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Abstract: A comprehensive understanding of the relationships between PM2.5 concentration and
socioeconomic factors provides new insight into environmental management decision-making for
sustainable development. In order to identify the contributions of socioeconomic development
to PM2.5, their spatial interaction and temporal variation of long time series are analyzed in this
paper. Unary linear regression method, Spearman’s rank and bivariate Moran’s I methods were
used to investigate spatio–temporal variations and relationships of socioeconomic factors and PM2.5

concentration in 31 provinces of China during the period of 1998–2016. Spatial spillover effect of
PM2.5 concentration and the impact of socioeconomic factors on PM2.5 concentration were analyzed
by spatial lag model. Results demonstrated that PM2.5 concentration in most provinces of China
increased rapidly along with the increase of socioeconomic factors, while PM2.5 presented a slow
growth trend in Southwest China and a descending trend in Northwest China along with the
increase of socioeconomic factors. Long time series analysis revealed the relationships between PM2.5

concentration and four socioeconomic factors. PM2.5 concentration was significantly positive spatial
correlated with GDP per capita, industrial added value and private car ownership, while urban
population density appeared a negative spatial correlation since 2006. GDP per capita and industrial
added values were the most important factors to increase PM2.5, followed by private car ownership
and urban population density. The findings of the study revealed spatial spillover effects of PM2.5

between different provinces, and can provide a theoretical basis for sustainable development and
environmental protection.

Keywords: PM2.5 concentration; socioeconomic factors; Bivariate Moran’s I; spatial lag model

1. Introduction

The rapid development of China’s economy in recent decades has caused serious environmental
pollution, among which atmospheric pollution is particularly serious [1,2]. The frequent haze weather
across the country has seriously affected the urban environment [3,4] and the physical and mental
health of residents [5–7]. The main pollutant forming haze weather is fine particulate matter with
a diameter of less than 2.5 µm (PM2.5). PM2.5 can reduce visibility. It is harmful to people’s life,
especially in health effects [8,9], so PM2.5 pollution has become a research hotspot. The previous
studies mainly involved two aspects, namely micro aspects and macro aspects. The micro aspects
focus mainly on chemical components [10–12] and physical and mental health effects of PM2.5 [13–16],
etc. The macro aspects focus mainly on the influencing factors [17,18], spatiotemporal variations and
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distribution about PM2.5 [19,20], etc. Simultaneously, PM2.5 pollution has also hampered economic
development [21]. Hence, a clear understanding of the PM2.5 pollution problem benefits from the
research on the spatial relationships between PM2.5 and social economy, which can be assisted in
adopting more effective methods to improve air quality.

China’s economy has entered a period of rapid development and various industries have
witnessed rapid development since the “reform and opening up”. Meanwhile, many pollution
sources have been increased [22,23]. Some human activities [24], such as industrial emissions, motor
vehicle emissions, coal burning [25], fossil fuel burning and outdoor biomass burning and so on [26,27],
produced emissions of elemental carbon (EC), organic mass (OM), inorganic ions, metal elements
and secondary aerosol precursors [28], resulting in increased PM2.5 concentration. So, reducing these
human activities may be important for controlling China’s PM2.5 levels, which in turn reduced the
impact on the environment, economy and health caused by PM2.5 pollution [29]. Some socioeconomic
factors can be used to reflect PM2.5 pollution and control pollution sources. For example, more energy
consumption and emissions could be caused by higher population density [30], and motor vehicle
exhaust (CO, NO, and SO2) also results in increased PM2.5 [31]. In this paper, four controllable
socioeconomic factors are selected to quantify the relationships between socioeconomic development
and PM2.5, namely GDP per capita, industrial added values, urban population density and private
car ownership [17,18,32]. However, the imbalance of urbanization and economic development
in China, in addition the influence of other natural factors, had resulted in spatial heterogeneity
of PM2.5 pollution [33,34]. Therefore, some scholars put forward policy suggestions that were
appropriate to local conditions for reducing the emission of PM2.5 in different regions [35]. Some
scholars pointed out that the influence of economic urbanization and coal consumption on PM2.5

concentration were greater than population urbanization [36]. In China, the relationships between
PM2.5 concentration and economic development shows an environmental Kuznets curve (EKC) of
inverted U-shape [37]. Industrial atmospheric pollutants, the proportion of primary and secondary
industry to GDP, population density and meteorological condition had great contributed to PM2.5

concentration [20,38]. PM2.5 of Asian and African countries had a significantly positive correlation
with urbanization [39]. Although the relationship between PM2.5 and socioeconomic factors was
investigated in many literatures, few literatures analyzed the spatial correlation between PM2.5 and
socioeconomic factors by bivariate spatial correlation analysis method, especially from the perspective
of long time series.

The spatio-temporal variations of PM2.5 concentration and socioeconomic factors, their traditional
statistical relationships, spatial statistical relationships and spatial spillover effect of PM2.5

concentration were examined in this research using the multisource data of 31 provinces in China from
1998 to 2016. The findings in this study will contribute to a thorough understanding of the spatial
relationships between PM2.5 concentration and socioeconomic factors in China, and will provide
auxiliary decision support for urban sustainability and policy efficiency.

2. Materials and Methods

2.1. Data

At the website of Dalhousie University, the global surface PM2.5 concentration dataset that was
estimated by GEOS-Chem chemical transport model combined with the aerosol optical depth (AOD)
were provided by the Atmospheric Composition Analysis Group (http://fizz.phys.dal.ca/~{}atmos/
martin/?page_id=140). The NASA MODIS, MISR, and SeaWIFS satellite instruments were used to
retrieve the AOD. The global surface PM2.5 concentration dataset was calibrated based on global
ground PM2.5 observations using geographically weighted regression (GWR) [40,41]. The annual
average PM2.5 data in 31 provinces of China at a resolution of 0.1◦ × 0.1◦ from 1998 to 2016 in this
study were extracted from this dataset by ARCGIS10.3 software (ESRI Inc., Redlands, CA, USA).

http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
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The socioeconomic data were obtained from the National Bureau of Statistics of the People’s
Republic of China (http://data.stats.gov.cn/). In this study, four major socioeconomic factors
were collected in 31 provinces of Mainland China during 1998–2016, namely GDP per capita
(GDPP), industrial added values (IVA), urban population density (UPD) and private car ownership
(PCO). In order to eliminate the influence of dimension, z-scores were used to standard all factors
and variables.

2.2. Methods

Five methods were used in this paper, namely unary linear regression model, Spearman’s rank
correlation analysis, univariate spatial autocorrelation, bivariate spatial correlation analysis and spatial
regression analysis. The main methods were analyzed in detail below.

2.2.1. Unary Linear Regression Model

In order to analyze the temporal trend, the slope of socioeconomic factors and PM2.5 concentration
were calculated by using unary linear regression model. The slope is expressed as:

Slope =

T
∑

t=1
t ·Yt − 1

T

(
T
∑

t=1
t
)(

T
∑

t=1
Yt

)
T
∑

t=1
t2 − 1

T

(
T
∑

t=1
t
)2 , (1)

where slope is the trend gradient, Yt denotes the variable (PM2.5 concentration or GDPP or IVA or UPD
or PCO) in the t-th year, T is the study period of 1998–2016. A positive (negative) slope means that the
variable increases (decreases) over the years. The greater the absolute value of the slope, the faster the
increase or decrease of speed.

2.2.2. The Univariate Spatial Autocorrelation Analysis

Moran’s I, as the most commonly used indicator of global spatial autocorrelation, was initially
suggested by Moran [42]. In essence, it represents the cross product statistics of a variable and its
spatial lag. The degree to which the feature values of a position are similar or different from those of
its spatial neighbors is measured by spatial autocorrelation. The global spatial association of PM2.5

concentration across China was explored by global Moran’s I in this paper. To explore the local spatial
association (spatial clustering or spatial dispersion) in adjacent provinces, we chose a local indicator of
spatial association (LISA) [43] as the analysis method. The global Moran’s I and local Moran’s I are
calculated by:

I =
n
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wij
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σ

)
, (3)

where I stands for global Moran’s I for the whole study region, Ii is the Moran’s I for province i, xi
donates PM2.5 concentration at province i, xj donates PM2.5 concentration at all the other provinces
(where j 6= i). Also, x is the mean PM2.5 concentration of 31 provinces in China, n represents the total
number of provinces. σ is the standard deviation of the PM2.5 concentration of 31 provinces. wij is
the spatial weight matrix, representing province i is adjacent to province j, neighboring provinces
were 1 and non-adjacent provinces were 0. The values of I or Ii ranged from −1 to 1. A positive
(negative) I or Ii value indicates positive (negative) spatial autocorrelation in the provinces. Positive
autocorrelation indicates that provinces with similar PM2.5 concentration are closely distributed in

http://data.stats.gov.cn/
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space, whereas negative spatial autocorrelation indicates that PM2.5 concentration of neighboring
provinces are dissimilar. A zero I or Ii value indicates a random spatial pattern. The size of the absolute
value of I or Ii can reflect the strength of the spatial correlation.

2.2.3. The Bivariate Spatial Correlation Analysis

The spatial correlation between PM2.5 and socioeconomic factors were examined by global bivariate
Moran’s I and local bivariate Moran’s I. Global bivariate Moran’s I reflects the global spatial associations
between PM2.5 and another variable (GDPP, IVA, UPD or PCO) across the whole region, whereas local
bivariate Moran’s I explores the local spatial correlations within different provinces [44–46]. Global
bivariate Moran’s I and local bivariate Moran’s I are given by:

Ixy =

n
n
∑

i=1

n
∑
j 6=i

wijZx
i Zy

j

(n− 1)
n
∑

i=1

n
∑
j 6=i

wij

(4)

Ii
xy = Zx

i

n

∑
j=1,j 6=i

wijZ
y
j , (5)

where Ixy is the global bivariate Moran’s I, and Ii
xy is the local bivariate Moran’s I in province i. n is

the total number of provinces, and wij is the queen contiguity weight matrix. Zx
i is the standardized

z-scores of PM2.5 concentration in the i-th province, Zy
j is the standardized z-scores of socioeconomic

factors (GDPP, IVA, UPD or PCO) in the j-th province. The values of Ixy or Ii
xy is in the range [−1,1].

The values of Ixy or Ii
xy greater than 0, less than 0, equal to 0 indicate positive spatial correlation,

negative spatial correlation, or no correlation between PM2.5 concentration and socioeconomic factors,
respectively. The size of the absolute value of Ixy or Ii

xy can reflect the strength of the spatial correlation.

2.2.4. The Spatial Regression Model

Spatial lag model (SLM) and spatial error model (SEM) were based on the ordinary least squares
(OLS) [47,48]. SLM can be used to explore whether PM2.5 concentration diffuses in one province,
whereas SEM can be used to interpret the dependence of spatial error [44]. The SLM and SEM can be
defined as follows:

Yit = α + ρwYit + β1xGDPP + β2xIVA + β3xUPD + β4xPCO + ε (6)

Yit = α + β1xGDPP + β2xIVA + β3xUPD + β4xPCO + λwµ + ε, (7)

where Yit denotes PM2.5 concentration in province i in the t-th year, α represents a constant term. β1,
β2, β3, and β4 are the parameters to reveal the correlations between PM2.5 and GDPP, IVA, UPD, and
PCO, respectively. wYit is a spatial lag-dependent variable vector, it reflects the endogenous interaction
effects among Yit, ρ is a spatial regression coefficient that denotes the spatial dependence of the sample
observations. wµ reflects the interaction effects among the disturbance term of different provinces.
The spatial autoregressive coefficient λ denotes the spatial dependence of the residuals; ε is the random
error term, µ represents the spatially autoregressive error terms.

In order to determine whether SLM or SEM is more suitable for the simulation of PM2.5, a Lagrange
multiplier (LM) test and robust Lagrange multiplier (RLM) test should be estimated by the OLS.
Anselin et al. proposed the criterion that if SLM-LM and SEM-LM are not significant, the OLS model
was selected as the final model. If SLM-LM is significant and SEM-LM is not significant, SLM will
be selected, and vice versa for SEM; if both SLM-LM and SEM-LM are insignificant, SLM-RLM is
significant but SEM-RLM is not significant, SLM will be selected; if both SLM-LM and SEM-LM
are insignificant, SEM-RLM is significant but SLM-RLM is not significant, SEM will be selected [46].
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The univariate spatial autocorrelation analysis, the bivariate spatial correlation analysis and the spatial
regression analysis were conducted in GeoDa software (GeoDa Press LLC, Chicago, IL, USA), and we
chose queen contiguity weight matrix in GeoDa software.

3. Results

3.1. The Spatial Distribution of Socioeconomic Factors and PM2.5 in China

From Figure 1, 31 provinces in China were classified and mapped according to the values of
PM2.5 and socioeconomic factors. From Figure 1a, it could be found that PM2.5 concentration only in
Tibet met the WHO Air Quality Guideline (AQG) level (10 µg/m3) in 1998. PM2.5 concentration in
most provinces were observed between 10 µg/m3 and 35 µg/m3. Furthermore, PM2.5 concentration in
some provinces, such as Tianjin, Anhui, Shandong, Gansu, Ningxia, and Xinjiang, were found to be
higher than 35 µg/m3. From Figure 1b, in 2016, obvious changes mainly occurred in some provinces of
China. For example, PM2.5 concentration increased obviously (>35 µg/m3) in Liaoning, Beijing Hebei,
Jiangsu, Shanghai and Henan; however, PM2.5 concentrations in Gansu and Ningxia were found to
have fallen below 35 µg/m3. The distributions of socioeconomic factors were similar to the distribution
of PM2.5 both in 1998 and 2016 generally. From Figure 1c,d, provinces with GDPP below 10,000 yuan
accounted for more than 80% in 1998. Obviously, GDPP in all provinces was higher than 10,000 yuan
in 2016, some of which had a GDPP of more than 100,000 yuan, such as Shanghai, Beijing and Tianjin.
Figure 1e,f show that IVA increased rapidly in most provinces of China, especially in North China, East
China, Central China and Northeast China. The UPD exceeded 2000 person/per square kilometer only
in Shanghai, Jiangsu, Beijing and Qinghai in 1998 (Figure 1g). In 2016, the UPD in most provinces was
higher than 2000 person/per square kilometer, and some provinces even exceeded 3000 person/per
square kilometer (Figure 1h). From Figure 1i,j, we could find that PCO in Mainland China was less
than 1 million in 1998. PCO in 31 provinces was more than 1 million, except Tibet and Qinghai in 2016.
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Figure 1. Spatial distribution of socioeconomic factors and PM2.5 in 31 provinces of China in 1998 and 
2016. (a) 1998 PM2.5, (b) 2016 PM2.5, (c) 1998 GDP per capita, (d) 2016 GDP per capita, (e) 1998 
industrial added values, (f) 2016 industrial added values, (g) 1998 urban population density, (h) 2016 
urban population density, (i) 1998 private car ownership, (j) 2016 private car ownership. 
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million private cars in 2016, respectively. The fitted slope of PM2.5, GDPP, IVA, UPD and PCO in 
Mainland China were 0.138, 0.173, 0.174, 0.164 and 0.165, respectively. These indicated that GDPP, 
IVA, UPD, PCO and PM2.5 generally increased from 1998 to 2016, but the increased trend of IVA, 
GDPP, PCO and UPD was faster than the increased trend of PM2.5. Figure 2 showed their temporal 
variations intuitively. It could be found that GDPP, IVA, UPD and PCO in Mainland China showed 
an increase trend gradually in 1998–2016. The PM2.5 concentration also increased generally but began 
to fluctuate sharply from 2010. It indicated that the increasing trend of PM2.5 concentration was 
similar to that of GDPP, IVA, UPD and PCO in 1998–2016, and this increasing trend was significant, 
especially before 2006. 

Table 1. The values of GDP per capita (GDPP) (yuan/person), industrial added values (IVA) (billion 
yuan), urban population density (UPD) (person/per square kilometer), private car ownership (PCO) 
(104 cars) and PM2.5 (μg/m3) in 1998 and 2016. 

Region 
1998  2016 

PM2.5 GDPP IVA UPD PCO  PM2.5 GDPP IVA UPD PCO 

East China 27.38 10,269.47 1269.72 1501.86 58.90  43.91 74,496.00 11,324.87 2756.00 5439.19 

South China 16.32 7025.50 418.47 999.00 34.23  23.86 52,130.00 3995.00 2378.00 1943.85 

Central China 30.62 4865.51 369.43 867.67 90.69  38.57 48,207.33 4091.64 3684.67 2056.22 

Figure 1. Spatial distribution of socioeconomic factors and PM2.5 in 31 provinces of China in 1998
and 2016. (a) 1998 PM2.5, (b) 2016 PM2.5, (c) 1998 GDP per capita, (d) 2016 GDP per capita, (e) 1998
industrial added values, (f) 2016 industrial added values, (g) 1998 urban population density, (h) 2016
urban population density, (i) 1998 private car ownership, (j) 2016 private car ownership.

3.2. The Temporal Variation of Socioeconomic Factors and PM2.5

3.2.1. The Temporal Variation of Socioeconomic Factors and PM2.5 in China

Annual data on socioeconomic factors and PM2.5 concentration in 1998 and 2016 were counted
in Table 1, and Table 2 showed the temporal variation trend (the fitted slope) of 1998–2016. In 1998,
PM2.5, GDPP, IVA, UPD and PCO in Mainland China were 23.97 µg/m3, 6860 yuan/person,
3413.49 billion, 459 person/per square kilometer and 4.24 million private cars, respectively; and
reached to 29.68 µg/m3, 53,935 yuan/person, 24787.78 billion, 2408 person/per square kilometer and
163.3 million private cars in 2016, respectively. The fitted slope of PM2.5, GDPP, IVA, UPD and PCO
in Mainland China were 0.138, 0.173, 0.174, 0.164 and 0.165, respectively. These indicated that GDPP,
IVA, UPD, PCO and PM2.5 generally increased from 1998 to 2016, but the increased trend of IVA,
GDPP, PCO and UPD was faster than the increased trend of PM2.5. Figure 2 showed their temporal
variations intuitively. It could be found that GDPP, IVA, UPD and PCO in Mainland China showed an
increase trend gradually in 1998–2016. The PM2.5 concentration also increased generally but began to
fluctuate sharply from 2010. It indicated that the increasing trend of PM2.5 concentration was similar
to that of GDPP, IVA, UPD and PCO in 1998–2016, and this increasing trend was significant, especially
before 2006.

3.2.2. The Temporal Variation of Socioeconomic Factors and PM2.5 in the Seven Geographical Subareas

The seven regions of China are showed in Figure 3. From Table 1, in 1998, the GDPP and UPD in
East China and North China, the IVA in East China, and the PCO in North China and Central China
were far higher than other geographical subareas. The GDPP, IVA, UPD, and PCO in Northwest China
were relatively lower. However, Northwest China had the highest PM2.5 concentration (35.26 µg/m3).
In 2016, compared with other regions, GDPP in East China and North China, and IVA in East China
were still relatively higher. Notably, East China had the most private cars. Central China was the most
densely populated. North China became the region with the highest PM2.5 concentration, followed by
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East China. To better analyze the variation of PM2.5 (GDPP, IVA, UPD or PCO) in seven sub-regions,
this slopegraph in Figure 4 can be used to show the increases/decreases between just two fixed points
(1998 and 2016) for different factors. Most importantly, slopegraph focused on the overall macro
change between two periods points, not changes in each year or intervening period. Slopegraph is a
great visualization method for focusing on that aspect of the macro change.

Table 1. The values of GDP per capita (GDPP) (yuan/person), industrial added values (IVA) (billion
yuan), urban population density (UPD) (person/per square kilometer), private car ownership (PCO)
(104 cars) and PM2.5 (µg/m3) in 1998 and 2016.

Region
1998 2016

PM2.5 GDPP IVA UPD PCO PM2.5 GDPP IVA UPD PCO

East China 27.38 10,269.47 1269.72 1501.86 58.90 43.91 74,496.00 11,324.87 2756.00 5439.19
South China 16.32 7025.50 418.47 999.00 34.23 23.86 52,130.00 3995.00 2378.00 1943.85

Central China 30.62 4865.51 369.43 867.67 90.69 38.57 48,207.33 4091.64 3684.67 2056.22
Northwest China 35.26 4563.55 125.08 890.80 29.69 33.84 41,989.40 1398.92 2965.00 1090.65
Southwest China 16.19 3957.29 253.26 443.40 43.24 17.04 39,605.60 2493.59 2531.00 1904.52

North China 31.22 10,074.37 415.56 1338.40 125.75 45.28 76,781.80 3560.12 2634.60 2683.10
Northeast China 20.87 7591.06 350.02 722.00 41.11 32.38 48,363.67 1653.55 2986.67 1212.68
Mainland China 23.97 6860.00 3413.49 459.00 423.65 29.68 53,935.00 24,787.78 2408.00 16,330.22

Table 2. The variation trend of PM2.5, GDPP, IVA, UPD and PCO in the seven geographical subareas
and Mainland China, 1998–2016.

Region
z-slope

PM2.5 GDPP IVA UPD PCO

East China 0.129 0.174 0.175 0.162 0.165
South China 0.110 0.173 0.175 0.148 0.168

Central China 0.108 0.172 0.172 0.158 0.159
Northwest China −0.015 0.172 0.171 0.136 0.160
Southwest China 0.066 0.170 0.170 0.156 0.163

North China 0.128 0.175 0.172 0.166 0.169
Northeast China 0.145 0.172 0.165 0.165 0.165
Mainland China 0.138 0.173 0.174 0.164 0.165
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From Table 2 and Figure 4, it could be found that PM2.5 concentration in subareas except Northwest
China and Southwest China presented an obviously increasing trend, and PM2.5 concentration in
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Southwest China increased slowly over the years. However, PM2.5 concentration in Northwest China
presented a descending trend. Some literatures suggested that sand and dust was the major cause
of affecting PM2.5 concentration in Northwest China [38]. The possible reason on the minus slope
(−0.015) for PM2.5 in Northwest China may be an increase in vegetation coverage [49], and the decrease
of dust events in Northern China in recent decades. The reduction of the wind speed in the northern
hemisphere was the main reason for the decrease of dust event incidence [50]. The socioeconomic
factors in the seven geographical subareas all presented an increasing trend, likely leading to the
increase of PM2.5 concentration between 1998 and 2016.
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3.2.3. The Spatial Distribution of Temporal Trends for Socioeconomic Factors and PM2.5 in
Different Provinces

The slope values of different provinces were mapped in Figure 5. From Figure 5a, it could
be found that PM2.5 in most provinces of China increased rapidly. The provinces with a slower
growth in PM2.5 were mainly distributed in Inner Mongolia, Sichuan, Chongqing, Guizhou and
Yunnan. On the contrary, PM2.5 of Gansu, Ningxia, and Shaanxi presented showed a downward trend.
From Figure 5b–e, we can see that the fitted slopes of GDPP, IVA and PCO in different provinces
were all more than 0.155, indicating that the increased trends of GDPP, IVA and PCO were rapid in
provinces in 1998–2016. UPD increased rapidly in most provinces except Beijing, Ningxia, Jiangsu and
Hainan, and the fitted slope of UPD only in Beijing was negative, this may be because of Beijing’s
population control policies.
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3.3. The Traditional Statistical Relationship between Socioeconomic Factors and PM2.5

3.3.1. The Correlation between Socioeconomic Factors and PM2.5 in Mainland China

The Spearman’s rank correlation coefficients (r-GDPP, r-IVA, r-UPD and r-PCO) between PM2.5

concentration and GDPP, IVA, UPD, and PCO in Mainland China in 1998–2016 were shown in
Figure 6. Most of the correlation coefficients in Figure 6 were positive, indicating that PM2.5 was
positively correlated with socioeconomic factors. From Figure 6a,b, the values of r-GDPP and r-IVA
presented positive increasing trends in 1998–2003 and fluctuated around 0.4 in 2004–2016, with most
of the p-values less than 0.05, indicating that PM2.5 and GDPP and IVA were significantly positively
correlated during the most study years; and the correlations strengthened in 1998–2003, then appeared
fluctuations in 2004–2016. From Figure 6c,d, most of the correlation coefficients were positive except for
a few years. All the p-values were higher than 0.05, indicating that PM2.5 had a positively correlation
with UPD and PCO in most years, but the correlations were not significant during the research
period. The weak correlation between PM2.5 and PCO increased obviously before 2003. However, the
correlation coefficients between PM2.5 and UPD presented a downward trend since 2001, indicating
that the impact of UPD on PM2.5 was getting weaker and weaker.
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Figure 6. The correlation coefficients between PM2.5 and socioeconomic factors in Mainland China,
1998–2016. (a) Correlation coefficients between PM2.5 and GDPP. (b) Correlation coefficients between
PM2.5 and IVA. (c) Correlation coefficients between PM2.5 and UPD. (d) Correlation coefficients between
PM2.5 and PCO. Notes: the letters a and b above the curve point represent coefficients significant at the
1%, 5% levels, respectively. No letters above the curve point indicate insignificance.

3.3.2. The Relationship between Socioeconomic Factors and PM2.5 in Provinces

In the Figure 7, dark green represents a significant negative correlation, light green is a negative
correlation, dark yellow means a significant positive correlation, and pale yellow represents a positive
correlation. From Figure 7, PM2.5 in most provinces of Northeast China, North China, Central China,
East China and South China showed a significantly positive correlation with GDPP, IVA, and PCO.
But PM2.5 only in Ningxia was significantly negatively correlated with GDPP, IVA, and PCO. Most
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provinces of Northeast China, North China, Central China and East China showed significantly
positive correlations between PM2.5 and UPD. However, PM2.5 had a negative correlation with UPD in
Beijing, Gansu and Ningxia. Especially in Beijing, PM2.5 was significantly negative correlated with
UPD. These indicated that socioeconomic factors have contributed to the increased PM2.5 in most
provinces. But the impacts of GDPP, IVA, and PCO on PM2.5 in Shaanxi, Gansu and Ningxia were
negative; and PM2.5 of Gansu, Ningxia and Beijing were affected negatively by UPD. All of these
illustrate the existence of spatial heterogeneity.
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3.3.3. The Relationship between Socioeconomic Factors and PM2.5 in the Geographical Subareas

From Figure 8, a highly significant (p < 0.01) positive correlation between socioeconomic factors
and PM2.5 was observed in North China, Northeast China and East China, indicating that GDPP, IVA,
UPD and PCO played a vital role in North China, Northeast China and East China. In North China,
the impact of UPD on PM2.5 was relatively low. GDPP and PCO had a stronger effect on PM2.5 in
Northeast China. Four socioeconomic factors had similar effects on PM2.5 in East China. UPD in South
China had a slightly greater impact on PM2.5. In Central China, UPD was the major effect factor on
PM2.5. UPD in Southwest China was the most important factor for PM2.5. Whether positive correlation
or negative correlation, PM2.5 in Northwest China had no significant correlations with four influencing
factors. This meant that the trend of PM2.5 concentration was less affected by those human activities.
This was consistent with anthropogenic effects on the dust loading in East China was far higher than
near desert source regions in Northwest China [50]. There were other factors which determines the
PM2.5 trend in Northwest China, PM2.5 in Northwest China was mainly affected by sand and dust [38].
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Previous studies have shown a positive correlation between air temperature and PM2.5 concentration
in summer in Northwest China [51].
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3.4. The Spatial Statistical Relationship between Socioeconomic Factors and PM2.5

3.4.1. Global Spatial Autocorrelation of PM2.5

From Figure 9, the global Moran’s I values of PM2.5 were positive at the 95% confidence level and
increased over time, but fluctuated around 0.5 since 2003, indicating that PM2.5 exibited significantly
positive spatial autocorrelation and spatial homogeneous, and spatial autocorrelation of PM2.5 in
31 provinces of China strengthened gradually. In other words, PM2.5 at one province tended to be
similar to those of their neighboring provinces, the spatial spillover effect had been increasing in
different provinces.
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In order to identify the provinces with significant spatial correlation and type of spatial clusters
of PM2.5, LISA was calculated and mapped in Figure 10. High–high (HH) clusters means that
PM2.5 concentration of one province and its neighbors were higher than the annual average PM2.5

concentration in Mainland China. While, low–low (LL) clusters refers to the provinces with low PM2.5

concentration being surrounded by neighbors with low PM2.5 concentration, whose value is lower than
the annual average values. High–low (HL) outliers means that high PM2.5 concentration had low PM2.5

concentration in the neighboring provinces and vice versa for the low–high (LH) outliers. The HH and
LL clusters can reflect the similar PM2.5 concentration clustering, indicating spatial autocorrelation
of PM2.5 is positive; spatial dispersion of PM2.5 concentration is reflected in the HL and LH outliers,
it indicates that PM2.5 concentrations have a negative spatial autocorrelation. From Figure 10, the
spatial spillover effect of PM2.5 pollution in Southwest China, North China and East China were
the most significant from 2003 to 2016. This may be because some geographic and meteorological
conditions (wind speed and direction, high temperature) have caused the diffusion of particulate
matter. The provinces in Southwest China and Qinghai showed an LL clustering pattern during the
study period. This finding may be because of the sparse population, low development intensity, high
vegetation coverage and low industrial pollution. Meanwhile, HH clustering were mostly distributed
in some provinces of North China, East China, and Central China from 1999 to 2016. This could
be largely attributed to intensive industries, car exhaust emissions and a sharp increase in urban
population density. HL outliers were mainly distributed in Xinjiang in 2003–2015 except for 2013.
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3.4.2. Spatial Correlations between PM2.5 and Socioeconomic Factors

In this paper, global bivariate Moran’s I was used to determine if PM2.5 in one province
were spatial correlated with socioeconomic factors of its neighbors across the study region.
From Figure 11a,b,d, the global bivariate Moran’s I values presented positive growth trends at a
95% confidence level in 1998–2016. These indicated that spatial correlations between PM2.5 at a
province and GDPP, IVA and PCO of its adjacent provinces were positive and significant, and the
positive spatial correlations increased during the study period. From Figure 11c, the global bivariate
Moran’s I values presented a positive increasing trend in 1998–2001, a positive decreasing trend
in 2001–2005, and a negative decreasing trend in 2006–2016, with the p-values less than 0.05 in
1998–2004, indicating that spatial correlation between PM2.5 concentration at a province and UPD of
its neighboring provinces was positive and significant in 1998–2004, positive but not significant in
2005, negative but not significant in 2006–2016. The spatial correlation decreased from 2001.

As shown in Figure 12, the bivariate local Moran’s I values for PM2.5 and socioeconomic factors
were calculated. HH clusters means that the provinces with high PM2.5 concentration clustered the
neighboring provinces with high values of GDPP, IVA, UPD and PCO, and their values were higher
than their annual average values. LL clusters means that the provinces with low PM2.5 concentration
were near predominantly the provinces with low values of GDPP, IVA, UPD and PCO, and their values
were lower than their annual average values. HL outliers occur where the neighbors of the provinces
with high PM2.5 concentration have low GDPP, IVA, UPD and PCO. LH outliers mean that there
were low values of PM2.5 concentration in one province, and there were high values of GDPP, IVA,
UPD and PCO in the adjacent provinces. We used data from 2016 as an example to analyze the local
spatial correlations between PM2.5 concentration and socioeconomic factors. In 2016, from Figure 12c,
Hubei was the only province where appeared HH clusters of PM2.5 concentration and UPD. From
Figure 12a,b,d, the LL clusters of PM2.5 concentration and GDPP (IVA or PCO) were mostly covered
in some provinces of Southwest China. Shanghai appeared a HH clusters of PM2.5 concentration
and GDPP. Shandong, Jiangsu, Shanghai and Anhui were the provinces that had a HH clusters of
PM2.5 concentration and IVA. High PM2.5 concentration and high PCO clustered in Henan, Shandong,
Jiangsu, Shanghai and Anhui. The place where was the HL outliers of PM2.5 concentration and GDPP
(IVA or PCO) was Xinjiang. The LH outliers of PM2.5 concentration and IVA were covered in Fujian
and Jiangxi. Fujian was the province that appeared a LH outliers of PM2.5 concentration and PCO.
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3.5. Regression Results of the Spatial Regression Model

The analysis results of spatial autocorrelation confirmed the existence of spatial dependence of
PM2.5, so spatial regression models were used to further confirm the spatial dependence of PM2.5

concentration. First, the estimated results of OLS were calculated in Table 3. LM test and RLM test were
performed for the residuals of OLS regression. The values of SLM-LM and SEM-LM were significant
(p < 0.05) except for 1999 and 2016. The values of SLM-RLM were significant (p < 0.1) in most years,
while SEM-RLM was not significant in 1998–2016. Therefore, the SLM model was adopted. The results
of spatial lag model regression in 1998–2016 were shown in Table 4. PM2.5 increased significantly under
GDPP impact in most years (p < 0.1). Futhermore, IVA had also a significantly positive impact on PM2.5

in 2003–2010, a possible reason for this may be that some provinces (Hebei, Jiangsu and Zhejiang) had
significantly increased their industrial energy consumption (>50%) in 2000–2010, resulting in the direct
impact of industrialization on PM2.5, according to China’s Energy Statistic Yearbook (2011). But the
impact of UPD and PCO on PM2.5 was insignificant (p > 0.1) in most years. The spatial autoregressive
coefficient (W*PM25) were all significant (p < 0.01) in 1998–2016, indicating there was a significant
spatial spillover effect on PM2.5 in adjacent provinces.

Table 3. Results of ordinary least squares regressions between PM2.5 and socioeconomic factors in
Mainland China, 1998–2016.

Year
Variables

GDPP IVA UPD PCO R2 Log-L SLM-LM SLM-RLM SEM-LM SEM-RLM

1998 0.165 −0.0180 0.026 0.116 0.048 −42.717 5.571 ** 1.583 4.826 ** 0.838
1999 0.202 0.216 −0.012 −0.199 0.092 −41.981 2.778 * 0.115 2.667 0.005
2000 0.166 0.216 0.027 −0.076 0.085 −42.103 7.717 *** 0.587 7.222 *** 0.093
2001 0.361 0.168 0.068 −0.119 0.192 −40.179 7.661 *** 2.569 6.106 ** 1.014
2002 0.438 ** 0.422 * −0.063 −0.292 0.302 −37.908 7.884 *** 0.850 7.036 *** 0.003
2003 0.449 ** 0.460 * 0.195 −0.280 0.406 −35.417 8.874 *** 3.486 * 5.816 ** 0.429
2004 0.466 ** 0.470 * 0.144 −0.317 0.358 −36.611 6.037 ** 2.729 * 3.933 ** 0.625
2005 0.406 ** 0.613 ** 0.113 −0.414 0.363 −36.485 7.922 *** 1.938 6.067 ** 0.082
2006 0.504 *** 0.384 0.265 −0.199 0.374 −36.216 13.218 *** 3.156 * 10.158 *** 0.096
2007 0.442 ** 0.596 * 0.224 −0.354 0.390 −35.819 13.435 *** 3.741 * 9.842 *** 0.148
2008 0.546 *** 0.620 * 0.120 −0.429 0.429 −34.796 8.044 *** 2.218 5.844 ** 0.018
2009 0.564 *** 0.494 0.139 −0.310 0.416 −35.141 7.249 *** 2.393 4.954 ** 0.098
2010 0.439 ** 0.515 0.515 −0.249 0.356 −36.665 6.853 *** 1.221 5.647 ** 0.014
2011 0.501 *** 0.264 0.175 −0.012 0.379 −36.096 9.957 *** 2.826 * 7.183 *** 0.052
2012 0.424 ** 0.236 0.144 0.082 0.336 −37.138 7.965 *** 3.252 * 5.070 ** 0.356
2013 0.515 *** 0.013 0.201 0.229 0.371 −36.297 8.174 *** 4.133 ** 4.726 ** 0.685
2014 0.462 ** 0.128 0.159 0.169 0.366 −36.422 6.566 ** 4.074 ** 3.335 * 0.842
2015 0.575 *** −0.019 0.226 0.221 0.419 −35.051 6.294 ** 3.891 ** 3.196 * 0.793
2016 0.578 *** −0.286 0.122 0.494 0.385 −35.939 5.762 ** 5.050 ** 2.465 1.752

Notes: Log-L denotes Log likelihood; *, **, ***represent coefficients are significant at the 10%, 5%, 1%
levels, respectively.
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Table 4. The results of spatial lag model regression in 1998–2016.

Year
Variables

W*PM25 GDPP IVA UPD PCO R2 Log-L AIC SC

1998 0.646 *** 0.151 0.005 −0.114 0.064 0.328 −39.165 90.330 98.934
1999 0.488 *** 0.196 0.149 −0.110 −0.156 0.237 −40.237 92.474 101.078
2000 0.677 *** 0.087 0.170 −0.121 −0.057 0.401 −37.598 87.197 95.800
2001 0.694 *** 0.245 0.095 −0.128 −0.098 0.483 −35.457 82.914 91.518
2002 0.674 *** 0.279 ** 0.258 −0.191 −0.233 0.549 −33.196 78.391 86.995
2003 0.647 *** 0.225 * 0.345 * 0.082 −0.262 0.618 −30.406 72.812 81.416
2004 0.595 *** 0.274 * 0.345 * 0.046 −0.315 0.536 −33.075 78.150 86.754
2005 0.623 *** 0.206 0.476 ** 0.028 −0.422 * 0.570 −32.075 76.151 84.755
2006 0.766 *** 0.227 ** 0.378 * 0.274 *** −0.311 0.690 −28.214 68.428 77.032
2007 0.754 *** 0.207 * 0.471 ** 0.217 ** −0.407 * 0.695 −27.832 67.664 76.268
2008 0.646 *** 0.311 ** 0.535 ** 0.121 −0.483 ** 0.630 −29.898 71.796 80.400
2009 0.645 *** 0.321 ** 0.502 ** 0.144 −0.447 * 0.614 −30.556 73.112 81.716
2010 0.626 *** 0.242 * 0.515 * 0.153 0.383 0.561 −32.421 76.842 85.446
2011 0.729 *** 0.238 ** 0.369 0.186 * −0.268 0.653 −29.580 71.160 79.764
2012 0.674 *** 0.206 0.290 0.176 −0.128 0.580 −32.073 76.146 84.750
2013 0.679 *** 0.244 * 0.223 0.204 * −0.098 0.607 −31.099 74.198 82.802
2014 0.637 *** 0.203 0.302 0.166 −0.137 0.571 −32.146 76.292 84.896
2015 0.639 *** 0.266 ** 0.249 0.175 −0.148 0.606 −30.845 73.689 82.293
2016 0.628 *** 0.247 * 0.081 0.107 0.06 0.570 −32.100 76.201 84.805

Notes: Log-L denotes log likelihood; *, **, ***represent coefficients significant at the 10%, 5%, 1% levels, respectively.

4. Discussion

4.1. Spatial Distribution and Temporal Variation of PM2.5 and Socioeconomic Factors

Based on four socioeconomic factors dataset and PM2.5 concentration dataset, this study examined
the spatial distribution and relationships between socioeconomic factors and PM2.5 in 31 provinces
of Mainland China during the period of 1998–2016. From Figure 1, provinces with high PM2.5

concentration have shifted from Northwest China to North China and East China since 1998, and
most provinces of Northeast China, North China and East China had serious PM2.5 pollution in
2016. Previous studies have also shown that high PM2.5 concentration were mainly distributed in
economically developed areas [38]. From Figure 2, the temporal variations showed that the overall
increase trend of PM2.5 is the same as that of GDPP, IVA, UPD and PCO during 1998–2016, but
PM2.5 exhibited a downward trend from 2006 to 2012. The reason for this phenomenon may be
the implementation of sustainable development policies of energy conservation, pollutant reduction
and green development proposed in the eleventh five-year plan [52]. The external cause could be
meteorological factors. For example, the nitrate and secondary organic aerosols formation was greatly
facilitated by high humidity [53]. Wind speed is conducive to the diffusion of PM2.5 [54]. The chemical
reaction rate of PM2.5 precursor pollutants accelerates with the increase of temperature and solar
radiation. [55,56]. From Tables 1 and 2 and Figure 4, in 1998, the two regions with the highest PM2.5

concentration were Northwest China and North China, which were replaced by North China and East
China respectively in 2016. The growth trend of GDPP, IVA, UPD, PCO and PM2.5 in East China, South
China, Central China, North China, and Northeast China were fast. Although the growth trend of
GDPP, IVA, UPD and PCO in Southwest China and Northwest China were also fast, PM2.5 presented
a slowly growth trend in Southwest China and a descending trend in Northwest China. Previous
studies had come to similar conclusions [19,50]. From Figure 5, a downward trend of PM2.5 presented
in Gansu, Ningxia, and Shaanxi is mainly attributed to implementation of clean air policies in recent
years. UPD only in Beijing showed a downward trend, which is in line with the requirements of
the Beijing–Tianjin–Hebei coordination to "strictly control the increase, dredge the stock, dredge the
combination" of Beijing’s population size. In addition to the policy factor of Beijing–Tianjin–Hebei
cooperation, the negative growth of Beijing’s permanent population is also related to the overall trend
of population returns in labor-exporting provinces.
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4.2. The Relationships between PM2.5 and Socioeconomic Factors

From Figure 7, the Spearman’s rank correlation analysis indicated that four socioeconomic factors
produced an increase of PM2.5 in most provinces of China. However, GDPP, IVA and PCO appeared a
negative correlation with PM2.5 in Shaanxi, Gansu and Ningxia. Gansu, Ningxia and Beijing were the
negative correlation between PM2.5 and UPD. From Figure 8, the socioeconomic factors had strong
impact on PM2.5 concentration in North China, Northeast China and East China, but in contrast less
affected PM2.5 concentration in Northwest China. It’s worth noting that meteorological factors and
urban fugitive dust also contributed to PM2.5 concentration [57,58]. Soil and desert dust was the
major cause of high Fe and K contents in urban fugitive dust in Northern China, and PM2.5 was more
affected by soil dust in northern China than in southern China [59]. Furthermore, coal combustion
produced fugitive dust which increased PM2.5 concentration. This influence was especially strong in
Northern part of China [60]. In addition, it was reported that desert dust and soil dust often affected
Northwest China. So, sand and dust played an important role in influencing PM2.5 concentration in
Northwest China [38,61,62]. GDPP and IVA appeared significantly positive correlations with PM2.5 in
most years in Figure 6a,b. While the correlation between PM2.5 and UPD (or PCO) was all insignificant
in Figure 6c,d. Furthermore, when spatial factors were considered in Figure 11a,b,d, GDPP (IVA or
PCO) imposed a positive externality on PM2.5; that is, the increase of GDPP (IVA or PCO) in one
province may cause the increase of PM2.5 in the neighboring provinces. The reason is that the pollution
particles, generated by the activities of residents, emissions from factories and private cars, may be
passed from one province to the surrounding provinces through atmospheric movements such as wind
speed, wind direction temperature. High temperature and wind speed can promote the convection
of air. This can create better conditions for the dilution and dispersion of particulate matter. Notably,
the Spearman’s rank correlation analysis and bivariate spatial correlation analysis gave a consistent
conclusion for the downward trend on the UPD’s impact on PM2.5 concentration in Figures 6c and 11c.
It indicated that the impact of UPD on PM2.5 was getting smaller and smaller. This may be because of
the population control policy. The population size of some provinces has been gradually controlled
since the population control policy was implemented. The impact of UPD on PM2.5 may be closely
related to population size [63].

Figure 12 showed the local bivariate cluster maps for PM2.5 and socioeconomic factors in
31 provinces of China, in 2016. For the provinces of the HH clusters, the development of the social
economy in their adjacent provinces had positive radiation effect on these provinces. Their economic
development in the local provinces have also brought about a number of pollution sources that
have indirectly increased PM2.5. Some provinces with slow economic growth in Northwestern and
Southwestern China had fewer pollution sources, which was easy to form LL clusters. Furthermore,
the HL type provinces were mainly distributed in Xinjiang in Figures 10 and 12. As a region of
severe sandstorm and abundant coal resources, the exploitation and utilization of these coal resources
have produced many pollutants in Xinjiang and destroyed the ecological balance of atmospheric
environment. The complex topography of Xinjiang is also not conducive to the diffusion of atmospheric
pollutants. In addition, Qinghai and Tibet with underdeveloped industry have less pollution resources
and lower PM2.5 concentration. Rich vegetation in Sichuan and Yunnan can effectively reduce PM2.5

concentration. The combination of these factors formed the obvious HL outliers around Xinjiang.

4.3. The Spatial Spillover Effect of PM2.5

The spatial spillover effect means that the changes of PM2.5 concentration in one province can
impact on PM2.5 concentration of other provinces. In this paper, spatial spillover effect of PM2.5

concentration in adjacent provinces can be reflected by the global Moran’s I. From Figure 9, there was a
positive increasing trend of the global Moran’s I values of PM2.5 concentration during the study period.
It indicated that the spatial correlation of PM2.5 gradually became stronger over time. The spatial
autoregressive coefficient (W*PM25) were all significant (p < 0.01) in 1998–2016 (column 2 of Table 4).
These meant that the spatial spillover effect is becoming more and more significant. From Figures 10
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and 12, the HH clusters of PM2.5 concentration (HH clusters of PM2.5 and socioeconomic factors) were
mainly distributed in some provinces of economically developed area (i.e., North China, East China).
At the same time, provinces of economically backward areas (i.e., Southwest China) appeared to have
LL clusters. These indicated that the spatial spillover effect of North China, East China and Southwest
China were higher than other regions. All the three regions have strong PM2.5 pollution homogeneity.
In other words, there were spatial spillover effects in different provinces, but were particularly severe
in North China, East China and Southwest China. However, we note that the spatial spillover effects
on PM2.5 pollution for all regions are non-negligible. So local governments should consider the policies
of adjacent provinces and coordination with adjacent provinces is indispensable.

4.4. Comparative Analysis of the Effects of GDPP, GDP per Area, IVA and IVA per Area on PM2.5

To further analyze the correlation between PM2.5 and aerosol emission density, we used dataset
of GDP per area and IVA per area to calculate the Spearman’s rank correlation coefficients. Due to the
absence of data in 2016 and Tibet, the time sequence of the experiment was from 1998 to 2015, and
Tibet was excluded. We have tested the correlations from a spatial perspective. The experiment was
designed for the effects of GDPP, GDP per area, IVA and IVA per area on PM2.5 from two different
scale, including regional scale and provincial scale. On regional scale, the correlation between PM2.5

and GDP per area (IVA per area, GDPP, or IVA) were significant in North China, Northeast China,
East China, Central China and South China in Figure 13. On provincial scale, Table 5 showed that
most provinces of the other five geographical regions except Southwest China and Northwest China
presented a significant correlation between PM2.5 and GDP per area (IVA per area, GDPP, or IVA).
Although there were some slight differences in the correlations values and p values under two different
scales, the overall trend was consistent. These indicated that the increase of GDP and industry has
a strong positive impact on PM2.5, especially in North China, Northeast China, East China, Central
China and South China. However, the influence was not strong in Northwest China. The reason
may be that PM2.5 concentration in Northwest China is more affected by sandstorms. These further
validated the idea in this article. That is, human activities contribute to PM2.5 concentration, but are
not the only factor.Int. J. Environ. Res. Public Health 2019, 16, 20 of 24 
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Table 5. The correlation coefficients of provinces in seven geographical subareas, 1998–2015.

Region Province
Correlation Coefficient (r)

r-GDPP r-GDPP per Area r-IVA r-IVA per Area

North China

Beijing 0.785 ** 0.777 ** 0.779 ** 0.779 **
Tianjin 0.701 ** 0.701 ** 0.695 ** 0.695 **
Hebei 0.756 ** 0.756 ** 0.759 ** 0.759 **
Shanxi 0.525 * 0.525 * 0.548 * 0.453

Inner Mongolia 0.323 0.342 0.311 0.443

Northeast
China

Liaoning 0.822 ** 0.812 ** 0.783 ** 0.783 **
Jilin 0.829 ** 0.829 ** 0.822 ** 0.822 **

Heilongjiang 0.742 ** 0.740 ** 0.600 ** 0.600 **

East China

Shanghai 0.604 ** 0.604 ** 0.556 * 0.556 *
Jiangsu 0.754 ** 0.754 ** 0.754 ** 0.754 **

Zhejiang 0.560 * 0.558 * 0.560 * 0.548 *
Anhui 0.798 ** 0.804 ** 0.798 ** 0.798 **
Fujian 0.474 * 0.474 * 0.474 * 0.474 *
Jiangxi 0.552 * 0.548 * 0.554 * 0.439

Shandong 0.752 ** 0.752 ** 0.752 ** 0.750 **

Central China
Henan 0.756 ** 0.756 ** 0.773 ** 0.763 **
Hubei 0.641 ** 0.641 ** 0.628 ** 0.628 **
Hunan 0.585 * 0.585 * 0.585 * 0.585 *

South China
Guangdong 0.552 * 0.552 * 0.552 * 0.552 *

Guangxi 0.649 ** 0.626 ** 0.649 ** 0.484 *
Hainan 0.498 * 0.643 ** 0.513 * 0.628 **

Southwest
China

Chongqing 0.331 0.331 0.340 0.340
Sichuan 0.418 0.418 0.449 0.480 *
Guizhou 0.467 0.467 0.467 0.488 *
Yunnan 0.457 0.515 * 0.449 0.368

Northwest
China

Shaanxi −0.030 −0.028 −0.003 −0.096
Gansu –0.152 0.038 −0.160 0.189

Qinghai 0.567 * 0.451 0.579 * 0.480 *
Ningxia −0.562 * −0.562 * −0.562 * −0.470 *
Xinjiang 0.240 0.240 0.230 0.232

Notes: *, ** represent coefficients are significant at the 5%, 1% levels, respectively.

5. Conclusions

This paper estimated spatial distribution, temporal variations and relationships of socioeconomic
factors and PM2.5 in 31 provinces of China using a unary linear regression model, Spearman’s rank
correlation analysis method, univariate spatial autocorrelation analysis method, bivariate spatial
correlation analysis method and the spatial regression analysis during the period of 1998–2016. Results
demonstrated that PM2.5 generally increased with the increase of socioeconomic factors from 1998 to
2016, but there were different temporal variations trend and relationships in different provinces and
regions. Socioeconomic factors and PM2.5 concentration in most provinces in East China, South China,
Central China, North China, and Northeast China had rapid growth trend, and socioeconomic factors
were significantly correlated with PM2.5 concentration. Although the growth trend of socioeconomic
factors in Southwest China and Northwest China were also fast, PM2.5 presented a slowly growth
trend in Southwest China and a descending trend in Northwest China, and socioeconomic factors
were weakly correlated with PM2.5 concentration. Urban population density was not an important
influencing factor in affecting PM2.5 concentration. GDP per capita and industrial added values in the
local and adjacent provinces were the key influencing factors for the increase of PM2.5 concentration.
Private car ownership also contributed to PM2.5 concentration. PM2.5 in neighboring provinces were
also an important factor to increase the local PM2.5 concentration. The results of the research can
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provide effective guidelines for urban sustainable development and further protect the environment
of cities.
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