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A B S T R A C T   

The ever-increasing burden of obesity demands a better pathophysiological understanding, especially regarding 
adipose tissue pathophysiology. Animal models of obesity are of great importance in investigating potential 
mechanisms and implications of obesity. Many issues should be considered while interpreting the preclinical 
results as anatomical and pathophysiological differences exist among species. Importantly, the natural history of 
obesity development differs considerably. An important example of conflicting results among preclinical models 
and human physiological studies is that of adipose tissue oxygenation, where rodent models almost unanimously 
have shown the presence of hypoxia in the adipose tissue of obese animals while human studies have yielded 
conflicting results to date. Other issues which require further clarification before generalizing preclinical data in 
humans include adipose tissue browning, endocrine function and fibrosis. The aim of this mini-review is to 
synopsize similarities and differences between rodent models and humans, which should be taken into consid-
eration in obesity studies.   

Obesity has increased substantially in the last few decades, becoming 
an important worldwide public health problem that impacts on the risk 
and prognosis of several disease states, including cardiovascular disease, 
metabolic syndrome, Type 2 diabetes mellitus (T2DM), COVID-19 and 
cancer [1–10]. Obesity is a complex, multifactorial chronic disease, 
defined by a body mass index (BMI) of 30 kg/m2 or above, and is 
characterised by an excessive increase of white adipose tissue (AT) mass 
[11]. The pathophysiological background of obesity and its complica-
tions are not only determined by the AT mass, but are also influenced by 
AT dysfunction, body fat distribution, and disease stage [11–15]. Rodent 
models are the most used animal models at the preclinical level to 
investigate human obesity [16–20]. However, confirmation of impor-
tant similarities and differences between rodent models and humans are 
necessary and should be taken into consideration in obesity studies (see 
Fig. 1). 

Dissimilar to humans whο have two main subcutaneous depots 
located in the abdominal and gluteofemoral region, rodent adipose tis-
sue has two main subcutaneous pads located anteriorly and posteriorly 
[16]. Visceral adipose tissue in humans surrounds mainly 
intra-abdominal organs while in rodents it surrounds primarily the 
perigonadal region, epididymal in males and periovarian in females [16, 
21]. Adipocytes in these depots display genetic and metabolic hetero-
geneity and are intrinsically different within and amongst species [16, 
22,23]. 

An important aspect of AT physiology concerns the so-called 
“browning” of WAT. Brown AT (BAT) constitutes a distinct functional 
AT component exhibiting a high degree of vascularization and density of 
mitochondria, which partake in futile respiratory cycles promoting 
thermogenesis [24]. Evidence from rodent models has suggested that 
WAT browning may exert protective effects against weight gain and 
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related dysmetabolism, rendering this pathway also an attractive 
candidate for the prevention and treatment of human obesity [25,26]. 
Despite accumulating evidence from preclinical models, there is a long 
way ahead before their clinical application in humans, whereby the 
relevance of BAT in obesity and metabolism is still unsatisfactory un-
derstood. The finding of opposite trends between mice and humans with 
respect to the expression of browning genes in the subcutaneous and 
visceral WAT depot further highlight the imperativeness of this task 
[24]. 

Another issue relevant to inter-species differences concerns the 
function of AT as an endocrine organ. The discovery of leptin, the first 
adipokine in 1994, was followed by the identification of a remarkable 
variety of AT-derived hormones, some with well-characterized and 
conserved across species functions (i.e. adiponectin) [7,27–32], and 
others less so [33–38]. Although several important similarities between 
rodents and humans exist, the common cellular origin [39], systemic 
metabolic actions [40–43] or interactions with other hormonal systems 
[44] is not a given. As the role of several adipokines is becoming 
increasingly clear, this is particularly important before generalising 
mechanistic findings from rodent obesity models in humans. 

Outside of the strict frame of pathophysiological mechanisms, the 
pathogenesis of human obesity is shaped through complex interactions 
between biological, environmental, and behavioural factors which are 
unique to our species. A striking paradigm is the gradual development 
and indolent progression of obesity in most humans over several years, 
which comes in stark contrast with the rapid and massive gain in adipose 
tissue mass observed in rodent models, either genotype- or diet-related 
[45–49]. Diet-induced obesity (DIO) animal models reproduce with 
greater reliability human obesity in comparison with genetic models, 
usually utilizing high-fat diets (HFD) with elevated concentrations of 
saturated fatty acids [23,50]. The most frequently used animal models 
through diet are mice, with isogenic or inbred strains, such as C57BL/6, 
C57BL/6J, AKR/J, and A/J [23]. Further considerations that should be 
taken into account is that rats and mice respond differently to diet; and 
strain, sex and age, affect the responses to diet, with younger animals 
and males being more sensitive to obesity-related comorbidities [23]. 

Besides, another unique feature of human obesity which cannot be 
readily replicated in animal models, is the modification of caloric intake 
and, to a lesser degree, energy expenditure through environmental, 
behavioural and body image-related factors. An overly simplified 
example of this notion concerns the question on why humans become 
obese and strive for unhealthy, highly caloric diets and overall lifestyles, 
even though being aware of the unavoidable consequences. Obviously, 

this feature is usually not dependent upon the quantity or quality of 
available dietary resources, as is the case in most animal models [51]. To 
further complicate the matters, data from animal models with respect to 
the relative contribution of isolated hormonal appetite and satiety sig-
nals cannot be directly applied in human research and clinical practice. 
For example, even though leptin-deficient rodents have been frequently 
used in various studies to investigate obesity, leptin or leptin receptor 
mutations are rare in humans and the drivers for the behavioural traits 
of the vast majority of cases of human obesity are complex and yet to be 
elucidated [51–53]. 

Many animals have been examined and provided valuable mecha-
nistic insights in adipose tissue physiopathology in obesity, partly 
characterised by chronic low-grade inflammation [54,55]. It has been 
postulated that the chronic low-grade inflammation present in adipose 
tissue in individuals or animals with obesity is triggered partly by 
hypoxia, caused by the decreased capillary density, and blunted adipose 
tissue blood flow [55–57]. The presence of hypoxia in obese adipose 
tissue was originally shown in murine models of obesity [14,58]. Direct 
measurements of pO2 using needle-type O2 electrodes showed that WAT 
oxygenation is lower in ob/ob, KKAy and DIO mice as compared to lean 
controls [14,45–48,59]. In line with these findings, gene expression of 
several hypoxia-related genes, including hypoxia-inducible factor-1 
alpha (HIF-1α), was also increased. Moreover, using pimonidazole hy-
drochloride, which stains hypoxic areas, it has been demonstrated that 
hypoxic areas were more prevalent in the WAT of obese rodents [14, 
45–48,59]. However, the presence of hypoxia in adipose tissue in human 
obesity was shown to be present at least in participants with severe 
obesity and co-exists with type 2 diabetes, being challenged by recent 
studies in humans [55,60–63]. This example if further replicated and 
confirmed in further research studies, may show a potential interspecies 
difference which it could be partly attributed to the acutely induced 
obesity in these models. AT fibrosis constitutes another partly 
hypoxia-related event observed in rodents and humans with conse-
quences regarding AT-function and systemic metabolism [64]. Since this 
phenomenon seems to also exert an impact on bariatric surgery-related 
outcomes, it is of capital importance for the generalizability of findings 
from animal studies to humans to be further clarified. 

In conclusion, animal models of obesity are valuable means of 
examining various mechanisms of obesity and related comorbidities in 
preclinical status. However, caution should be given with respect to the 
potential limitations and applicability to humans, especially regarding 
the issue of hypoxia and other potentially important aspects of rodent 
AT physiology, whose role in human obesity remains elusive. 

Fig. 1. Features of adipose tissue and its role in obesity which differ between rodent models and humans.  
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