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Abstract
Aims and objectives: To summarize the use of machine learning (ML) for hospital-
acquired pressure injury (HAPI) prediction and to systematically assess the perfor-
mance and construction process of ML models to provide references for establishing 
high-quality ML predictive models.
Background: As an adverse event, HAPI seriously affects patient prognosis and qual-
ity of life, and causes unnecessary medical investment. At present, the performance 
of various scales used to predict HAPIs is still unsatisfactory. As a new statistical tool, 
ML has been applied to predict HAPIs. However, its performance has varied in dif-
ferent studies; moreover, some deficiencies in the model construction process were 
observed in each study.
Design: Systematic review.
Methods: Relevant articles published between 2010–2021 were identified in the 
PubMed, Web of Science, Scopus, Embase and CINHAL databases. Study selection 
was performed in accordance with the preferred reporting items for systematic re-
views and meta-analysis guidelines. The quality of the included articles was assessed 
using the prediction model risk of bias assessment tool.
Results: Twenty-three studies out of 1793 articles were considered in this systematic 
review. The sample size of each study ranged from 149–75353; the prevalence of 
pressure injuries ranged from 0.5%–49.8%. ML showed good performance for HAPI 
prediction. However, some deficiencies were observed in terms of data management, 
data pre-processing and model validation.
Conclusions: ML, as a powerful decision-making assistance tool, is helpful for the pre-
diction of HAPIs. However, existing studies have been insufficient in terms of data 
management, data pre-processing and model validation. Future studies should ad-
dress these issues to establish ML models for HAPI prediction that can be widely used 
in clinical practice.
Relevance to Clinical Practice: This review highlights that ML is helpful in predict-
ing HAPI; however, in the process of data management, data pre-processing and 
model validation, some deficiencies still need to be addressed. The ultimate goal of 
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1  |  INTRODUC TION

Hospital-acquired pressure injury (HAPI) refers to a localized 
damage to the skin and underlying soft tissues that occurs dur-
ing hospitalization (Edsberg et al.,  2016). It has been reported 
that in the United States, the incidence of HAPI is approximately 
5%–15%, and approximately one to three million hospitalized pa-
tients are affected by it every year (Chou et al., 2013; Mervis & 
Phillips, 2019; Padula et al., 2015). HAPI increases the length of 
hospitalization and medical expenses, affects the quality of pa-
tients’ lives and induces complications, such as infections, which 
increase mortality (Lyder et al., 2012; Reddy et al., 2006; Spilsbury 
et al.,  2007). Currently, the HAPI prevention depends mainly on 
the observation and assessment by nurses. Although some risk as-
sessment tools for pressure injury (PI), such Braden, Norton and 
Waterlow scales, have been widely used in clinical practice, stud-
ies have shown that their accuracy and reliability are not satisfac-
tory (Shi et al., 2019).

As a branch of artificial intelligence, machine learning (ML) has 
become a new statistical method that has emerged in medical prac-
tice and is increasingly being used in diagnosis (AlJame et al., 2021; 
Koga et al.,  2021), complications (Kambakamba et al.,  2020; 
Mohammed et al.,  2020), prognosis (Akcay et al.,  2020) and re-
currence (Li et al.,  2021) prediction. Compared to conventional 
statistical models, ML can actively learn the complex relationships 
between data, overcome the limitations of non-linearity and main-
tain stability in high-dimensional datasets (Mangold et al., 2021). 
In addition, as medical data are surging, various types of data 
are included in electronic health records (EHRs). ML has an un-
paralleled advantage in the analysis of unstructured data (Barber 
et al., 2021; De Silva et al., 2021), pictures (Das et al., 2021) and 
other data. However, numerous ML studies have shown that sev-
eral problems related to model constructions still exist. Many re-
searchers have focused on the excellent performance of models 
on local datasets, but have ignored their reproducibility in other 
clinical environments, thus limiting further promotion of this pow-
erful decision-making assistance tool in clinical practice (Cabitza 
& Campagner,  2021). A previous study reviewed the application 
of ML in PI management, but did not describe specific prediction 
tasks in detail (Jiang et al., 2021). Therefore, a systematic review 
is needed to summarize the application of ML for HAPI prediction 
and to analyse the advantages and disadvantages of the model 
construction process.

2  |  THE RE VIE W

2.1  |  Aims

Our aim in this systematic review is to summarize the existing articles 
related to the use of ML for HAPI prediction, and to systematically 
assess the performance and construction process of ML models to 
provide references for the establishment of high-quality predictive 
models in the future.

2.2  |  Design

This systematic review was performed in accordance with the pre-
ferred reporting items for systematic reviews and meta-analysis 
guidelines (Page et al., 2021) (Supplementary File S1).

2.3  |  Search methods

The search strategy was developed with the assistance of a university 
librarian and was modified for different databases. To obtain higher 
quality articles, a comprehensive literature search was conducted in 
the PubMed, Web of Science, Scopus, Embase and CINHAL data-
bases for studies reporting ML predictive tools for PI and published 
between 1 January 2010–14 July 2021. The search terms included 
in PubMed are as follows: ("Pressure Ulcer"[MeSH] OR "Pressure 

integrating ML into HAPI prediction is to develop a practical clinical decision-making 
tool. A complete and rigorous model construction process should be followed in fu-
ture studies to develop high-quality ML models that can be applied in clinical practice.
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1. We found that ML had good performance in HAPI pre-
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2. In the process of model construction, existing studies 
had deficiencies in data management, data pre-processing 
and model validation.
3. Future studies should follow a stricter model construc-
tion process and add more detailed descriptions for peers 
to learn, which could improve the reproducibility of mod-
els and help develop practical high-quality ML predictive 
models.
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Ulcer*"[tiab] OR "Pressure sore*"[tiab] OR Pressure injur*" [tiab] OR 
"Bedsore*"[tiab] OR "Bed sore*"[tiab] OR "Decubitus Ulcer*"[tiab] 
OR "Decubitus injur*"[tiab]) AND ("Machine Learning"[MeSH] 
OR "Machine Learning"[tiab] OR "Algorithms"[tiab] OR "neural 
networks"[tiab] OR "iterative learning"[tiab] OR "decision tree"[tiab] 
OR "support vector machine"[tiab] OR "random forest"[tiab] OR 
"artificial intelligence"[tiab] OR "deep learning"[tiab] OR "logistic 
regression"[tiab]) AND ("prognos*"[tiab] OR "predict*"[tiab] OR 
"scor*"[tiab] OR "valid*"[tiab]). We also identified additional relevant 
articles from the literature.

2.4  |  Inclusion/exclusion criteria

Studies that met the following inclusion criteria were included in this 
systematic review: (a) studies using ML algorithms (including deep 
learning, ML and ML-based logistic regression) to build HAPI predic-
tive models and (b) English publications. Studies that met the follow-
ing exclusion criteria were excluded: (a) non-HAPI studies; (b) review, 
abstract, correspondence, case reports, studies not available in full 
text, duplicated studies and non-human studies and (c) studies that 
did not specify the algorithms used and lacked outcomes.

2.5  |  Data abstraction and synthesis

Two reviewers independently used Excel to extract and synthesize 
information from the 23 identified studies. The summarized infor-
mation included authors, year of publication, country, aim, type of 
ML model, method of model validation, sample source and size, inci-
dence of PI, predictors and model performance. Any disagreements 
were resolved through a consensus by another reviewer.

2.6  |  Quality appraisal

The methodological quality of the included studies was indepen-
dently assessed by two reviewers using the prediction model risk 
of bias assessment tool (PROBAST) (Wolff et al., 2019). PROBAST 
was used to assess the risk of bias and the application of diagnostic 
and prognostic prediction model studies, which included a total of 
20 questions in four domains (participants, predictors, outcome and 
analysis). The risk of bias for each question and domain could be an-
swered as low, unclear or high.

3  |  RESULTS

3.1  |  Search outcomes

A total of 1793 studies were identified in the initial literature search. 
After removing duplicates, 823 studies were identified, of which 
774 were excluded after the title and abstract were blindly screened 

by two reviewers. Studies meeting the inclusion criteria were al-
lowed for the next round of full-text evaluation. Fifty-one studies 
were carefully reviewed in full text, 28 of which were exclude for 
the following reasons: non-HAPI studies (n = 2), not employing ML 
predictive tools (n = 5), non-predictive studies (n = 10), conference 
abstracts (n = 4), protocols (n = 1), reviews (n = 3) and non-English 
publications (n = 3). Finally, 23 studies were included in this system-
atic review. Disagreements were resolved through discussion. The 
selection procedure is summarized in Figure 1.

3.2  |  Study characteristics

Table 1 presents the main characteristics of the included studies. The 
abovementioned 23 studies were conducted in the following coun-
tries: China (n = 7), the United States (n = 10), Japan (n = 2), South 
Korea (n = 1), Canada (n = 1), Spain (n = 1) and Denmark (n = 1), thus 
covering populations from different regions in North America, Asia 
and Europe. The main outcome was the occurrence of HAPI, and the 
subtypes were not limited (including PIs that occurred in different 
departments, surgery-related PIs and medical device-related PIs).

3.3  |  Database information

In a total of 23 studies, 18 studies (Alderden et al., 2018; Alderden 
et al.,  2021; Cai et al.,  2021; Chen et al.,  2018; Choi et al.,  2020; 
Cichosz et al.,  2019; Delparte et al.,  2021; Deng et al.,  2017; Hu 
et al., 2020; Kaewprag et al., 2015, 2017; Ladios-Martin et al., 2020; 
Li et al., 2019; Nakagami et al., 2021; Setoguchi et al., 2016; Song, 
Gao, et al., 2021; Song, Kang, et al., 2021; Su et al., 2012) used data 
from EHRs, four studies (Cramer et al., 2019; Goodwin & Demner-
Fushman, 2020; Sotoodeh et al., 2020; Vyas et al., 2020) used the 
Medical Information Mart for Intensive Care III (MIMIC III) database 
and one study (Raju et al., 2015) used the Military Nursing Outcomes 
Database (MilNOD). Most studies used structured data as input pa-
rameters to predict the HAPI, and two studies (Goodwin & Demner-
Fushman, 2020; Sotoodeh et al., 2020) used unstructured nursing 
records. A total of 235758 patients were included in this systematic 
review. The sample size of the included studies varied greatly, rang-
ing from 149–75353; the prevalence of PI ranged from 0.5%–55.6%. 
Moreover, ten studies (Alderden et al., 2021; Cramer et al., 2019; Hu 
et al., 2020; Kaewprag et al., 2015, 2017; Ladios-Martin et al., 2020; 
Nakagami et al., 2021; Setoguchi et al., 2016; Sotoodeh et al., 2020; 
Su et al., 2012) were based on unbalanced datasets. The source of pa-
tients in each study was also different: three studies (Cai et al., 2021; 
Chen et al.,  2018; Su et al.,  2012) focused on surgery-related PI; 
the populations of eleven studies (Alderden et al., 2018; Alderden 
et al., 2021; Choi et al., 2020; Cramer et al., 2019; Deng et al., 2017; 
Goodwin & Demner-Fushman, 2020; Kaewprag et al., 2015, 2017; 
Ladios-Martin et al., 2020; Sotoodeh et al., 2020; Vyas et al., 2020) 
were ICU patients; seven studies (Cichosz et al., 2019; Hu et al., 2020; 
Nakagami et al., 2021; Raju et al., 2015; Setoguchi et al., 2016; Song, 
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Gao, et al., 2021; Song, Kang, et al., 2021) included all hospitalized 
patients; one study (Delparte et al.,  2021) was in a rehabilitation 
centre and one study (Li et al.,  2019) focused on hospice care. In 
addition, 12 studies (Alderden et al.,  2018; Alderden et al.,  2021; 
Cichosz et al.,  2019; Cramer et al.,  2019; Delparte et al.,  2021; 
Deng et al.,  2017; Ladios-Martin et al.,  2020; Li et al.,  2019; Raju 
et al., 2015; Song, Gao, et al., 2021; Song, Kang, et al., 2021; Vyas 
et al.,  2020) reported PI risk assessment tools and three studies 
(Alderden et al., 2018; Alderden et al., 2021; Song, Gao, et al., 2021) 
reported the corresponding PI preventive measures.

3.4  |  Data preparation

Eleven studies (Alderden et al., 2018; Alderden et al., 2021; Cramer 
et al., 2019; Goodwin & Demner-Fushman, 2020; Hu et al., 2020; 
Ladios-Martin et al., 2020; Raju et al., 2015; Song, Gao, et al., 2021; 
Song, Kang, et al., 2021; Sotoodeh et al., 2020; Su et al., 2012) re-
ported on data pre-processing, which includes deduplication; miss-
ing value processing through direct deletion, use of means, random 
forest (RF) and k-nearest neighbours for filling and multiple imputa-
tion; data standardization and natural language vectorization. Ten 
studies (Alderden et al.,  2018; Cai et al.,  2021; Chen et al.,  2018; 
Deng et al.,  2017; Hu et al.,  2020; Kaewprag et al.,  2015, 2017; 

Ladios-Martin et al.,  2020; Song, Gao, et al.,  2021; Song, Kang, 
et al.,  2021) reported feature selection methods, including litera-
ture review, logistic regression, clinical recommendations and uni-
variate analyses. In the ten studies with unbalanced datasets, except 
for the models used in some studies that were not affected by data 
imbalance, six studies (Alderden et al.,  2021; Cramer et al.,  2019; 
Hu et al., 2020; Ladios-Martin et al., 2020; Nakagami et al., 2021; 
Sotoodeh et al., 2020) reported unbalanced data processing meth-
ods, including synthetic minority oversampling technique (SMOTE), 
case–control, undersampling on the majority of samples and over-
sampling of the minority of samples.

3.5  |  Model design

A total of 73 ML models were developed for HAPI prediction, and 
the number of models in each of the 23 studies varied from one to 
nine. Sixteen studies (Alderden et al., 2021; Choi et al., 2020; Cramer 
et al.,  2019; Delparte et al.,  2021; Deng et al.,  2017; Goodwin & 
Demner-Fushman,  2020; Hu et al.,  2020; Kaewprag et al.,  2015; 
Ladios-Martin et al.,  2020; Li et al.,  2019; Nakagami et al.,  2021; 
Raju et al., 2015; Song, Gao, et al., 2021; Song, Kang, et al., 2021; 
Sotoodeh et al., 2020; Su et al., 2012) reported more than one ML 
model. Six studies (Cichosz et al., 2019; Cramer et al., 2019; Delparte 

F I G U R E  1  PRISMA Flow diagram 
followed for selecting studies
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et al., 2021; Ladios-Martin et al., 2020; Song, Gao, et al., 2021; Vyas 
et al.,  2020) compared ML with existing scoring scales. The most 
common ML models include logistic regression (LR), artificial neu-
ral networks (ANN), decision tree (DT) and RF. Thirteen studies 
(Choi et al.,  2020; Cichosz et al.,  2019; Cramer et al.,  2019; Deng 
et al., 2017; Hu et al., 2020; Kaewprag et al., 2015; Li et al., 2019; 
Nakagami et al., 2021; Raju et al., 2015; Setoguchi et al., 2016; Song, 
Gao, et al., 2021; Song, Kang, et al., 2021; Su et al., 2012) used cross-
validation to validate the models, 10 studies (Alderden et al., 2018; 
Alderden et al., 2021; Cai et al., 2021; Chen et al., 2018; Delparte 
et al.,  2021; Goodwin & Demner-Fushman,  2020; Kaewprag 
et al.,  2017; Ladios-Martin et al.,  2020; Sotoodeh et al.,  2020; 
Vyas et al.,  2020) did not report validation methods and no stud-
ies performed external validation. Ten studies (Alderden et al., 2018; 
Chen et al.,  2018; Delparte et al.,  2021; Goodwin & Demner-
Fushman, 2020; Hu et al., 2020; Song, Gao, et al., 2021; Song, Kang, 
et al., 2021; Sotoodeh et al., 2020; Su et al., 2012; Vyas et al., 2020) 
detailed the hyperparameters of the models, but most of these did 
not clearly report the tuning methods. Specifically, three studies 
(Kaewprag et al., 2017; Nakagami et al., 2021; Sotoodeh et al., 2020) 
used grid search to search for hyperparameters and five studies 
(Alderden et al., 2018; Alderden et al., 2021; Goodwin & Demner-
Fushman, 2020; Song, Gao, et al., 2021; Sotoodeh et al., 2020) dis-
closed the source codes of their proposed models.

3.6  |  Model performance

Table  2 presents the performance and predictors of the best ML 
model proposed in each study. The indicators used to measure the 
performance of ML models included the area under the receiver-
operating characteristic curve (AUC), accuracy, sensitivity (SEN), 
specificity (SPE), positive predictive value (PPV) and negative 
predictive value (NPV). In the 23 studies, 17 studies (Alderden 
et al., 2018; Alderden et al., 2021; Cai et al., 2021; Choi et al., 2020; 
Cichosz et al.,  2019; Delparte et al.,  2021; Deng et al.,  2017; 
Goodwin & Demner-Fushman,  2020; Hu et al.,  2020; Kaewprag 
et al., 2015, 2017; Ladios-Martin et al., 2020; Nakagami et al., 2021; 
Raju et al., 2015; Song, Gao, et al., 2021; Song, Kang, et al., 2021; 
Sotoodeh et al.,  2020) reported AUC, ranging from 0.68–0.99. 
Specifically, a value greater than 0.9 was reported in four studies 
(Deng et al., 2017; Song, Gao, et al., 2021; Song, Kang, et al., 2021; 
Sotoodeh et al., 2020), one study (Choi et al., 2020) reported it to 
be was less than 0.7. Eight studies (Chen et al., 2018; Goodwin & 
Demner-Fushman, 2020; Ladios-Martin et al., 2020; Li et al., 2019; 
Setoguchi et al.,  2016; Song, Gao, et al.,  2021; Song, Kang, 
et al., 2021; Vyas et al., 2020) reported accuracy, ranging from 0.28–
0.99; 19 studies (Cai et al., 2021; Chen et al., 2018; Choi et al., 2020; 
Cichosz et al., 2019; Cramer et al., 2019; Delparte et al., 2021; Deng 
et al.,  2017; Goodwin & Demner-Fushman, 2020; Hu et al.,  2020; 
Kaewprag et al., 2015, 2017; Ladios-Martin et al., 2020; Li et al., 2019; 
Nakagami et al., 2021; Setoguchi et al., 2016; Song, Gao, et al., 2021; 
Song, Kang, et al., 2021; Su et al., 2012; Vyas et al., 2020) reported 

SEN and/or SPE, SEN ranged from 0.08–0.99, SPE ranged from 0.63–
1.00; 15 studies (Cai et al., 2021, Chen et al., 2018, Choi et al., 2020, 
Cichosz et al., 2019, Cramer et al., 2019, Delparte et al., 2021, Deng 
et al.,  2017, Goodwin & Demner-Fushman,  2020, Hu et al.,  2020, 
Kaewprag et al., 2015, 2017, Ladios-Martin et al., 2020, Nakagami 
et al., 2021, Song, Gao, et al., 2021, Vyas et al., 2020) reported PPV 
and/or NPV, PPV ranged from 0.02–1.00, NPV ranged from 0.21–
0.99. Among the 16 studies that reported multiple ML models, RF 
(Hu et al., 2020; Raju et al., 2015; Song, Gao, et al., 2021; Song, Kang, 
et al.,  2021; Sotoodeh et al.,  2020), LR (Choi et al.,  2020; Cramer 
et al.,  2019; Kaewprag et al.,  2015; Ladios-Martin et al.,  2020) 
and DT (Delparte et al.,  2021; Deng et al.,  2017) outperformed 
other models in five, four and two studies respectively. Similarly, 
ANN (Alderden et al.,  2021), support vector machine (SVM) (Li 
et al., 2019), gradient boosting (GB) (Alderden et al., 2021), extreme 
gradient boosting (XBGoost) (Nakagami et al., 2021), recurrent ad-
ditive network for temporal risk prediction (CANTRIP) (Goodwin & 
Demner-Fushman,  2020) and Mahalanobis–Taguchi system (MTS) 
models (Su et al., 2012) outperformed others in one study.

3.7  |  Risk of bias

Table  3 shows the risk of bias assessment of the included stud-
ies. Risk of bias was mainly present in the analysis domain. Among 
the 23 studies, 15 studies (Alderden et al., 2021; Cai et al., 2021; 
Chen et al., 2018; Choi et al., 2020; Cichosz et al., 2019; Delparte 
et al., 2021; Deng et al., 2017; Hu et al., 2020; Kaewprag et al., 2015, 
2017; Ladios-Martin et al., 2020; Li et al., 2019; Nakagami et al., 2021; 
Setoguchi et al., 2016; Su et al., 2012) were judged as having a high 
risk of bias; six studies (Alderden et al., 2018; Cramer et al., 2019; 
Raju et al., 2015; Song, Gao, et al., 2021; Song, Kang, et al., 2021; 
Vyas et al.,  2020) had a moderate risk of bias; no studies had a 
low risk of bias; two studies (Goodwin & Demner-Fushman, 2020; 
Sotoodeh et al., 2020) were not assessed for quality due to the use 
of unstructured data. To the best of our knowledge, PROBAST is not 
suitable for unstructured data, and so far, there are no appropriate 
tools to evaluate such studies.

4  |  DISCUSSION

With the development of artificial intelligence (AI) and computer 
technology, ML has gradually infiltrated many disciplines. Many arti-
cles on use of ML in disease diagnosis have been published. However, 
to date, there have been fewer ML studies in the nursing field. To the 
best of our knowledge, this is the first systematic review of the appli-
cation of ML to HAPI prediction. Through a review of 23 studies, we 
found that it is meaningful to assess the model construction process 
of different predictive studies, which can provide a reference for the 
development of high-quality predictive models in the future.

In this review, 17 studies provided the AUCs of the best mod-
els. AUC, also known as the C-index, is a common indicator used to 
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measure the performance of predictive models, and its value ranges 
from 0–1. A value of 0 means that the prediction is completely in-
accurate, while that of 1 indicates perfect prediction performance. 
Mandrekar claims that the model is considered acceptable when 
AUC is between 0.7–0.8, the model is considered excellent when 
AUC is between 0.8–0.9 and the model is considered outstanding 
when AUC is greater than 0.9 (Mandrekar,  2010). Based on this 
standard, 16 models were accepted, of which 11 were excellent, 
and four were outstanding. Of the four outstanding models, three 
were based on RF and one was based on DT. This shows that ML, 
especially the tree models, seems to have a higher accuracy in the 
prediction of the HAPI.

In this review, except for two studies that used unstructured 
data, all the other studies used structured data from EHRs and pub-
lic databases. However, some studies have suggested that due to 
the existence of missing values, outliers and the curse of dimension-
ality, such data sources are not of high quality (Lee & Yoon, 2017). 
In addition, it is not clear how the records in these databases were 
measured and recorded and whether they were homogeneous 
(Gianfrancesco et al.,  2018). For example, whether two variables 
with different names are actually the same indicator, whether the 
blood samples were collected within a similar time and analysed by 
analysers of the same brand and model, and whether clinical scores 
were judged by medical staff with similar clinical experience accord-
ing to the same criteria. Excellent models originate from high-quality 
data. Currently, poor data quality is a major problem. Therefore, 
future studies should consider standardizing the establishment and 

management of databases to ensure the reliability of recorded data 
and lay the foundation for the establishment of high-quality predic-
tive models. In addition, the incidence of PI showed a high degree of 
heterogeneity among the studies included in this systematic review, 
and we found that only a minority of studies reported PI risk as-
sessment tools and the corresponding preventive measures. Future 
studies are suggested to disclose more information about risk as-
sessment tools and preventive measures for high-risk patients with 
PI, which can make the studies more informative and valuable for 
nursing facilities with similar care standards and processes.

During actual model construction, data pre-processing is a crit-
ical and time-consuming task. Data pre-processing includes data 
non-dimensionalization, data coding and missing value filling, which 
account for more than 50% of the total data mining time (Chapman 
et al., 2000). However, in this review, only some of the studies re-
ported the pre-processing of missing values and outliers, the coding 
process of category variables and some of them directly deleted pa-
tient records containing missing values. This method is not rigorous, 
because even for records with missing values, other features may 
still contain important information to predict the outcome. In addi-
tion, the significance of predictive models is to efficiently identify 
high-risk patients and implement intervention measures to prevent 
the occurrence of dangerous outcomes. In this review, the incidence 
of HAPIs varied among different studies. In some studies with low PI 
incidence and imbalanced datasets, the PPV of the model was low, 
which would make some low-risk patients be diagnosed as high risk, 
after which interventions may be applied to them, resulting in an 

Participants 
bias

Predictors 
bias

Outcome 
bias

Analysis 
bias

Overall 
bias

Cai et al., 2021 Low Unclear Unclear High High

Song, Kang, et al., 2021 Low Unclear Unclear Unclear Unclear

Song, Gao, et al., 2021 Low Unclear Unclear Unclear Unclear

Nakagami et al., 2021 Low Unclear Unclear High High

Alderden et al., 2021 Low Unclear Unclear High High

Delparte et al., 2021 Unclear Unclear Unclear High High

Ladios Martin et al., 2020 Low Unclear Unclear High High

Vyas et al., 2020 Unclear Unclear Unclear Unclear Unclear

Choi et al., 2020 Low Unclear Unclear High High

Hu et al., 2020 Low Unclear Unclear High High

Cramer et al., 2019 Low Unclear Unclear Unclear Unclear

Cichosz et al., 2019 Low Unclear Unclear High High

Li et al., 2019 Low Unclear High Unclear High

Chen et al., 2018 Low Unclear Unclear High High

Alderden et al., 2018 Low Unclear Unclear Unclear Unclear

Kaewprag et al., 2017 Low Unclear Unclear High High

Deng et al., 2017 Low Unclear Unclear High High

Setoguchi et al., 2016 Unclear Unclear Unclear High High

Raju et al., 2015 Low Unclear Unclear Unclear Unclear

Kaewprag et al., 2015 Low Unclear Unclear High High

Su et al., 2012 Unclear Unclear Unclear High High

TA B L E  3  Risk of bias assessment for 
the included studies
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unnecessary waste of resources. Therefore, it is recommended that 
future researchers seek effective methods for data pre-processing 
and processing imbalanced datasets, which can improve the quality 
of modelling data and reduce the influence of noise on the models.

Although ML has shown excellent performance in predictive 
tasks, the "reproducibility crisis" has increasingly affected the pro-
motion and application of this powerful tool in clinical practice. 
Medical ML studies consider only the application of ML to medicine, 
but also the development of practical ML tools that can be widely 
used in clinical practice. In this review, most studies used cross-
validation for internal validation. Nearly half of the studies did not 
report model validation methods, and none of the studies used ex-
ternal validation. It is well known that an independent external vali-
dation queue is crucial for the generalizability of the model (Nieboer 
et al., 2016). The lack of external validation makes it impossible for 
the users of these models to determine whether they can show sim-
ilar performance in different clinical environments, which limits the 
practicality of ML in the clinical field. In this systematic review, we 
found that different facilities have different and diverse predictors, 
which complicates the external validation process. Therefore, we 
suggest that future researchers carry out joint multi-centre studies 
with institutions in different regions and develop ML models based 
on common risk factors to establish a HAPI predictive model that is 
suitable for different regions with varying populations. In addition, 
most studies did not report the details of the model construction 
such as hyperparameter selection, and only five studies disclosed 
the source code. Because the tuning of the model mostly relies on 
the experience of the programmers, the lack of information also 
makes it difficult to reproduce these models. Therefore, it is recom-
mended that future studies pay more attention to the description of 
tuning details, and even disclose the model code to peers to improve 
the reproducibility of the ML predictive models.

5  |  LIMITATION

This study had some limitations. First, we included only English-
language literature published since 2010, which may have led to 
potential publication bias. Second, the overall result of the studies’ 
quality assessment is poor, which may have biased the results of this 
review to some extent. Finally, owing to the use of different indica-
tors to evaluate model performance in different studies, we did not 
conduct a meta-analysis of a specific indicator.

6  |  CONCLUSION

In conclusion, as an emerging predictive method, ML has gradually 
become a research hotspot for HAPI prediction and has shown great 
potential. However, in the process of constructing practical models 
that can be applied in the clinical field, especially in terms of data 
management, data pre-processing and model validation, many defi-
ciencies still need to be addressed.

7  |  RELE VANCE TO CLINIC AL PR AC TICE

Compared with other meta-analyses and system reviews of ML 
studies that focused on summarizing model performance and pre-
dictors, this review highlights the process of model construction. 
ML is helpful in predicting HAPI; however, in the processes of data 
management, data pre-processing and model validation, some defi-
ciencies still exist. First, high-quality data are the source for all high-
quality models. Therefore, researchers should consider whether the 
data source is accurate and reliable before constructing a predic-
tive model. Second, the clinical data often contain significant noise. 
Scientific and rigorous pre-processing can minimize the loss of ef-
fective data. Finally, independent validation queues guarantee the 
model stability and generalizability. The ultimate goal of integrating 
ML into HAPI prediction is to develop a practical clinical decision-
making tool. Following a complete and rigorous model construction 
process is essential in developing high-quality ML models.
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