08 (8.04–82.98) – 26.24 (4.30–55.96)

XGBoost 1.00 0.73 0.35 18.04 (7.55–75.95) 47.29 (19.44–177.47) 44.22 (10.05–57.02)

GLMBoost 1.00 0.74 0.37 38.58 (11.27–105.07) 35.00 (6.17–76.14) 25.93 (12.60–42.02)

LassoGLM 0.95 0.89 0.32 49.98 (13.38–124.17) 22.48 (4.80–67.40) 37.93 (24.49–48.27)

Proulx criteria

Random forest 1.00 0.81 0.53 30.05 (10.06–75.47) 35.88 (19.98–62.46) 47.83 (17.25–145.86)

XGBoost 0.94 – 0.65 29.57 (14.31–68.12) – 53.10 (17.66–127.60)

GLMBoost 0.93 – 0.71 30.67 (15.65–84.71) – 36.63 (17.47–90.45)

LassoGLM 0.94 – 0.69 30.67 (16.58–97.55) – 37.48 (17.45–90.70)

aEarly warning time presented as median (25th−75th percentile).

XGBoost, extreme gradient boosting; random forest, random forest-based probability machines; GLMBoost, gradient boosted generalized linear models; LassoGLM, L1-regularized

generalized linear models.

iteration. LassoGLM is an L1-regularized version of a generalized
linear model, which suppresses the smaller weight features in
the model and retains only the most significant ones. Some
procedures (e.g., arterial catheter placement) or laboratory tests
are performed by clinicians only for sicker patients, which makes
the presence vs. absence of a variable an important predictor as
well. We added a missingness indicator for all laboratory test
results and for placement of an arterial catheter. This concept was
previously endorsed in work by Sharafoddini et al. (37).

Patient vital signs (e.g., core vs. peripheral temperature
difference) as well as specific laboratory test results [e.g.,
prothrombin time (PT), activated partial thromboplastin time
(aPTT), arterial pH, pCO2, and red blood cell distribution
width] and interventions (e.g., red blood cell transfusion volume,
inotrope use) featured prominently on the list of the 20
most important features for each machine learning method
and for both sets of MOD criteria. One caveat is that these
methods are prone to inconsistency in feature importance among
correlated features, and unlike in linear models, the feature
importance of non-linear decision tree ensemble methods are not
additive. We observed higher concordance in feature rankings
among non-linear models (random forest and XGBoost) and
among linear models (GLMBoost and Lasso-GLM), but lower
agreement between linear vs. non-linear models. This difference
in feature ranking can be attributed to the difference in
learning paradigms of these models; random forest and XGBoost
combines predictions from an ensemble of decision trees,
whereas GLMBoost and Lasso-GLM are regression-based linear
methods. The small differences in the relative ranking of features
among the decision tree-based methods can be explained by the
random sampling of features in each iteration. Many of the 20
most important features overlap with those used in the MOD
diagnostic criteria, but interestingly, we also observed several
outside of MOD diagnostic criteria, including red blood cell
distribution width, core vs. peripheral temperature difference,
patient weight and age, arterial bicarb, alkaline phosphatase,

C-reactive protein, monocyte number and percent, eosinophil
number and percent, mean corpuscular volume, serum calcium
and ionized calcium, aspartate aminotransferase, urine pH, urine
color, glucose, body temperature, and AHG antibody screening.
Future larger studies should be undertaken to understand the
contribution of each of these features to the pathophysiology and
evolution of MOD.

LIMITATIONS

This study was limited to data from a single mixed PICU, and
multicenter studies would be needed to evaluate generalizability.
A larger dataset would also allow for comparison of prediction
performance across different organ system failure transitions
such as respiratory to respiratory plus neurologic, etc. Another
limitation of this study includes latency in reporting of non-
point-of-care laboratory test results, which may alter the exact
time of observed organ dysfunction. Additionally, our models
were unable to use PICU day 1 MOD transitions due to the
absence of pre-PICU admission laboratory results and 24-h
retrospective nature of the organ dysfunction definitions.We also
recognize our limitation of not being able to compare the model’s
early prediction ability with a clinician’s ability to identify the
likelihood of transition to MOD state due to the retrospective
nature of our observational study. Therefore, comparing the
predictive ability of prediction models with live clinical decision
making should be explored in future validation studies.

Considerations for the Use of Early
Prediction Models in Clinical Settings
Artificial intelligence (AI)-based healthcare applications
constitute an evolving and rapidly expanding field aiming
to address a large number of important clinical questions
by identifying patterns in data that are either too subtle for
clinicians to see or are “hiding in plain sight” and often missed
(38). AI applications have focused on early diagnosis, prediction
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of clinical outcomes, and treatment recommendations (39–46).
AI-based models can condense physiologic and laboratory
monitoring data to informative and explainable composite
quantitative scores to help clinicians monitor the patient’s
severity of illness as well as provide timely insights into future
clinical outcomes. Obviously, clinicians cannot treat what they
do not recognize; we posit early recognition will allow treatment
when organ dysfunction is less severe and potentially more
easily reversible. The spectral clustering-based risk stratification
method could further allow clinicians to identify a high-risk
group with high accuracy, fostering efficient, and timely patient
management. Future studies are needed to study the impact of
therapeutic interventions on the patient’s risk for developing
individual as well as MOD. The roadmap to deploying these
models in real-time bedside monitoring algorithms should
include rigorous validation (47) keeping in consideration the
legal, social, and economic implications of AI in healthcare
(45, 48).

CONCLUSIONS

Our prognostic model-building approach has led to the
development of a set of models with demonstrated ability to
predict high-risk alerts in patients who transitioned into a
MOD state. The risk stratification methodologies have shown
≥93% positive predictive value in the highest risk groups.
Therefore, this combined approach of continuous time risk
monitoring, early warning of development of MOD, and risk
group stratification could significantly aid in the monitoring and
ultimately the management of critically ill children.
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