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Abstract

Most patients with Turner syndrome (TS) need hormone replacement therapy because 
of hypergonadotropic hypogonadism; individual outcomes, however, are highly variable. 
Our objective was to assess the influence of five estrogen receptor 1 gene (ESR1) 
polymorphisms (rs543650, rs1038304, rs2046210, rs2234693 and rs9340799) on adult 
height, breast development, uterine volume and bone mineral density (BMD). We studied 
91 TS patients from a tertiary hospital using adult estrogen dose. In our group, ESR1 
rs2234693 was associated with femoral neck and total hip BMD, and it accounted  
for around 10% of BMD variability in both sites (P < 0.01). Patients homozygous for  
C allele in this polymorphism had significantly lower femoral neck BMD  
(0.699 ± 0.065 g/cm2 vs 0.822 ± 0.113 g/cm2, P = 0.008) and total hip BMD (0.777 ± 0.118 g/cm2 vs 
0.903 ± 0.098 g/cm2, P = 0.009) than patients homozygous for T allele. The other four ESR1 
polymorphisms were not able to predict any of the above estrogen therapy outcomes in an 
isolated manner. Patients homozygous for the haplotype GCG formed by polymorphisms 
rs543650, rs2234693 and rs9340799 had an even more significantly lower femoral neck 
BMD (0.666 ± 0.049 vs 0.820 ± 0.105 g/cm2, P = 0.0047) and total hip BMD (0.752 ± 0.093 vs 
0.908 ± 0.097 g/cm2, P = 0.0029) than patients homozygous for haplotypes with a T allele 
in rs2234693. In conclusion, homozygosity for C allele in ESR1 rs2234693 and/or for GCG 
haplotype appears to be associated with lower femoral neck and total hip BMD. We believe 
that the identification of polymorphisms related to estrogen outcomes may contribute to 
individualization of treatment in TS.

Introduction

Turner syndrome (TS) is characterized by complete 
or partial absence of the second sex chromosome 
in phenotypic females with one or more clinical 
manifestations (1). It is one of the most common 
chromosomal abnormalities, affecting approximately 
25–50 per 100,000 females. Hypergonadotropic 

hypogonadism is a frequent manifestation, present 
in more than 95% of TS patients. Therefore, most 
patients will need hormone replacement therapy (HRT) 
for puberty induction, attaining of peak bone mass  
and maintenance of female secondary sex  
characteristics (1).
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However, individual outcomes of estrogen treatment 
are highly variable among these patients. For instance, 
uterine development descriptions range from lower than 
average even with adequate HRT (2) to normal in all 
treated patients (3). This feature was previously associated 
with diverse factors such as the presence of spontaneous 
puberty (4), duration of HRT (4, 5), dose of HRT (5, 6), 
type of HRT (4) and karyotype (7). Nevertheless, there are 
controversies among studies and none of these factors can 
thoroughly explain the interindividual variation.

Genome-wide association studies (GWAS) showed 
that polymorphisms in estrogen receptor 1 gene (ESR1) 
participate in the variability of many characteristics, 
such as height, bone density, breast size and risk of 
cancer (8, 9, 10, 11). There is only one study involving 
TS patients that showed an association between two 
ESR1 polymorphisms and bone mass gain with estrogen 
therapy (12). To our knowledge, there are no data on the 
impact of ESR1 polymorphisms on height variability or 
on the development of secondary sex characteristics in 
these patients. Thus, the aim of this study was to assess 
the influence of ESR1 polymorphisms on estrogen therapy 
outcomes in TS patients.

Patients and methods

Subjects

The study protocol was approved by the Research Ethics 
Committee of the Hospital das Clinicas da Faculdade de 
Medicina da Universidade de Sao Paulo. Written informed 
consent was obtained from all patients before starting 
the molecular studies. Ninety-one TS patients from our 
endocrinology clinic were selected using the following 
criteria: (1) regular use of adult estrogen dose (i.e. at 
least 1 mg of estradiol valerate daily or equivalent) for a 
minimum period of one year; (2) absence of spontaneous 
menarche; and (3) absence of Y chromosome material 
in karyotype. These patients were submitted to clinical 
evaluation for height and breast development (according 
to Tanner staging), pelvic ultrasound for assessment of 
uterine volume, and dual-energy X-ray absorptiometry 
(DEXA) for determination of bone mineral density at 
lumbar spine and proximal femur. Since DEXA has a 
known tendency to underestimate the bone density of 
people with short stature, we calculated bone mineral 
apparent density (BMAD) by using bone mineral content 
and projected bone area (13).

Cytogenetic study

Karyotype data were collected from medical records. 
Twenty to fifty cells were evaluated. Metaphase spreads 
prepared from peripheral lymphocyte cultures from each 
patient were studied by conventional staining and G and 
C banding techniques and were analyzed through an 
optical microscope (Carl Zeiss). Patients with chromosome 
fragments or rings of unidentified origin were evaluated 
for the presence of Y-chromosomal material with real-
time PCR with multiple Y-specific probes, according to a 
previously described protocol (5).

ESR1 polymorphisms

ESR1 polymorphisms were selected through active 
search in PubMed and in GWAS catalogs. We chose five 
polymorphisms that were recurrent in studies or that were 
Tag-single nucleotide polymorphisms (Tag-SNPs), provided 
that they had a minor allele frequency (MAF) which 
allowed the present study with the available sample. Two 
of them are well-known ESR1 polymorphisms (rs2234693 
and rs9340799) and the others were previously found to 
influence height (rs543650) (8), bone mineral density 
(rs1038304) (9) or risk of breast cancer (rs2046210) (11) 
in GWAS.

Molecular studies

Genomic DNA was isolated from peripheral blood 
leukocytes by standard methods from all patients. The ESR1 
polymorphisms were genotyped by allelic discrimination 
using specific TaqMan probes and primers in the Step One 
Plus Real-Time PCR system (Applied Biosystems) according 
to manufacturer’s instructions. Ten percent of all samples 
were randomly selected and sequenced by Sanger for 
quality control. Briefly, PCR amplification was performed 
using GoTaq Green PCR systems (Promega) with 25 ng of 
DNA, 1× buffer, 10 mM dNTP, 0.2 mM of each forward 
and reverse primers and 1 U of enzyme, in a final 15 µL 
reaction mixture (Table 1). PCR cycling conditions were 
as follows: 98°C for 5 min, followed by 30 cycles of 95°C 
for 30 min, 56°C of annealing temperature for 45 min 
and 72°C for 30 min; and 10 min of final elongation step 
at 72°C. Subsequently, the PCR products were sequenced 
using BigDye Terminator v3.1 cycle sequencing protocol 
in the ABI PRISM 310 automatic sequencer (Thermo 
Fisher). The agreement of genotyping between both 
methods was 100%.
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Statistical analysis

In this study, we evaluated the association among ESR1 
polymorphisms and the following outcomes: adult 
height, breast development, uterine volume and bone 
mineral density at lumbar spine and proximal femur. 
Qualitative variables are listed as percentages, whereas 
quantitative variables are shown as mean ± s.d. Nominal 
variables were compared with chi-square test or Fisher 
exact test, as appropriate. Numerical variables were 
analyzed using t-test, Mann–Whitney rank-sum test or 
Kruskal–Wallis one-way ANOVA on ranks, as appropriate. 
To assess whether genetic variants had independent 
prognostic significance for outcomes, we performed 
linear and multiple-regression analyses adjusting for 
established influential factors. Since we tested associations 
with clinical parameters for multiple SNPs (n = 5), we 
applied Bonferroni’s correction for the P values and 
only associations with P value <0.01 were considered 
significant. Haplotype blocks were constructed by using 
the Solid Spine method from the software Haploview (14) 
and their association with estrogen outcomes was also 
assessed. All statistical analyses were performed using 
SigmaStat for Windows (version 3.5).

Results

We evaluated 91 TS patients aged 25.1 ± 6.8 years old 
(range 16 to 42 years old) (Table 2). 45,X karyotype 
was the most frequently found (n = 55, 60%), followed 
by 46,XiXq with or without mosaicism (n = 12), other 
structural abnormalities (n = 7), 45,X/46,XX (n = 6), ring 
X chromosome mosaicisms (n = 6), 45,X/47,XXX (n = 3), 
marker chromosome mosaicisms (n = 2). Eighty-three 
percent of them received recombinant human growth 
hormone (rhGH) treatment for a mean duration of 
6.3 ± 3.1 years, starting at 9.9 ± 4.0 years old. Their mean 
adult height was 148.4 ± 6.9 cm. Their age at puberty 
onset or induction was 14.3 ± 1.9 years old and 9% of 

them had spontaneous thelarche. Uterine volume had a 
wide range, from 5.9 to 107 cm3 (mean 31.3 ± 18.4 cm3). 
Ninety percent of patients reached Tanner stage 5 breast 
development. Eighty percent of patients had normal bone 
mass after calculation of BMAD based on bone mineral 
content and projected bone area.

All patients were genotyped for the five selected 
ESR1 polymorphisms: rs543650, rs1038304, rs2046210, 
rs2234693 and rs9340799. We did not detect deviations 
from the Hardy-Weinberg equilibrium in their genotype 
distributions. We first evaluated the association among 
these polymorphisms and adult height, uterine volume, 
breast development and bone density by using linear 
regression. ESR1 rs2234693, also known as PvuII (after the 
name of the restriction enzyme initially used to study it)  

Table 1 List of TaqMan assays and PCR primers used in this study.

ESR1 SNPs TaqMan assay ID
PCR primer sequences (5′ to 3′)  

PCR amplicon (pb)Forward Reverse

rs2234693a C_3163590-10 CATGAACCACCATGCTCAGT AAAAACATACTACCTGCACCAGAA 388
rs9340799a C_3163591-10
rs543650 C_551076-10 TCCCTGGAGGAAACGTAAAA TCCCAACACCTTCCAGACTC 360
rs1038304 C_219719-10 CCTGAGTAGCCGGGAGTACA AGTCTGAGGAATGGGAGCAA 359
rs2046210 C12034236-10 GTGGGTCAAGACCAGCATTT CCATCGTCCACATCTCACAC 337

aBoth SNPs were PCR genotyped in the same amplicon.

Table 2 Clinical and radiological data from 91 Turner 
syndrome patients.

Basal characteristics
 45,X karyotype 60%
 Target height 158.6 ± 4.7 cm
 Use of rhGH 83%
 Age at rhGH onset 9.9 ± 4.0 years
 Duration of rhGH use 6.3 ± 3.1 years
 Age at puberty onset or induction 14.3 ± 1.9 years old
 Spontaneous thelarche 9%
Current data
 Age 25.1 ± 6.8 years old
 Adult height 148.4 ± 6.9 cm
 Breast development (Tanner staging) B5 90%
 Uterine volume 31.3 ± 18.4 cm3

 Normal bone mass in lumbar  
spine (BMD) 

68%

 Normal bone mass in lumbar  
spine (BMAD)

80%

 Normal bone mass in femoral  
neck (BMD) 

80%

 Normal bone mass in femoral  
neck (BMAD)

96.5% 

Qualitative variables are listed as percentages, whereas quantitative 
variables are shown as mean ± s.d.
B5, Tanner 5 breast development; BMAD, bone mineral apparent density; 
BMD, bone mineral density; rhGH, recombinant human growth hormone.
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was associated with femoral neck and total hip BMD, 
and it accounted for around 10% of BMD variability in 
these sites (Table 3). This polymorphism was not related 
to adult height, uterine volume, breast development 
and lumbar spine BMD or BMAD in our patients. The 
other four ESR1 polymorphisms were not able to predict  
any of the above estrogen therapy outcomes in an  
isolated manner.

ESR1 rs2234693 distribution was C/C 14%, C/T 
57% and T/T 29%. Genotypic groups were similar 
concerning karyotype distribution, target height, use 
of rhGH treatment, age at rhGH onset and duration of 
treatment, age at puberty onset/induction and frequency 
of spontaneous thelarche (Table 4). There were also 
no significant differences concerning estrogen dose,  

adult height, uterine volume, breast development 
according to Tanner staging or lumbar spine BMD and 
BMAD. However, femoral neck and total hip BMD were 
significantly different among the groups, and these 
differences were due to a significantly lower BMD in both 
sites in patients homozygous for C allele in comparison to 
patients homozygous for T allele.

ESR1 rs2234693 was located in a linkage disequilibrium 
block with rs543650 and rs9340799 (Fig. 1). The most 
common haplotypes were TTA (32.5%, formed by a  
T allele in ESR1 rs543650, a T allele in rs2234693 and an 
A allele in rs9340799), followed by GCG (31.1%), GTA 
(22.9%) and GCA (11.2%). ESR1 rs1038304 and rs2046211 
were located in another linkage disequilibrium block 
nearby. HRT outcomes were compared among haplotypes, 

Table 3 Linear regressions among five ESR1 polymorphisms and selected estrogen replacement outcomes (P values).

ESR1 polymorphisms rs543650 rs1038304 rs2046210 rs2234693 rs9340799

Adult height 0.318 0.89 0.831 0.129 0.218
Breast development 0.719 0.1 0.154 0.495 0.687
Femoral neck BMD 0.558 0.789 0.395 0.007 (R2 = 0.107) 0.16
Femoral neck BMAD 0.768 0.129 0.266 0.025 0.352
Lumbar spine BMD 0.936 0.063 0.074 0.364 0.158
Lumbar spine BMAD 0.289 0.375 0.301 0.280 0.437
Total hip BMD 0.958 0.908 0.606 0.009 (R2 = 0.108) 0.08
Uterine volume 0.998 0.643 0.445 0.171 0.851

Only associations with P < 0.01 were considered significant after application of Bonferroni’s correction.
BMAD, bone mineral apparent density; BMD, bone mineral density; ESR1, estrogen receptor 1 gene; ns, not significant.

Table 4 Clinical and radiological data from 91 Turner syndrome patients grouped according to ESR1 rs2234693 genotype.

  
C/C

 
C/T

 
T/T

C/C vs C/T vs T/Ta CC vs TTb

P value P value

Number of patients 13 52 26
45,X karyotype 61% 65% 50% 0.164 0.094
Target height (cm) 159.9 ± 4.2 158.9 ± 5.1 157.2 ± 4.0 0.216 0.068
Use of rhGH 92% 83% 81% 0.641 0.365
Age at rhGH onset (years) 11.1 ± 4.1 9.7 ± 4.0 9.2 ± 3.9 0.463 0.221
Duration of rhGH use (years) 5.7 ± 3.3 6.3 ± 3.0 6.9 ± 3.4 0.50 0.311
Age at puberty onset or induction (years) 14.7 ± 1.6 14.2 ± 2.0 14.1 ± 1.9 0.609 0.323
Spontaneous thelarche 7.7% 9.6% 7.7% 0.96 0.908
Adult height (cm) 151 ± 5.4 148.3 ± 6.8 147.2 ± 7.8 0.279 0.126
Breast development (Tanner) M5 85% M5 86% M5 100% 0.151 0.05
Estradiol valerate or equivalent dose (mg/day) 1.1 ± 0.6 1.4 ± 0.5 1.3 ± 0.4 0.118 0.15
Femoral neck BMAD (g/cm3) 0.150 ± 0.017 0.167 ± 0.028 0.181 ± 0.037 0.08 0.025
Femoral neck BMD (g/cm2) 0.699 ± 0.065 0.760 ± 0.119 0.820 ± 0.110 0.028c 0.007
Lumbar spine BMD (g/cm2) 0.867 ± 0.122 0.898 ± 0.142 0.910 ± 0.124 0.64 0.305
Lumbar spine BMAD (g/cm3) 0.154 ± 0.040 0.146 ± 0.020 0.144 ± 0.014 0.474 0.907
Total hip BMD (g/cm2) 0.777 ± 0.118 0.857 ± 0.111 0.901 ± 0.096 0.027d 0.007
Uterine volume (cc3)e 29.9 ± 17.8

29.5 (8.0–76.2)
29.0 ± 16.5

25.2 (5.9–82.9)
35.6 ± 22.6

22.6 (10.6–107)
0.329 0.35

Only associations with P < 0.01 after application of Bonferroni’s correction were considered significant.
aOne-way ANOVA or chi-square/Fisher. bt test or chi-square/Fisher. cHolm–Sidak method: T/T vs C/C P = 0.0111; T/T vs C/T ns; C/T vs C/C ns. dHolm–Sidak 
method: T/T vs C/C P = 0.00786; T/T vs C/T ns; C/T vs C/C ns. eFor its wide range, uterine volume is also presented as median (minimum-maximum).
BMAD, bone mineral apparent density; BMD, bone mineral density; ns, not significant; rhGH, recombinant human growth hormone.
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and patients homozygous for the haplotype GCG had 
significantly lower femoral neck BMD and total hip BMD 
than patients homozygous for haplotypes with a T allele 
in rs2234693 (Table 5). It was not possible to compare 
patients homozygous for GCG haplotype with patients 
homozygous for other haplotypes containing a C allele in 
rs2234693 because there was only one patient with this 
latter haplotype. None of the haplotypes was linked to 
adult height, uterine volume or L1-L4 BMD.

Discussion

Polymorphisms influence physiological, morphological 
and pathological variation in the human population (15). 
In TS, polymorphisms in the growth hormone receptor 
gene (GHR) (16, 17) and the insulin-like growth factor-
binding protein 3 gene (IGFBP3) (16) were correlated with 
increased responsiveness to rhGH treatment (16, 17) and 
adult height (16). One polymorphism in the suppressor 
of cytokine signaling 2 gene (SOCS2) was also linked to 
adult height after rhGH treatment (18). Furthermore, 
polymorphisms in the protein tyrosine phosphatase non-
receptor type 2 gene (PTPN22) (19) and the myosin IXB 
gene (MYO9B) (20) were associated with a higher risk of 
autoimmune diseases; polymorphisms in the vitamin 
D receptor gene (VDR) were related to lower BMD and 
higher levels of bone markers (21); and a polymorphism 
in the cytotoxic T lymphocyte-associated protein 4 gene 
(CTLA-4) was linked to obesity in these patients (22). 
Finally, ESR1 rs2234693 and rs9340799 were associated 
with bone mass gain in lumbar spine after the onset of 
estrogen replacement in adult TS patients (12).

In the present study, we found that TS patients 
homozygous for C allele in ESR1 rs2234693 had lower 
femoral neck and total hip BMD than TS patients 
homozygous for T allele. Additionally, patients 
homozygous for the haplotype GCG formed by 
polymorphisms rs543650, rs2234693 and rs9340799 had 
an even more significantly lower femoral neck BMD and 
total hip BMD than patients homozygous for haplotypes 
with a T allele in rs2234693. Similar results were found 
in two other studies involving young premenopausal 
healthy patients (23, 24). Massart   et  al. found that, in 
a group of Italian women aged between 20 and 30 years 
old, the presence of at least one C allele in rs2234693 was 
associated with lower lumbar spine and proximal femur 
BMD (23). Furthermore, McGuigan   et  al. showed that,  

Figure 1
Haploview linkage disequilibrium plot for five selected SNPs within ESR1. 
Haplotype blocks were constructed by using the Solid Spine method. ESR1 
rs2234693 was located in a linkage disequilibrium block with rs543650 
and rs9340799. ESR1 rs1038304 and rs2046211 were located in another 
linkage disequilibrium block nearby.

Table 5 Comparison of bone mass data among Turner syndrome patients grouped according to ESR1 haplotypes (involving 
rs543650, rs2234693 and rs9340799).

 
 

 
Homozygous 

GCG (n = 8)

 
Heterozygous 

GCG (n = 38)

 
xCx (except GCG) 

(n = 20)

 
Homozygous 

xTx (n = 25)

 
P value 

all groups

P value 
homozygous GCG vs 

homozygous xTx

Femoral neck BMD (g/cm2) 0.666 ± 0.049 0.766 ± 0.117 0.775 ± 0.123 0.820 ± 0.105 0.039 0.0047
Lumbar spine BMD (g/cm2) 0.846 ± 0.103 0.884 ± 0.131 0.947 ± 0.147 0.889 ± 0.134 0.224 0.417
Total hip BMD (g/cm2) 0.752 ± 0.093 0.852 ± 0.099 0.869 ± 0.132 0.908 ± 0.097 0.025 0.0029

BMD, bone mineral density; heterozygous GCG, patients heterozygous for the haplotype formed by a G allele in ESR1 rs543650, a C allele in rs2234693 
and a G allele in rs9340799; homozygous GCG, patients homozygous for the haplotype formed by a G allele in ESR1 rs543650, a C allele in rs2234693 and 
a G allele in rs9340799; homozygous xTx, patients homozygous for haplotypes formed by any allele in ESR1 rs543650, a T allele in rs2234693 and any 
allele in rs9340799; ns, not significant; xCx, patients heterozygous (and 1 homozygous) for haplotypes formed by any allele in ESR1 rs543650, a C allele in 
rs2234693 and any allele in rs9340799.
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in a group of Irish women around 22 years old, 
homozygosity for T allele in ESR1 rs2234693 was related to 
higher hip BMD (24). Our results are also aligned to those 
of the previous study on bone mass gain after the onset of 
estrogen replacement in TS patients (12), which showed 
significant bone gain in lumbar spine in patients who had 
at least one T allele in ESR1 rs2234693 and/or one A allele 
in ESR1 rs9340799 but not in patients homozygous for C 
allele in ESR1 rs2234693 and/or homozygous for G allele 
in ESR1 rs9340799. Unfortunately, proximal femur BMD 
was not evaluated in that study.

Briefly, estrogens increase bone formation at the 
periosteum through its action in osteoblast progenitors and 
suppress bone resorption in trabecular and endocortical 
bone surfaces by decreasing osteoclast numbers. These 
actions are mainly mediated by estrogen receptor 1 (ER1) 
nuclear and non-nuclear initiated signaling pathways. 
However, the molecular details by which ER1 signaling 
influences bone mass remain unclear (25). In a in vitro 
model using renal cells, Herrington   et  al. showed that 
the presence of a C allele in ESR1 rs2234693 produces a 
potential binding site for myb transcription factors in 
ER1, and might produce ER1 isoforms that have different 
properties than the full-length gene product (26). If the 
presence of a C allele in ESR1 rs2234693 reduces ER1 
function in bone, this could explain why TS patients who 
were homozygous for this allele had lower bone mass gain 
with estrogen replacement (12). Moreover, it could also 
explain the lower femoral neck and total hip BMD seen in 
young women with this genotype. The reason for the lack 
of association between this allele and lumbar spine BMD 
in our study and in McGuigan’s (24) is still unclear but 
could be probably explained by the relatively small size 
of both studies.

Other factors that could have influenced bone 
mass, such as use and duration of rhGH treatment, 
age at puberty onset/induction or estrogen dose, were 
not significantly different among genotypic groups. 
Karyotype is considered not to be associated with 
BMD or fracture risk by most groups (1), and was not 
linked to bone mass in our patients either. Limitations 
of our study include its small size and absence of a 
replication analysis in young Brazilian women without 
TS. Consequently, further studies, preferably prospective 
and multicenter, with a larger number of TS patients 
and healthy young controls are necessary to confirm our 
findings. On the other hand, this was the first study to 
evaluate the association of an ESR1 polymorphism to 
bone mass in TS patients already receiving adult-dose 
estrogen replacement therapy. Moreover, the presence of 

a similar association in other groups of young women 
with and without TS strengthens our result and suggests 
a potential contribution of ESR1 rs2234693 to bone 
mass acquisition. Finally, although we could not find 
associations among ESR1 polymorphisms and adult 
height, breast development and uterine volume, the high 
variability especially of the latter suggests that genetic 
variants play an important role. More efforts to identify 
polymorphisms associated with estrogen outcomes may 
allow for individualization of treatment in TS.
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