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Abstract

Background: Color vision is the ability to detect, distinguish, and analyze the wavelength distributions of light independent
of the total intensity. It mediates the interaction between an organism and its environment from multiple important
aspects. However, the physicochemical basis of color coding has not been explored completely, and how color perception is
integrated with other sensory input, typically odor, is unclear. Results: Here, we developed an artificial intelligence platform
to train algorithms for distinguishing color and odor based on the large-scale physicochemical features of 1,267 and 598
structurally diverse molecules, respectively. The predictive accuracies achieved using the random forest and deep belief
network for the prediction of color were 100% and 95.23% ± 0.40% (mean ± SD), respectively. The predictive accuracies
achieved using the random forest and deep belief network for the prediction of odor were 93.40% ± 0.31% and
94.75% ± 0.44% (mean ± SD), respectively. Twenty-four physicochemical features were sufficient for the accurate prediction
of color, while 39 physicochemical features were sufficient for the accurate prediction of odor. A positive correlation
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between the color-coding and odor-coding properties of the molecules was predicted. A group of descriptors was found to
interlink prominently in color and odor perceptions. Conclusions: Our random forest model and deep belief network
accurately predicted the colors and odors of structurally diverse molecules. These findings extend our understanding of the
molecular and structural basis of color vision and reveal the interrelationship between color and odor perceptions in nature.

Keywords: color perception; odor perception; random forest; deep belief network; physicochemical features

Background

Color vision mediates the relationship between an organism and
its environment in multiple important ways, including influenc-
ing mate choice, camouflage, and speciation [1]. We see a color-
ful world because different objects are composed of materials
with different reflectance spectra in the wavelength range visi-
ble to our eyes [2]. Although knowledge of fundamental optical
processes such as reflection, refraction, interference, diffraction,
and scattering is accumulating [3], we lack the ability to recog-
nize the color of cellular structure and pattern formation at op-
tical scales from nanometers to microns.

Nature creates various colorful materials based on physico-
chemical properties including topological and geometrical prop-
erties that humans cannot easily see [4, 5]. For instance, the
color changes from bright yellow through reddish–purple to blue
when the size of a gold sample is decreased [6]. The different
colors of disubstituted benzenes were discovered to be related
to differences in the molecular structure with ortho, meta, and
para substitutions [7, 8]. The odors of chemicals are also fully
encoded within their specific physicochemical properties [9, 10].
The compositions and structures of functional groups have been
suggested to be crucial for the perception of aroma [11]. More-
over, evidence of the interaction between color vision and ol-
faction has been discovered [12]. For example, the odor of a host
plant can modify the color sensed by a swallowtail butterfly [13].
The odor of wine can be predicted according to its color [14]. Ad-
ditionally, the perceived intensity of an odor is positively cor-
related with the intensity of color [15, 16]. Neuroimaging and
repetitive transcranial magnetic stimulation studies have shown
that high-level odor processing also actives the visual cortex [17,
18]. However, the relationship between color and odor in terms
of molecular physicochemical properties is largely unknown.

Artificial intelligence (AI) tools can be optimized to infer the
innate laws of natural processes through machine learning tasks
based on large-scale datasets and make predictions of the un-
known [19, 20]. In the chemical sciences, AI has been used to
guide chemical and material design, synthesis, characterization,
and modeling [21, 22]. Previous researchers have equipped AI
with a “nose” to predict human olfactory perception from the
physicochemical features of 476 molecules and 21 perceptual at-
tributes perceived by 49 individuals [23].

Here, we developed a random forest model and deep belief
network (DBN) to predict the colors and odors of chemicals on
the basis of their molecular descriptors. We applied random for-
est and genetic algorithm for feature selection to identify the key
physicochemical features that contribute most to the predictive
accuracies. In addition, we investigated the connection between
the key physicochemical features in color and odor coding to un-
ravel the commonality between visual and olfactory perception.

Data Description
Data collection and labeling

A total of 1,267 structurally diverse molecules were used for
color prediction in this study, and 598 structurally diverse

molecules were used for odor prediction. The color, odor, and
3D structure data of these molecules were all collected from the
key chemical information resource at the US NCBI, PubChem [24,
25], between 1 June and 30 November 2017. Molecules with defi-
nite colors or odors were defined from PubChem, and molecules
with multiple colors or odors that are difficult to define were ex-
cluded. The dataset of colors was classified into 12 diverse col-
ors, including yellow (257 molecules), white (301 molecules), or-
ange (31 molecules), red (16 molecules), purple (11 molecules),
green (24 molecules), blue (9 molecules), brown (20 molecules),
amber (15 molecules), gray (6 molecules), black (17 molecules),
and colorless (560 molecules). The dataset of odors was classi-
fied into 12 diverse odors, including ammonia (37 molecules),
aromatic (36 molecules), characteristic (27 molecules), flower (19
molecules), fruity (29 molecules), mild (38 molecules), other (127
molecules), pleasant (16 molecules), unpleasant (23 molecules),
spicy (54 molecules), sweet (30 molecules), and odorless (162
molecules).

Physicochemical features of the molecules

The PubChem compound identifier for each molecule was pro-
vided (Supplementary Data 1–3). We applied the commercial
chemoinformatics software package Dragon (version 7.0 [26])
to calculate 5,270 physicochemical descriptors for each of the
molecules, including the simplest atom types, functional groups
and fragment counts, topological and geometrical descriptors,
3D descriptors, several property estimations (such as logP), and
drug-like and lead-like alerts (such as the Lipinski alert). These
molecular descriptors are formal mathematical representations
of a molecule and include their definition, symbols and la-
bels, formulas, some numerical examples, data, and molecu-
lar graphs, as presented in the Handbook of Molecular Descrip-
tors [27]. The missing values marked as “NaN” simply mean that
for these molecules, some descriptors have not been calculated
for some reason, which is common because several descriptors
have particular constraints. Molecules with >2,000 descriptors
marked as “NaN” were not used. We replaced all of the “NaN”
entries with “0” during the dataset preprocessing. For molecules
with color, the average number of “NaN” entries within 5,270 de-
scriptors was 353 per molecule. For molecules with odor, the av-
erage number of “NaN” entries within 5,270 descriptors was 28
per molecule. The data were divided into the training and testing
datasets without oversampling using k-fold cross-validations (k
= 4). The overall workflow is shown in Fig. 1.

Results
Color prediction

Random forest and DBN algorithms were applied for the in sil-
ico test. Using k-fold cross-validations (k = 4), the random forest
model identified and utilized the most discriminative features
with 100% accuracy in the prediction of 12 colors (Fig. 2A and C,
Fig. S1), with a κ coefficient of 1. As a type of probability gen-
eration model consisting of multiple restricted Boltzmann ma-



Zhang et al. 3

Random Forest Deep Belief Network 

1267 structurally diverse molecules 

2D matrix-based descriptors (607)  

2D autocorrelations (213) 

2D atom pairs (1596)

3D matrix-based descriptors (99)    

3D autocorrelations (80)

3D-MoRSE descriptors (224)          

CATS 3D (300)

……

Predicted colors and odors

Model selection

Prediction and evaluation

Data collection

5270 physicochemical features 
yellow
white 
orange
red
purple
green
blue
brown
amber
gray
black
colorless

ammonia 
aromatic
characteristic
flower 
fruity 
mild 
pleasant 
unpleasant 
spicy
sweet 
odorless
other

12 odors 

or
Feature Selection

Random Forest Genetic algorithm 

12 colors 

Figure 1: The overall workflow of color prediction and odor prediction. A total
of 1,267 structurally diverse molecules were labeled with 12 diverse colors, and

598 structurally diverse molecules were labeled with 12 diverse odors. In addi-
tion, 5,270 physicochemical features of each molecule were generated by Dragon.
Random forest models and deep belief networks were built to predict colors or
odors using their physicochemical features. Feature selection was conducted by

random forest models and the genetic algorithm. With the selected feature, ran-
dom forest models and deep belief networks were reused for color and odor pre-
diction. The models were evaluated on the basis of the means and variances of
the accuracies between the labeled and predicted colors or odors.

chines (RBMs), the DBN also performed excellently, with a pre-
dictive accuracy of 95.23% ± 0.40% (mean ± SD) (Fig. 2B and D)
and a κ coefficient of 0.9400 ± 0.0030 (mean ± SD).

Key physicochemical features for color perception

Twenty-four descriptors were selected as the key physicochem-
ical features in random forest algorithm with a classification ac-
curacy of 100 by using k-fold cross-validations (k = 4). The molec-
ular descriptor “B05[F-X]” ranked first, followed by “SddsAs,”
“RDF155s,” and “F08[O-Si].” The heat map of the hierarchical
cluster analysis between the 24 key features and the 12 colors
is shown in Fig. 2E. “B10[P-X],” “B05[P-P],” “B05[P-Cl],” “HVcpx,”
and “ATS5i” were the main contributors to white, whereas
“CATS3D 00 DL” and “E1e” were the most important features in
predicting yellow. Information relevant to the key physicochem-
ical features for color perception is reported in Table S1.

Distinction and connection with olfaction perception

We next applied the AI platform to predict odor perception
on the basis of physicochemical features. In total, 598 struc-
turally diverse molecules were collected and classified into 12
diverse odors based on PubChem [24], including pleasant, un-
pleasant, ammonia, aromatic, flowery, fruity, spicy, sweet, mild,
odorless, characteristic, and other. The accuracies of the odor
prediction were 93.40% ± 0.31% for the random forest model us-

ing k-fold cross-validations (k = 4) (Fig. 3A and C, Fig. S1) and
94.75% ± 0.44% for the DBN (Fig. 3B and D), with κ coefficients
of 0.9232 ± 0.0037 and 0.9397 ± 0.0031, respectively. Thirty-nine
descriptors were selected as the key physicochemical features
in the random forest model with a classification accuracy of
93.40% ± 0.31% (Table S3). The heat map of the hierarchical clus-
ter analysis between the 39 key physicochemical features and
the 12 odors is shown in Fig. 3E. Information relevant to the key
physicochemical features for odor perception is presented in Ta-
ble S2.

To understand the correlation between color and odor, we
collected 90 molecules with both color and odor information
and analyzed the 2 groups using a χ2 test. The colors were di-
vided into 2 categories (white/ colorless, other), as were the
odors (odorless, other). A correlation was predicted for both
types of perception for these molecules (χ2 = 17.445; P < 0.001).
In the complex network of color and odor, key physicochemi-
cal features for color and odor prediction were converted into
z-scores, and the relationship between each pair of attributes
was evaluated by the Pearson correlation coefficient. More than
50 molecular descriptors were found to be interlinked promi-
nently according to their correlation values (the absolute value
of the Pearson correlation coefficients ≥ 0.300552) (Fig. 4). Three
key features “B05[P-CI],” “F08[O-B],” and “CATS3D 14 NL” were
shared for both color perception and odor perception.

1. Discussion

Clarifying the underlying mechanism of color vision is inher-
ently challenging because the cognitive process of color vision
is multidimensional and includes crossover among the mor-
phology and function of the human visual system [28–30]. Here,
we established a framework for distinguishing color without
wavelengths based on only 24 physicochemical features. We
found that the accuracy and κ coefficient achieved using ran-
dom forest (100%, 1) were better than those achieved with the
DBN (95.23% ± 0.40%, 0.9400 ± 0.0030) in color prediction with
12 categories. For odor prediction with 12 categories, the accu-
racy and κ coefficient achieved using the DBN (94.75% ± 0.44%,
0.9397 ± 0.0031) were better than those achieved with the ran-
dom forest (93.40% ± 0.31%, 0.9232 ± 0.0037). Above all, we be-
lieve that the machine learning method can be extended to pre-
dict both physicochemical properties.

Our findings also suggested that key physicochemical fea-
tures in distinguishing color and odor are significantly corre-
lated. The 2D Atom Pairs descriptors and many other descriptors
interlink at the network between color and odor perception, in-
dicating that both color and odor perceptions are partially deter-
mined by the physicochemical properties of the molecules and
that color and odor perceptions are closely interrelated. With the
prominently interlinked key physicochemical features identified
in predicting color and odor, our results tend to call for more ev-
idence for proving the practical relevance between these physic-
ochemical features.

Previous studies on predicting odor have been conducted by
the DREAM Olfaction Prediction Challenge [23, 31], with the best
Pearson correlation coefficient achieved at ∼0.3 between ob-
served and predicted perceptions. A dataset of 476 molecules
sensed by 49 volunteers was applied, and the perceived at-
tributes including the intensity were found to rate differently
among the individuals, which considerably complicated the pre-
diction challenge [31]. The winning algorithm of the DREAM
challenge indicated that the random forest outperforms other
base learners (linear, ridge, and support vector machine) in
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Figure 2: Color prediction using the random forest model and DBN. A. Confusion matrix for the classification of color with 100% accuracy by the random forest. The
X-axis presents the labeled colors of the molecules, and the Y-axis presents the predicted colors of the molecules. B. The classification results for color were as high
as 95.23% using the DBN. The X-axis presents the learning rate, the Y-axis presents the algorithm parameter “momentum,” and the Z-axis presents the accuracy rate.
C. Boxplot presenting the accuracy of color prediction from 4-fold cross-validations using the random forest with all features, the top 24 features selected by random

forest models, the top 24 features selected by random forest and the genetic algorithm, and the total 48 features from above. The median values of these boxplots
are labeled. D. Boxplot presenting the accuracy of color prediction using the DBN with all features, the top 24 features selected by random forest models, the top 24
features selected by random forest and the genetic algorithm, and the total 48 features from above. The median values of these boxplots are labeled. #Random forest
models, ∗random forest models and genetic algorithm. E. Heat map of the correlation values between the top 24 features selected by random forest models and the

12 colors based on the hierarchical clustering framework. The connections between the colors and descriptors were calculated by the Euclid distances.

predicting odor [31]. Our study collected a total of 598 struc-
turally diverse molecules and classified them into 12 diverse
odors based on PubChem to avoid a subjective effect on odor
perception. We added the DBN method and achieved the best
result in odor prediction with a classification accuracy of
94.75% ± 0.44% for 12 categories using all features. In contrast,
the performance of DBN using the key physicochemical features
was less than satisfactory for the following reasons. First, the key

physicochemical features identified in predicting color and odor
were selected by random forest and genetic algorithm. These
features may not be suitable for DBN, which can map the raw
data to low-dimensional space by unsupervised learning in the
pre-training phase. Second, although DBN is a multilayered re-
current neural network trained with energy-minimizing meth-
ods, the network structure of DBN has a great influence on the
learning performance. The network structure of DBN utilizing all
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Figure 3: Odor prediction using the random forest model and DBN. A. The confusion matrix for the classification of odor with 93.40% accuracy by the random forest.
B. The classification results for odor were as high as 94.75% using the DBN. The X-axis presents the learning rate, the Y-axis presents the algorithm parameter

“momentum,” and the Z-axis presents the accuracy rate. C. Boxplot to present the accuracy of color prediction using the random forest with all features, the top 39
features selected by random forest models, the top 39 features selected by the random forest and the genetic algorithm, and the total 78 features from above. The
median values of these boxplots are labeled. D. Boxplot presenting the accuracy of color prediction using the DBN with all features, the top 39 features selected by
random forest models, the top 39 features selected by random forest and the genetic algorithm, and the total 78 features from above. The median values of these

boxplots are labeled. #Random forest models, ∗random forest models and genetic algorithm. E. Heat map of the correlation values between the top 39 features selected
by random forest models and the 12 odors based on the hierarchical clustering framework. Connections between the odors and descriptors were calculated by the
Euclid distances.

features and the key physicochemical features are exactly the
same in our study. If other algorithm such as the Particle Swarm
Optimization Algorithm could be used to optimize the number
of DBN hidden-layer nodes, the performance of DBN network
may improve.

In addition, odor sensing was found to be less accurate than
that of color. Several factors may affect the accuracy of the AI
in odor perception. First, odor perception is more subjective as
a result of perceived biases, and it is challenging to confirm

the number and character of its perceptual dimensions [32].
Defining a specific odor is especially difficult for human beings
compared with other sensory modalities [33]. Second, the olfac-
tory system involves high-dimensional input with attached ar-
bitrary associations, whereas color vision occurs under prede-
fined spatial conditions [12]. Thus, the processing demands of
the 2 systems are not entirely consistent with each other. Third,
the 2 systems use different strategies in temporal coding to con-
vey information. The olfactory system uses temporal coding to
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Figure 4: The correlations between color and olfaction perception. A. Of the 1,267 molecules with color, 90 also had odor information. B. Schematic diagram of the key
physicochemical features for color and odor perceptions in the interactome. The key features for color perception were closely connected with the key features for

odor perception. The distance of each line represents its correlation value.

increase its representational capacity, while the visual system
uses temporal coding to reduce the redundancy [12].

In this study, we add new insight into the decoding of color
vision, but the controlling and tuning of these codes require
further investigation. Inspired by the key physicochemical
features involved in color prediction, researchers may be able
to develop materials with vivid colors for potential applications
in sensing technologies, security, light-emitting sources, and
paints [34–36].

Potential implications

The ability to explain visual neural activities from the per-
spective of AI would also enable us to build an artificial vi-
sion system that could favorably stimulate the color vision of
an individual. Once the perception process of human color
vision is completely decoded, the AI platform may help in the
design of artificial brain stimulation interfaces that can restore

color vision and enable blind patients to “see” colors without bi-
ological eyes.

Methods
Random forest algorithm

Random forest is an ensemble learning method for regression
and classification [37]. In a random forest model, each decision
tree is built from a random sampling of samples and features,
which can deliver generalized knowledge [37]. Furthermore, a
random set of features is used to determine the best split at each
node during the construction of a tree. Here, the dimensionality
of the physicochemical data was high, with 5,270 descriptors per
molecule, and the perception data matrix was sparse. By aver-
aging hundreds of trees in this work, the effects of outliers and
noise were reduced. The random forest parameter mTry (i.e., the
number of input variables randomly chosen at each split) was
set to 72 (square root of 5,270 features), while the other random
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forest parameter nTree (i.e., the number of trees to grow for each
forest) was set to 100. k-fold cross-validation (k = 4) was applied
for the classification.

Deep belief network

DBN is a type of probability generative model that consists of
multiple RBMs. The superposition of multiple RBMs solves the
training problem of multiple layered neural networks. The over-
all training process of the DBN includes 2 stages: a pretraining
stage and a fine-tuning stage [38]. (i) Pretraining stage: each RBM
includes a visual layer and a hidden layer. There are no inter-
layer connections between the visual layer and hidden layer. Af-
ter training the first RBM, the activation value of the hidden layer
of the first RBM is input into the visual layer of the second RBM.
(ii) Fine-tuning stage: with the help of the backpropagation neu-
ral network that resides after the last RBM and the chain rule of
derivation, the DBN will be trained as a whole neural network.
In this study, the input of the DBN is the vector consisting of
5,270 molecular descriptors. During the first stage of the DBN,
the dimensions of the vector are compressed. During the sec-
ond stage, the compressed vector can be used for classification.

We compared 3 DBN structures for the prediction of either
color or odor, and optimizations of the parameters of each struc-
ture were conducted. The architecture that performed best in
both color and odor prediction was the input layer with 5,270
neurons and only 1 RBM with 5,270 visible neurons and 500 hid-
den neurons. Moderate performance was achieved with the in-
put layer with 5,270 neurons and 2 RBMs. One RBM was com-
posed of 5,270 visible neurons and 2,000 hidden neurons, and the
other contained 2,000 visible neurons and 500 hidden neurons.
The worst performance was achieved with the input layer with
5,270 neurons and 3 RBMs. One RBM contained 5,270 visible neu-
rons and 2,000 hidden neurons, 1 was composed of 2,000 visible
neurons and 1,000 hidden neurons, and the last contained 1,000
visible neurons and 500 hidden neurons. Therefore, the best ar-
chitecture was used in the follow-up prediction.

Feature selection

Random forest algorithm and genetic algorithm [39, 40] were
both applied to select the key features in this study. The random
forest algorithm enable us to estimate the importance of each
molecular descriptor by permuting the values of the descriptors
across samples and computing the increases in prediction
errors. The samples left-out in the training of each classifier
(referred to as out-of-bag samples) are used for feature selection
by determining the importance of different features during
classification process. A value of “0” signifies that the feature
corresponding to this bit is not needed for the classification;
otherwise, the feature is needed for the classification. A total
of 1,601 features were recognized as needed for the classifi-
cation of color, and 1,820 were recognized as needed for the
classification of odor in the random forest algorithm. To enable
comparison with the selection results obtained by using both
the genetic algorithm and random forest algorithm, similar
numbers of key features were selected.

Genetic algorithms designed for feature selection can imple-
ment feature selection and classification processes simultane-
ously [41]. The accuracy of the random forest was adopted as the
fitness evaluation function of the genetic algorithm. The chro-
mosome coding method was binary coding, and the length of the
chromosome was equal to the dimension of the feature vector.
Because of the randomness of the genetic algorithm, the experi-

ment was conducted 20 times. After running the genetic feature
selection task 20 times, 24 descriptors were selected 18 times for
color, and 39 descriptors were selected 16 times for odor.

Feature ranking

Feature ranking for the random forest algorithm used out-of-bag
permutation error. With the features selected from the genetic
algorithm, feature ranking was performed to study which at-
tributes were more important for classification. In this process,
for a feature Ai in the feature set {A1, A2. . . An}, the validating ac-
curacy for the original validation dataset is acc1. The validatiom
accuracy obtained with the random permutation of Ai is acc2.
|acc2 − acc1| is an indicator used to measure the importance of
Ai. Then, all features are compared with this indicator. Because
of the randomness of the random forest, this process was con-
ducted 20 times.

Hierarchical clustering

Hierarchical approaches have the ability to simultaneously un-
cover multiple layers of a clustering structure [42]. The R
heatmap package was used for clustering in this study.

Statistical analysis

The data were collected using the Qualtrics Web-based ques-
tionnaire package and analyzed using IBM SPSS Statistics ver-
sion 24 (SPSS, RRID:SCR 002865).

Availability of Supporting Source Code and
Requirements

Project name: Color Odor Prediction
Project home page: https://github.com/Hugo0512/ColorOdorpre
diction
Operating system: Platform independent
Programming language: MATLAB
License: MIT

Availability of Supporting Data and Materials

All methods were implemented with MATLAB R2016a (MATLAB,
RRID:SCR 001622) on an HP Z420 workstation with Intel Xeon
CPU E5-1620 v2 at 3.70 GHz and 16 GB RAM. The operating sys-
tem was Windows 7. Data corresponding to the molecules used
in this study are presented in Supplementary Data 1–3, and
archives of all the code and all supporting data are available in
the GigaScience GigaDB repository [43].

Additional Files

Table S1: Attribute importance ranking of color.
Table S2: Attribute importance ranking of odor.
Table S3: The results for each fold in the 4-fold cross-validation.
Figure S1: The prediction accuracies of random forest models for
12 colors and 12 odors using all features.
Supplementary Data 1: The datasets of the 1,267 structurally di-
verse molecules labeled with 12 diverse colors and 5,270 molec-
ular descriptors.
Supplementary Data 2: The datasets of the 598 structurally di-
verse molecules labeled with 12 diverse odors and 5,270 molec-
ular descriptors.

https://scicrunch.org/resolver/RRID:SCR_002865
https://github.com/Hugo0512/ColorOdorprediction
https://scicrunch.org/resolver/RRID:SCR_001622
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Supplementary Data 3: The datasets of the 90 molecules with
both color and odor information.
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