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Eosinophilic esophagitis (EoE) is a chronic, food-triggered, immune-mediated disease of
the oesophagus, clinically characterized by symptoms referred to oesophagal
dysfunction, and histologically defined by an eosinophil productive inflammation of the
oesophagal mucosa, among other cell types. The involvement of an adaptive Th2-type
response to food antigens in EoE was known since 2000; several cytokines and
chemokines promote food-specific responses, during which local production of IgE,
but also IgG4 derived from plasma cells in lamina propria of oesophagal mucosa might
play an important role. Evidence pointing towards a possible role for the innate immunity in
EoE has arisen recently. Together, this evidence gives rise to a potential role that the innate
immune system in general, and also the microbial pattern recognition receptors (PRRs)
might play in EoE pathogenesis. Among PRRs, Toll-like receptors (TLRs) are type-I
transmembrane receptors expressed both on epithelial and lamina propria cells with the
capacity to distinguish between pathogen and commensal microbes. As TLRs in the
different intestinal epithelia represent the primary mechanism of epithelial recognition of
bacteria, this evidence underlines that oesophagal TLR-dependent signaling pathways in
EoE support the potential implication of microbiota and the innate immune system in the
pathogenesis of this disease. The oesophagal mucosa hosts a resident microbiota,
although in a smaller population as compared with other districts of the gastrointestinal
tract. Few studies have focused on the composition of the microbiota of the normal
oesophagus alone. Still, additional information has come from studies investigating the
oesophagal microbiota in disease and including healthy patients as controls. Our review
aims to describe all the evidence on the oesophagal and intestinal microbiota in patients
with EoE to identify the specific features of dysbiosis in this condition.
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MICROBIOTA IN EOSINOPHILIC
ESOPHAGITIS: A REVISION OF HYGIENE
HYPOTHESIS

Eosinophilic esophagitis (EoE) is a chronic immune-mediated
disease of the oesophagus, characterized by oesophageal
dysfunction and by a productive eosinophil inflammation of
the oesophageal mucosa (1–3). The incidence of EoE has
increased in recent years (4).

The involvement of an adaptive Th2-type response to food
antigens in EoE is well demonstrated (5, 6); several cytokines and
chemokines promote food-specific responses (7, 8), during
which local production of IgE (9), but also IgG4 in lamina
propria of oesophageal mucosa (10) may play an important
role. Pro-fibrogenic factors released by inflammatory cells can
provoke fibrous remodeling of the oesophageal mucosa (11, 12).
Avoiding specific food triggers is, in some contexts, the first line
of therapy for EoE (13, 14).

Rather than the specific adaptive immunity, the innate
immune system recognizes and reacts to ecological insults and
microbes without the need for an immunoglobulin-driven
antigen-specific reaction. Proof pointing towards a possible
role for the innate immunity in EoE has emerged. Oesophageal
epithelial cells appear to be critical effectors provoking the
inflammatory phenomena in EoE, not directly through
eotaxin-3 release and other chemoattractants for eosinophils
(15), but also by the recruitment of invariant natural killer T
(iNKT) cells toward the oesophageal epithelium (16), which
constitutes a crucial cytokine source. A pivotal role for mast
cells (MCs) has also been recognized in the pathophysiology and
symptoms of EoE, which reverse after effective dietary treatment
(17). This evidence gives rise to a possible role that the innate
immune system and raises some possible questions regarding the
role of the microbial pattern recognition receptors (PRRs) in
EoE pathogenesis.

Among PRRs, Toll-like receptors (TLRs) are type-I
transmembrane receptors expressed both on epithelial and
lamina propria cells with the ability to recognize microorganism
and commensal organisms (18). In humans, there is an aggregate
of 11 distinctive TLR, each having various specificities which,
when activated, promote intracellular sign transduction pathways
intervened by MAP kinases and NF-kB, at last setting off
a supportive of inflammatory reaction. TLRs initiation is
mindful, among different capacities, for setting off provocative
reactions by going about as a connection among adaptive and
innate immunity (19–21). Enactment and development of
antigen-presenting cells and regulatory T cells (Tregs) rely in
part upon TLR-intervened flagging, featuring their job onmucosal
resistant homeostasis. A few investigations have assessed the
association between hypersensitivity and TLR activation (19, 22,
23). TLR activity in oesophageal epithelial samples has been
described (24).

Arias et al. shown that bacterial load and TLR1, TLR2, TLR4,
and TLR9 were overexpressed on oesophageal biopsies with EoE
compared to controls. Muc1 and Muc5B genes were
downregulated while Muc4 was overexpressed. Upregulation of
Frontiers in Immunology | www.frontiersin.org 2
MyD88 and NFkB was discovered along with IL-1b, IL-6, IL-8,
and IL-10 and PER-1, iNOS, and GRZA effectors. NG-K2D
(KLRK1, IL-15, MICB) were likewise upregulated. In all cases,
changes in EoE were neutralized after six food elimination diet
(SFED) and mucosal healing.

As TLRs in the different intestinal epithelia represent the
essential instrument of epithelial recognition of microbes (25),
this proof underlines that oesophageal TLR-subordinate flagging
pathways in EoE support the implication of microbiota and the
innate immune system in the advancement of this condition.

Sterility in infant mice can prompt a move in the IgE-basophil
axis, an unevenness in Th1/Th2 activation, just as inappropriate
implication of Tregs. Human examinations to assess these
components are not many (26, 27). These varieties may be
suggestive of a connection between commensal microscopic
organisms and hereditary demeanor to atopic illness. These
bacterial ligands additionally could represent therapeutic
targets in atopic disease.

Therefore, it appears potentially useful to understand the
function of microbial flora in healthy human beings and the
specific alterations in atopic diseases.

The White House Office of Science and Technology declared
that the Fact Sheet for the National Microbiome Initiative (NMI)
was intended to satisfy three explicit objectives: (1) to address
central inquiries concerning the microbiome in different
biological systems; (2) to create stage innovations for
upgrading information sharing on microbiomes; and (3) to
grow the microbiome workforce.

Since then, the interest in microbiome composition in
different allergic conditions has grown (28–32).

The examination concerning how the microbiome can
change, even in healthy individuals, is critical to improve
comprehension of how the microbiome unthinkingly
causes infection.
OESOPHAGEAL MICROBIOTA IN HEALTH

Introduction Comments
Once thought composed of few microbes, the oesophageal
mucosa showed a composition of around 300 bacteria species.
New culture-independent techniques have allowed scientists to
identify the microbial composition of the oesophagus.

The oesophageal mucosa hosts a resident microbiota,
although in a smaller population as compared with other
districts of the gut. The human microbiota of the digestive
tract exhibits considerable qualitative and quantitative
differences, with communities starting from 10 cells per g/mL
of sampled material within the oesophagus and stomach to 1012

per g/mL of tested material in the large intestine (33, 34).

The Main Findings
It was initially not clear whether the oesophagus was
characterized by a defined microbiota. The first studies on the
oesophageal microbiota and based on cultivation methods
demonstrated that the oesophagus did not merely contain a
February 2021 | Volume 12 | Article 595762
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transient microbial population originating from the oral cavity
by swallowing or from the stomach by gastroesophageal reflux
(GER) (35–37). It was later observed that bacteria were
associated with the oesophageal mucosal surface, confirming
the presence of a resident microbiota at this site (38).
Knowledge regarding the composition of the microbiota of
healthy individuals has been expanded using investigations
based on metagenomics approaches (39–41).

In general, the distal oesophageal microbiota was described as
simply like that of the oropharynx, yet not indistinguishable (38,
42, 43).

Scarcely any examinations have concentrated on the
organization of the microbiota of healthy oesophagus, (44–46)
but extra data has originated from considers researching the
oesophageal microbiota in disease compared to controls (47–56).

Influencers and Limitations
The accessible data on the microbiota are biased by various
methodologies, contrasts in the tested parts of the oesophagus,
and the heterogeneity of consideration/avoidance rules utilized in
the different investigations don’t permit comparisons and make it
hard to agree on the general microbiota synthesis of the
healthy oesophagus.

The presence of Streptococcus spp. was described by all studies:
along these lines, members from this genus, seem to be a dominant
taxon in the microbiota of the healthy oesophagus. Other bacterial
genera frequently identified in association with streptococci, albeit
in lower extents, incorporate Fusobacterium, Veillonella and
Prevotella. The nearness of different genera (e.g., Neisseria,
Haemophilus, Gemella, Granulicatella, Actinomyces, Lactobacillus,
Bacteroides, Porphyromonas, and Staphylococcus), was lower.

Outstandingly, the commonness of Fusobacterium,
Streptococcus, Prevotella and Veillonella has reliably been
accounted in several studies based on either culture-dependent
or culture-independent methodologies and on various examples
(biopsies, aspirates, brushes), subsequently giving a reliable sign of
their commitment to the piece of the microbiota that colonizes the
healthy oesophageal mucosa. The strength of streptococci and the
continuous nearness of other taxa regular of the oropharyngeal
microbiota have been identified with the piece of the microbial
networks of the oropharyngeal cavity, where a high commonness
of streptococci is discovered, along with Gemella, Fusobacterium,
Veillonella, Rothia and Granulicatella, (57, 58) have bolstered the
idea that the oesophageal microbiota is basically of oral inception.

In any case, not every single oral bacterium can colonize the
oesophageal mucosa, while a few individuals from the oesophageal
microbiota appear to be underrepresented in the oral cavity,
highlighting an alternate microbiota variation in the two-body
destinations (38, 45, 46).
OESOPHAGEAL MICROBIOME AND DIET

There is no sufficient data on the effect of the diet on the
oesophageal microbiota. A study of 47 patients showed that a
diet higher in fiber was associated with a decrease of
Frontiers in Immunology | www.frontiersin.org 3
Proteobacteria and an increase of the Firmicutes phylum in the
oesophagus (59). Additional studies correlating oesophageal
microbiome and nutrition are needed. Studies that further
define the stability of the oesophageal microbiome over time as
well as other factors that determine inter-individual microbiome
composition will aid in our understanding of the role of the diet.
OESOPHAGEAL MICROBIOTA IN EOE

The Main Findings
In 2015, Benitez et al. described the bacterial composition of the
oral and oesophageal mucosa through 16S rRNA assessment of
buccal swabs and oesophageal biopsies from 33 pediatric EoE
subjects compared to 35 non-EoE healthy controls. They applied
a longitudinal model before and after defined dietary changes.

In this study, Firmicutes were more abundant in oesophageal
compared to oral samples, and oesophageal microbiota was more
abundant of Proteobacteria in controls than EoE. The authors
detected a significant difference between activated EoE and
controls biopsies. The targeted dietary intervention did not
produce substantial differences in either oesophageal or oral
microbiota; the reintroduction of allergens led to enrichment in
Campylobacter and Ganulicatella genera in the oesophagus (55).

Corynebacterium was enriched in the EoE samples, as was
Neisseria genus, as previously described in different inflammatory
conditions (60, 61). The Atopobium and Streptococcus genera
were consistently enriched in non-EoE control samples.

The oesophageal microbiome of non-EoE control subjects
showed a prevalence of Gram (+) bacteria of the Streptococcus
genus, in agreement with previous findings in adult (62) and
pediatric individuals (45) without oesophageal inflammation.
Most of Benitez et al. study subjects were pediatric males with
nearly 100% documented and concurrent proton-pump
inhibitors (PPI) use, providing a further indication of the
resilience of the Streptococcus-dominated microbiome in the
healthy oesophagus in all genders and age groups.

They did not detect differences in the oral microbiome between
inactive EoE, active EoE or non-EoE control samples, suggesting
that in pediatric EoE, bacterial communities are stable and might
not be altered by dietary modification. Data do not support the use
of oral samples for EoE surveillance instead of biopsies.

In the same year, Harris et al. performed a prospective evaluation
of secretions from EoE adult and children oesophageal biopsies,
Gastro-oesophageal Reflux Disease (GERD) and healthy mucosa
through Esophageal String Test (EST). Bacterial load was determined
by quantitative PCR. Bacterial communities, determined by 16S
rRNA and 454 pyrosequencing, were compared between disease and
health. The bacterial amount was increased in both GERD and EoE
and compared to healthy subjects. In EoE individuals, the amount
was increased regardless of treatment status or level of mucosal
eosinophilia. Haemophilus was significantly increased in untreated
EoE individuals as compared with healthy subjects. Streptococcus
was diminished in GERD subjects in PPI therapy as compared with
healthy subjects. These data affirmed that diseases related to mucosal
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eosinophilia are characterized by a different microbiome from that
found in the ordinary mucosa (56).

The EoE activity did not seem to directly affect a load of
bacteria in EoE. However, eosinophils possess extracellular DNA
traps and numerous anti-microbial properties with the release of
defensins (63–65). The microbiota of untreated EoE subjects
showed a shift from a mostly Gram (+) population to an increase
in Gram (−) bacteria similar to what has been described in GERD
(49). The implication of Gram (−) bacterial involvement in reflux
esophagitis (66) is consistent with the observed increase in
Haemophilus and Proteobacteria in EoE. These data suggest
that treatment could affect the microbiota.

Norder Grusell et al. enrolled 17 subjects with GERD and 10
with EoE. All patients performed endoscopic brush sampling and
biopsies from the upper and lower oesophagus and the oral cavity.
Bacterial growth was identified to the species or genus level. The
major part of bacterial groups or species was found in specimens
from the lower oesophagus in EoE subjects compared to GERD
subjects. Streptococcus viridans was the most common bacteria in
both groups. GERD individuals had significantly inferior bacterial
diversity in both oesophageal and oral samples. This discrepancy
could depend on the protective mucosal biofilm by the acid
content in GERD patients. The authors endorsed cultural
method and speculated that bacteria identified by 16SrDNA/
RNA techniques might not be alive, and there might be
amplification bias following the processing steps. Nevertheless,
Frontiers in Immunology | www.frontiersin.org 4
they acknowledge that it is impossible to cultivate some bacterial
species, and essential bacteria might, therefore, be overlooked (67).

Table 1 summarizes the main findings about microbiota
in EoE.
HELICOBACTER PYLORI:
A CONTROVERSIAL ROLE

Helicobacter pylori infection often occurs in early childhood and
it seems to enhance immune-tolerance driving immune-
mediated diseases in a susceptible host (69–71).

In this context, previous or current infection with Helicobacter
pylori (exposure) has been reported to protect against EoE,
perhaps owing to H. pylori-induced immunomodulation. In
2019 a meta-analysis evaluated 11 observational studies
comprising data on 377,795 individuals worldwide. H. pylori
exposure vs non-exposure was associated with a 37% reduction in
odds of EoE (odds ratio, 0.63; 95% CI, 0.51–0.78) and a 38%
reduction in odds of esophageal eosinophilia (odds ratio, 0.62;
95% CI, 0.52–0.76). Fewer prospective studies found a significant
association between H. pylori exposure and EoE (p= .06) than
retrospective studies. Effect estimates were not affected by study
location, whether the studies were performed in pediatric or adult
populations, time period, or prevalence of H. pylori in the study
TABLE 1 | Main findings about oesophageal Microbiota in EoE.

Author, year Study population Method Microbial differences

Benitez AJ. et al,
2015 (55)

Non-EoE pediatric
controls and pediatric
EoE subjects before and
after defined dietary
changes.

Bacterial composition through 16S rRNA gene
sequencing of the oral and esophageal
microenvironments using oral swabs and esophageal
biopsies

1) Enrichment of Proteobacteria (Neisseria and
Corynebacterium) in the EoE cohort, and predominance
of the Firmicutes in non-EoE control subjects.

2) Targeted dietary intervention did not lead to significant
differences in either oral or esophageal microbiota,
reintroduction of highly allergenic foods led to enrichment
in Ganulicatella and Campylobacter genera in the
esophagus.

Harris JK. et al.,
2015 (56)

EoE adult and children,
Gastro-oesophageal
Reflux Disease and
healthy mucosa.

Bacterial composition of secretions and biopsies
through 16S rRNA gene amplification from samples
obtained with Esophageal String Test (EST).
Bacterial load was determined by quantitative PCR.

1) In EoE, bacterial load was increased regardless of
treatment status or degree of mucosal eosinophilia
compared with normal.

2) Haemophilus was significantly increased in untreated
EoE subjects

Norder Grussell E.
et al., 2018 (67)

Subjects diagnosed with
GERD and with EoE

Brush sampling and biopsies from the oral cavity,
upper and lower esophagus. The samples were
cultivated on agar plates, and bacterial growth was
identified to the genus or species level and semi-
quantified.

1) Significantly higher numbers of bacterial groups or
species were found in specimens from the lower
esophagus in subjects with EoE compared to subjects
with GERD.

2) Streptococci were present in all of the EoE-subjects but
only in approximately 75% in lower esophagus of the
GERD-subjects, regardless of the sampling method.

Hiremath G. et al.,
2019 (68)

Non-EoE pediatric
controls and pediatric
EoE.

The salivary microbiome was determined through 16S
rRNA gene sequencing.

1) A trend toward lower microbial richness and alpha
diversity was noted in children with EoE.

2) Specific taxa such as Streptococcus tended to be
abundant in children with active EoE compared with
non-EoE controls.

3) Haemophilus was significantly abundant in children with
active EoE compared with inactive EoE and increased
with disease activity.
February 2021 | Volume 12 | Article 595762
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population (72). The role of H. pylori would therefore deserve
more evidence.
POSSIBLE ALTERNATIVES TO THE
OESOPHAGEAL BIOPSIES FOR
MICROBIOTA EVALUATION

In 2012 Fillon et al. described the oesophageal microbiome in
healthy children through the Enterotest™ (EST), a minimally
invasive string technology. EST samples and mucosal biopsies
were collected from healthy children (n=15) and their
microbiome composition determined by 16S rRNA gene
sequencing. Microbiota from oesophageal biopsies and ESTs
produced nearly identical profiles of bacterial genera and were
different from the bacterial contents of oral and nasal cavity
samples. They concluded that the EST could be a useful device
for the study of the oesophageal microbiome (45).

In 2019 Hiremath et al. collected saliva samples from 19 non-
EoE controls and 26 children with EoE. The salivary microbiome
was determined through 16S rRNA gene sequencing, and disease
activity was assessed through the Eosinophilic Esophagitis
Histologic Scoring System (EoEHSS) and the Eosinophilic
Esophagitis Endoscopic Reference Score.

A trend toward lower microbial richness was recognized in
EoE children. The salivary microbiome was similar between
children with and without EoE.

Streptococcus tended to be more abundant in children with
active EoE compared with non-EoE controls. Haemophilus was
significantly plentiful in active EoE compared with inactive EoE
and increased with the increasing Eosinophilic Esophagitis
Histology Scoring System and EoEHSS. Besides, four broad
salivary microbial communities correlated with the EoEHSS.

The authors concluded that the composition of the salivary
microbiome community structure could be different in children
with EoE. The disease activity positively correlates with the relative
abundanceofHaemophilus.Perturbations in the salivarymicrobiome
may play a role in EoE pathobiology and could be a noninvasive
marker of disease activity. The disease activity in the oesophagus does
not seem to affect a load of bacteria in EoE directly (68).
ATTEMPTS AT THE MODULATION
OF EOE WITH PROBIOTIC

Recently, it was demonstrated that there are huge contrasts in gut
microbial community structure, microbial abundance, and
uniformity in patients with EoE.

Faecal microbiota was evaluated through 16SrRNA
amplification from 12 EoE patients and 12 controls. Patients
with EoE showed inferior gut microbiota alpha diversity. The
authors observed at the phylum level an important increase in
Bacteroidetes and a decrease in Firmicutes and a significant
reduction in Clostridiales and Clostridia at the order and family
level in patients with EoE.
Frontiers in Immunology | www.frontiersin.org 5
The authors speculated that Clostridia based interventions
could be tested as adjuncts to current therapeutic strategies in
EoE (73).

The probiotic Lactococcus lactis NCC 2287 has previously
been shown to decrease clinical scores in a food allergy model
based on co-administration of cholera toxin and ovalbumin (74).
Also, NCC 2287 is a potent inhibitor of the eosinophil survival
cytokine IL-5 and an inducer of the immune-modulatory
cytokine IL-10 and in Th2-skewed cultures of peripheral blood
mononuclear cells (PBMC) (75). The probiotic Bifidobacterium
lactis NCC 2818 is also known for its immunomodulatory
properties in allergy (76).

Holvoet et al. in 2016 tested L. lactis NCC 2287 and B. lactis
NCC 2818, for their capacity to decrease oesophageal
inflammation in EoE murine model (77).

To test whether probiotics could decrease oesophageal
eosinophilia in an EoE animal model, the strain NCC 2287 was
added to the drinking water as prevention (day 0 to day 28; n = 8),
as a treatment (day 28 to day 38; n = 10) or as continuous exposure
(day 0 to day 38; n = 10). The maximum eosinophil count was
significantly greater in the oesophagus of sensitized mice challenged
with Af extract than in the oesophagus of non-sensitized mice.
Interestingly, sensitizedmice receiving NCC 2287 from day 28 to 38
had significantly less oesophageal eosinophilia than the non-
supplemented sensitized group. However, there was no significant
effect on oesophageal eosinophilia when the NCC 2287 strain was
administered as a preventive measure or when it was given
continuously, throughout the study.

This studydemonstrates that the time frameof supplementation
is fundamental: the beneficial effect of L. lactis NCC 2287 was only
observed when it was administered as a treatment. Altogether, the
data suggest that L. lactis NCC 2287 may be an exciting candidate
for reducing EoE inflammation.

B. lactis NCC 2818 and L. lactis NCC 2287 both induce an
increase of IL-10 in a Th2-skewed PBMC model, suggesting a
possible immunoregulatory effect of these strains (76–78).
However, in the same model, L. lactis NCC 2287 is more
potent at reducing IL-5 levels and a stronger inducer of IFN-c
than B. lactis NCC 2818 (36). It seems debatable the evaluation of
the predictive value of these assays in human disease.

Probiotics seem to stabilize IL10 mRNA expression and to
dysregulate microRNAs in human monocyte (78). These results
suggest that other epigenetic mechanisms could explain the effect
observed in the oesophagus and that the understanding of probiotic
impact is at the beginning. Akei et al. have demonstrated that
oesophageal eosinophilia is IL-5-dependent (79).

The balancing impact of NCC 2287 on IL-5 expression seen
in Th2-slanted PBMCs (75) and an ovalbumin/cholera toxin-
induced food hypersensitivity model (74) may somewhat clarify
the abatement in oesophageal eosinophilia seen with NCC 2287
treatment in this study.

These results suggest that L. lactis NCC 2287 may lead to a
steady decrease in gastrointestinal Th2 inflammation independently
of the level of antigen sensitization in experimental allergy models.

Previous studies have highlighted the noticeable link between
oesophageal and lung inflammation (45). Furthermore, 14–70% of
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EoE patients also presented with asthma (1, 46). The effect of L.
lactis NCC 2287 on lung eosinophilia and oesophageal
eosinophilia could be referred to a common consequence of the
probiotic on eosinophil recruitment. Nevertheless, oral
supplementation with B. lactis NCC 2818 had no effect on EoE,
although it significantly reduced bronchoalveolar eosinophilia.

Their data suggest that a decrease in eosinophils in the lung is
not concomitant with a significant decline in oesophageal
eosinophilia. These outcomes are to be expected as various
preclinical examinations have indicated that lung eosinophilia
can diminish with probiotic supplementation (80, 81) or
auxiliary to changes in the gut microbiota (82, 83).

Probiotics could vary in their ability to prevent or deal with
the allergic response.

The proof in the animal model recommends that specific
probiotics might be gainful in lessening oesophageal
eosinophilic inflammation.

Instead, probiotics seem to permit a more comprehensive
approach which may restore and maintain homeostasis
in humans.

Figure 1 summarizes the main findings of microbiota found
in EoE at oral, esophageal and intestinal level.
CONCLUSION

In conclusion, the oesophageal mucosa hosts a resident
microbiota and there is evidence that it may change in the
presence of EoE with an increase of bacterial load (56, 67) and
Frontiers in Immunology | www.frontiersin.org 6
with Streptococcus as recurrent taxa (67, 68) and with
Haemophilus as possible marker of disease activity in different
studies (56, 68).

It is not yet clear what is the cause-effect link that regulates
these changes.

It is therefore not yet possible to imagine possible rational
interventions for modulating the esophageal microbiota.

It therefore appears essential to carry out immunological
studies that clarify this phenomenon and that allow to
hypothesize also possible alternative therapies for EoE.
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FIGURE 1 | Salivary, oesophageal and gut microbiota mutations in EoE. The image was created with Biorender.com.
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