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Abstract 

Hypoxia is a remarkable trait of the tumor microenvironment (TME). When facing selective pressure, tumor cells show 
various adaptive characteristics, such as changes in the expression of cancer hallmarks (increased proliferation, sup-
pressed apoptosis, immune evasion, and so on) and more frequent cell communication. Because of the adaptation of 
cancer cells to hypoxia, exploring the association between cell communication mediators and hypoxia has become 
increasingly important. Exosomes are important information carriers in cell-to-cell communication. Abundant 
evidence has proven that hypoxia effects in the TME are mediated by exosomes, with the occasional formation of 
feedback loops. In this review, we equally focus on the biogenesis and heterogeneity of cancer-derived exosomes and 
their functions under hypoxia and describe the known and potential mechanism ascribed to exosomes and hypoxia. 
Notably, we call attention to the size change of hypoxic cancer cell-derived exosomes, a characteristic long neglected, 
and propose some possible effects of this size change. Finally, jointly considering recent developments in the under-
standing of exosomes and tumors, we describe noteworthy problems in this field that urgently need to be solved for 
better research and clinical application.
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Introduction
Hypoxia (a low O2 level) is a hallmark of many solid 
tumor cells. Hypoxia develops in cancer because the dis-
tance between cancer cells and the vasculature exceeds 
oxygen diffusion limits (which are as great as ~ 200 μm, 
depending on the local oxygen concentration in blood 
plasma) [1, 2]; this failure mainly results from disordered 
neovasculature [3] or perfusion limitations caused by 
temporary obstruction [1, 2]. Although there is no clear 
threshold to distinguish normoxia from hypoxia in can-
cer [4], tumor tissues can be generally divided into three 
regions: the normoxic zone (with functional blood ves-
sels nearby), hypoxic zone (~ 100 μm away from func-
tional blood vessels [5], with a partial pressure of oxygen 

< 10 mmHg [3]), and necrotic zone (~ 150 μm away from 
blood vessels, with a very low oxygen concentration) [6]. 
Hypoxia has different effects throughout cancer progres-
sion; in particular, it can stimulate angiogenesis, ulti-
mately leading to more malignant and lethal cancers. It 
has been established that cellular communication is more 
frequent and more complex in the hypoxic tumor micro-
environment (TME), and accumulating evidence suggests 
that extracellular vesicles (EVs) participate in complex 
hypoxic processes by acting as signal transporters [7, 8].

EVs are defined as particles with a lipid bilayer mem-
brane that contain components from donor cells but lack 
a functional nucleus; they are released by all cells and 
cannot replicate [9–11]. Although there are no doubts 
about the role of EVs in physiological and pathologi-
cal processes, the fact that different types of EVs display 
overlapping biophysical properties but lack specific 
markers that can discriminate the subtypes perfectly are 
points of confusion for researchers, as is the nomencla-
ture of EVs [12]. In the present review, we mainly focus 
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on exosomes, MVB-derived EVs ranging from ~ 40 to 
162 nm in diameter (~ 100 nm on average) [10], and pre-
sent some features of other EV subtypes. The biogenesis 
of exosomes (of endosomal origin) involves double invag-
ination and subsequent fusion of the plasma membrane. 
Generated by late-sorting endosomes (LSEs) evolving 
from early-sorting endosomes (ESEs), multivesicular 
bodies (MVBs) are the products of the first invagina-
tion; MVBs can release intraluminal vesicles (ILVs, pre-
exosomes) as exosomes by merging with the plasma 
membrane after the second invagination or can fuse with 
lysosomes and autophagosomes and be degraded [10]. 
Similar to hypoxia, exosomes also are involved in various 
physiological and pathological processes, in which they 
act primarily as important messengers. As a result, there 
may be certain intrinsic relationships between hypoxia 
and exosomes in cancer, and these relationships are the 
topic of this review.

Hypoxia can influence the release of exosomes
Cancer-associated cells secrete more exosomes than 
healthy cells due to the need for intercellular informa-
tion or nutrient exchange [13]. As estimated, the number 
of exosomes contained in the blood of cancer patients 
is twofold greater than the number in healthy human 
blood [14], and tumoral granulocytic myeloid-derived 
suppressor cells (G-MDSCs) produce more exosomes 
than splenic G-MDSCs [15]. Therefore, it is reasonable 
to think that more exosomes are necessary to satisfy the 
cell communication needs in cancer because of the com-
plicated environment of hypoxia that develops in tumors. 
This scenario has been proven in various cancers, includ-
ing glioma [16], breast cancer [17, 18], hepatocellular car-
cinoma [19], pancreatic cancer [20], gastric cancer [21], 
colorectal cancer (CRC) [15, 22], and prostate cancer 
[23], and different functions are mediated by exosome 
cargoes. Interestingly, compared with hypoxia, hyper-
oxia can reduce the number of exosomes released in CRC 
[15]. Taken together, these results indicate that hypoxia 
exerts its effects on tumors by increasing the number of 
cancer cell exosomes, which can carry signals to recipi-
ent cells. Notably, hypoxia also induces an increase in 
the number of exosomes in noncancerous cells [24–
26], which indicates that hypoxia universally induces 
increases in exosomes. However, the detailed mechanism 
by which hypoxia increases exosome release from cancer 
cells is still not well understood. Here, we will focus on 
potential but not exhaustive possibilities derived from 
published reports.

Cargo sorting, transport of MVBs and fusion with 
the plasma membrane are the key steps in exosome 
release, and hypoxia may influence these steps. Cargoes 
and cargo-sorting machinery are the first regulators of 

exosome release [27], and hypoxia may mediate their 
activity. Dual immunofluorescence analysis proved that 
RAB22A is enriched in the membranes of microvesicles 
(MVs), which indicates that RAB22A is an MV cargo, 
and under hypoxia, HIF-dependent overexpression of 
RAB22A was shown to be required for increased MV for-
mation [28]. Although MVs are different than exosomes, 
that study provided some insights into hypoxic regula-
tion of exosomal cargo, which affects exosomal release. 
Exosome markers, such as certain tetraspanin membrane 
proteins (CD81 and CD63) and TSG101, are also good 
indicators of hypoxic regulation. Some of these markers 
are both exosome cargoes and sorting mediators. CD63 is 
particularly enriched on the surface of exosomes and has 
been reported to function in endosomal sorting during 
melanogenesis [29]. The tetraspanins CD81, CD82 and 
CD9 are also directly involved in the sorting of various 
cargoes to exosomes [27]. Many researchers have dem-
onstrated that tetraspanin is upregulated by hypoxia. For 
example, overexpressed CD63 and GLUT-1 are markers 
of hypoxia status and are associated with poor outcomes 
of GIST (gastrointestinal stromal tumors) patients [30]. 
These studies indirectly supported the idea that hypoxia 
exposure may affect cargo loading and the subsequent 
release of exosomes. Intracellular transport involves the 
association of organelles with the cytoskeleton (actin and 
microtubules) and associated molecular motors (dynein, 
kinesins and myosins) and molecular switches (small 
GTPases) [27]. The actin cytoskeleton [31], microtubules 
[32] and molecular motors [33] are thought to change 
in different cells under hypoxic conditions. A possible 
example is invadopodia, invasive actin structures and key 
secretion sites for exosomes [34]. Evidence has shown 
that hypoxia can promote the formation of invadopodia 
[35, 36]. Moreover, as mentioned above, MVBs fuse with 
lysosomes, leading to degradation, or with the plasma 
membrane, leading to the release of ILVs as exosomes. 
When one of these two pathways is blocked, MVBs will 
enter the other pathway. Although the regulation of the 
balance between the degradation and secretion of mul-
tivesicular endosomes (MVEs) remains largely unex-
plored, how hypoxia increases the release of exosomes 
in this system can be explained. ISGylation of the MVB 
protein TSG101 by ISG15 can promote lysosomal deg-
radation to inhibit the release of exosomes [37]; in addi-
tion, as identified in another independent experiment, 
ISGylation is lower under hypoxic conditions [38]. It has 
also been demonstrated that RAB27b regulates the motil-
ity of MVEs toward the plasma membrane [39], both 
RAB27a and RAB27b facilitate the docking of MVEs 
to the membrane [39], RAB7 plays a role in transport-
ing MVEs to lysosomes for degradation [40], and (coin-
cidentally) hypoxia can increase exosome release by 
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upregulating RAB27a and downregulating RAB7 in ovar-
ian cancer cells [41]. These results indicate that hypoxia 
can participate in the intracellular transport of MVEs 
by blocking the degradation pathway, paving the way for 
MVE fusion with the plasma membrane and increasing 
exosome release in cancer; however, further verifica-
tion is needed. The final step of exosome secretion, the 
fusion of MVEs with the plasma membrane, is mediated 
by SNARE proteins and synaptotagmin family members 
[42]. An increase in the SNARE protein SNAP-25 under 
hypoxia has been reported [43]. Pyruvate kinase type 
M2 (PKM2), whose expression is increased in hypoxia 
[44], can promote exosome secretion by phosphoryl-
ating synaptosome-associated protein 23 (SNAP-23) 
[45]. Interestingly, reduced exosome release has been 
observed in certain cases of neurobehavioral dysfunction 
[10], and hypoxia is known to be an enhancer of neurobe-
havioral dysfunction [46] (an effect that is opposite the 
effect in cancer, in which hypoxia promotes the release 
of exosomes to accelerate disease progression). Fei et al. 
observed that hypoxia can upregulate HSP70 expression 
and downregulate the expression of the presynaptic pro-
teins syntaxin I, synaptic vesicle protein 2 (SV2) and syn-
aptotagmin I (which are associated with EVs) to impair 
motor and sensory suppression functions [46]. However, 
it remains unknown whether hypoxia reduces exosome 
release by suppressing the expression of the presynaptic 
proteins syntaxin I, SV2 and synaptotagmin I to impair 
nerve functions, a hypothesis that is consistent with the 
protective role of exosomes in neurodegeneration [10]. If 
the hypothesis turns out to be true, the opposite conclu-
sion regarding the mechanism in cancer can be reached, 
suggesting that hypoxia may promote exosome release 
by inducing the overexpression of synaptotagmin fam-
ily members and associated factors to accelerate cancer 
progression. Moreover, low pH and an acidic microenvi-
ronment are clear results of hypoxia, and these charac-
teristics facilitate exosome release and uptake [47]. This 
phenomenon implies that hypoxia can indirectly ben-
efit the release and uptake of exosomes. Another indi-
rect example is that hypoxia induces exosome release in 
a calcium-dependent manner through MCT1 and CD147 
[48]. However, it remains to be seen which of the afore-
mentioned direct and indirect effects of hypoxia is most 
important.

On the basis of this discussion, we conclude that 
hypoxia participates in the processes of exosome release 
and MVB degradation by influencing many key and aux-
iliary factors. However, how hypoxia influences or inter-
acts with these key molecules remains largely unclear. 
Inhibition of translation initiation, elongation or ter-
mination, adaptive protein synthesis, extensive protein 
modification and metabolic reprogramming are the 

main hypoxia-related regulatory mechanisms, and these 
mechanisms have been reviewed extensively by Lee et al. 
[3]. Furthermore, biofunctions are manipulated by a net-
work that is affected by factors related to the posttran-
scriptional processing of premRNA transcripts, including 
alternative splicing; stabilization or degradation of the 
mRNA product; regulation of mRNA translation; and 
posttranslational modification, stabilization, or degra-
dation of the protein product [49]. At the transcription 
level, overexpression of the hypoxia master regulator HIF, 
a transcription factor, is consistently associated with an 
increase in exosome release in hypoxic cancer cells. For 
instance, the mRNA expression of PKM2 is increased by 
hypoxia in a HIF-1-dependent manner [44]. Moreover, 
the basic helix-loop-helix transcription factor BHLHE40 
was shown to be induced by hypoxia, and BHLHE40 
knockdown reduced the release of exosomes in breast 
cancer cells [50]. In terms of protein modification, in 
addition to ISGylation, as mentioned above, phospho-
rylation also influences the biogenesis of exosomes. A 
recent research article showed that the phosphatase 
Shp2 negatively controlled small EV (sEV) biogenesis by 
directly dephosphorylating tyrosine 46 of syntenin, and 
we believe that the EVs in this article are likely exosomes 
[51]. Shp2 can affect HIF in cancer [52], and the role of 
protein phosphatases in the hypoxic cancer environ-
ment has gained some attention [53]. However, it is still 
unknown whether hypoxia can induce protein phos-
phatases to affect exosome biogenesis. ncRNAs may be 
another potential mediator between hypoxia and exo-
some release. A good example is the lncRNA HOTAIR, 
which has the ability to promote exosome secretion in 
hepatocellular carcinoma [54] and is upregulated under 
hypoxic conditions in several cell lines [55].

Hypoxia can elevate tumor‑derived exosomal 
heterogeneity
The heterogeneity of the exosome population, which is 
composed of exosomes with different sizes, different car-
goes inside and outside, different functional impacts on 
recipient cells and different cellular origins [10, 56], is a 
reflection of the cell state [57], making exosomes poten-
tially desirable diagnostic and prognostic tools. For exam-
ple, a recent study successfully evaluated drug potency by 
detecting drug occupancy using synthetic probes [58]. 
Exosomes released by different cells contain different 
cargoes and markers, and exosomes originating from the 
same cell line can carry distinct constituents [14]. There-
fore, heterogeneity is not only a promising aspect of exo-
some applications but is also among the biggest obstacles 
to a better understanding of exosomes [59, 60]. Here, we 
focus on hypoxia, which is related to increased complex-
ity of exosome action, and point out the temporal order 
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of exosome biogenesis, cargo loading, release, transport, 
binding to target cells, uptake and final biofunction, spe-
cifically noting changes in exosome biofunctions result-
ing from exposure to hypoxia after transport, binding 
and uptake.

Hypoxia changes the size of exosomes in TME
Exosome size varies significantly even in a single cell 
line [56], probably due to intrinsic uneven invagina-
tion of the limiting membrane during exosome bio-
genesis [10], and it has been reported that the size of 
exosomes is associated with certain diseases. For exam-
ple, a smaller exosome size (< 112 nm) in the pulmonary 
vein has been associated with a shorter time to relapse 
and shorter overall survival among non-small-cell lung 
cancer (NSCLC) patients [61]. There are many prob-
lems hindering our understanding of exosome size. 
First, the fact that each exosome-sizing technique has a 
unique bias with regard to exosome size estimates needs 
to be overcome [56]. For example, the detection limit of 
nanoparticle tracking analysis (NTA), which is widely 
used for exosome size detection for biological particle 
applications, is approximately 70 nm [62], although new 
technologies have been developed. The processes of pre-
paring exosomes can lead to exosome shrinkage, swell-
ing or flattening, and these changes have a clear impact 
on true size analysis [56]. Moreover, it is not possible to 
acquire totally purified exosomes due to technical limita-
tions, which also influences the accuracy of size data. For 
instance, EVs in the typical exosome size range include 
apoptotic bodies, MVs, VLDLs and chylomicrons, ret-
roviruses and exomeres, and these structures cannot 
be effectively separated from exosomes by centrifuga-
tion because they share similar densities and membrane 
orientations [59, 63]. While these factors have led to an 
unclear understanding of exosome size, hypoxia adds 
to this ambiguity. Exposure to hypoxia tends to lead to 
the release of smaller exosomes. Many results from dif-
ferent experiments with various cancer cells or cancer-
related cell lines, such as colon cancer cells [22, 64], 
prostate cancer cells [23], pancreatic cancer cells [20], 
and BMSCs [65], have proved this trend. Some studies 
have proven that the Rab protein can influence the size of 
exosomes. Inhibiting RAB27 with targeted shRNAs can 
reduce the release of exosomes, but this manipulation 
also results in a significant increase in the presence of 
smaller endosome-sized vesicles (50 nm), which implies 
that Rab proteins have the ability to change the size 
distribution of exosomes [66]. In addition, substance-
conservation studies have shown that when the release 
frequency of exosomes increases, the consumption of 
the membrane also increases. Under hypoxia, the mem-
brane supply may not meet the membrane consumption 

requirements for exosome release, leading to the release 
of smaller exosomes. Although these studies have proven 
that hypoxia changes exosome size, many researchers 
have overlooked the subtle differences between cell lines 
and have concluded that normoxic and hypoxic cancer-
derived exosomes are among the size range of exosomes 
[16, 18, 67]. In view of the common effect of hypoxia on 
exosome size and the contradictory conclusions obtained 
from studies, we discuss exosome size in the present 
review.

In 1989, Stephen Paget proposed the “seed-and-soil” 
hypothesis [68]. However, the “soil-dandelion-soil” ver-
sion of this hypothesis seems to be a more reasonable 
metaphor for explaining the occurrence of cancer and 
metastasis. 1) Before primary cancer occurs, the pri-
mary soil (pretumor site) is made suitable for dande-
lion (primary tumor cell) survival through a multistep 
development process (which effectively explains the 
age dependency of cancer) [69, 70] under the influence 
of various factors, including the accumulation of muta-
tions in somatic cells [70, 71], metabolic reprogramming 
[72, 73], microbiota changes [74], inflammation [72, 73], 
and obesity [72, 75]. Then, dandelions (primary tumor 
cells) grow uncontrollably and reshape the primary soil. 
2) As tumors grow larger and metastasize, the dandelion 
seeds (exosomes) are released into the bloodstream and 
deposited in distant soil (metastatic sites) to form prem-
etastatic niches (PMNs) for secondary tumor growth 
before circulating tumor cells arrive at these distant sites 
[76]; this idea has been proven through some independ-
ent experiments [77–80]. In two recent studies, hypoxia-
induced exosomes from CRC cells promoted liver-tropic 
metastasis by making distant soil fertile for the forma-
tion of PMNs [81], and hypoxic exosomes (HypoExos) 
from prostate cancer cells were found to upregulate the 
levels of matrix metalloproteinases (MMP2 and MMP9) 
and extracellular matrix proteins (fibronectin and colla-
gen) and increase the number of CD11b + cells to enable 
PMN formation at selective sites [82]. In consideration of 
this explanation, it is reasonable to presume that smaller 
exosomes may be more easily transmitted via the blood-
stream to metastatic sites to form a PMN when hypoxia 
changes the hemodynamics in cancer. In addition, 
smaller exosomes can cross physiological gaps easily to 
reach additional cells. When the total weight and den-
sity are the same, a smaller value means that more cells 
may be exposed to and affected by exosomes, triggering 
signaling cascades and ensuring the transmission of valid 
bioinformation. Moreover, smaller exosomes may be 
internalized faster than larger exosomes [83], indirectly 
indicating that smaller exosomes from hypoxic can-
cer environments may contribute to tumor progression 
more easily and more effectively. Another recent study 
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provides an indirect relationship between the size of 
sEVs and tumor malignancy. Stiffness and osmotic pres-
sure are positively correlated with EV malignancy and 
negatively correlated with the size of sEVs, while bending 
modulus is negatively correlated with EV malignancy and 
positively correlated with the size of sEVs [84]. Another 
study showed that exosomes derived from malignant 
ascites have a wider variation in size than those from 
nonmalignant ascites [85], and a smaller size of exosomes 
from malignant ascites was not reported, which may have 
been a result of the detection limit of NTA. Fortunately, 
another clinical trial (NCT02310451) may provide use-
ful information about exosome size as a biomarker in 
the future (Table 1). In addition, the following details are 
unclear: the extent to which small exosomes contribute 
to cancer progression; whether smaller exosomes from 
different kinds of cancer cells are absorbed faster; and the 
biological, physical and chemical factors that influence 
exosome size and the extent to which exosome size is 
affected by these factors. We believe that these important 

questions can be resolved with the development of meth-
ods for exploring exosome evolution.

Hypoxia influences cargo‑sorting mechanisms in cancer 
exosomes
Exosome cargoes (proteins, nucleic acids, glycoconju-
gates and lipids) and their corresponding functions have 
been investigated at length. Similar to exosome size, 
exosome cargoes exhibit heterogeneity, vary greatly in 
different cancer-derived exosomes and are enriched by 
hypoxia. In the following section, we discuss three main 
cargoes (proteins, glycoconjugates and lipids), as well as 
nucleic acids, to show how hypoxia changes these exo-
some cargoes.

Proteins
In terms of heterogeneity of exosome proteins, more than 
3000 common proteins and more than 1000 unique pro-
teins were reported to be detected in three exosome sam-
ples released by a single cell line [102]. Exosome proteins 

Table 1  Clinical trials about exosome biomarkers

Investigators or 
contacts

Start time Tumour Estimated 
or actual 
enrollment

Time perspective Origin Potential marker NCT number

Yuhui Shen et al. [86] 2017 Osteosarcoma 40 Prospective Blood RNA NCT03108677

Shonit Punwani et al. 
[87]

2015 Prostate Cancer 130 Prospective Blood HER NCT02935816

Shu Zhang et al. [88] 2018 Pancreatic Cancer 30 Prospective Blood mRNA NCT03821909

Hyun Koo et al. [89] 2020 Lung Cancer 470 Retrospective Blood Protein NCT04529915

Olivier Bouché et al. 
[90]

2021 Colorectal Cancer 80 Cross-Sectional Blood Macromolecules, 
integrins, metallo 
proteases

NCT04394572

Lei Li et al. [91] 2018 Ovarian Cancer 160 Prospective Blood miRNA, lncRNA NCT03738319

Alice HERVIEU et al 
[92].

2018 Sarcoma 30 Prospective Blood Concentration NCT03800121

Lin Miao et al. [93] 2017 Cholangiocarcinoma 80 Prospective Blood ncRNAs NCT03102268

Henri MONTAUDIE 
et al. [94]

2014 Melanoma 15 Prospective Blood Concentration, size NCT02310451

Julie ABRAHAM et al. 
[95]

2019 Non-Hodgkin B-cell 
Lymphomas

90 Prospective Blood CD20, PDL-1 NCT03985696

Roger Tun et al. [96] 2014 Prostate Cancer 2000 Prospective Urine RNA gene signature NCT02702856

Carl A Olsson et al. 
[97]

2020 Bladder Cancer 3000 Prospective Urine the expression pro-
files of the sncRNAs

NCT04155359

CHIH-YUAN WANG 
et al. [98]

2016 Thyroid Cancer 22 Prospective Urine Uncertain NCT02862470

Nicolas MOTTET et al. 
[99]

2020 Clear Cell Renal Cell 
Carcinoma

100 Prospective Urine CD9+/CA9+ 
exosomes, CD9+/
VGEFR2+ exosomes, 
CD9+/CD63+/
CD81+/CA9+ 
exosomes,

NCT04053855

Roger Tun et al. [100] 2016 Prostate Cancer 532 Prospective Urine 3-gene expression NCT03031418

Andrew Cowan et al. 
[101]

2015 Oropharyngeal Squa-
mous Cell Carcinoma

30 Prospective Primary 
cell 
cultures

Protein Signature NCT02147418
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are multifarious and include integral exosomal mem-
brane proteins, lipid-anchored outer membrane proteins, 
peripheral surface proteins, lipid-anchored inner mem-
brane proteins, inner peripheral membrane proteins, 
exosomal enzymes, soluble proteins and bulk inclusions 
[56]. Based on the fact that exosomes are generated at 
both plasma and endosome membranes, limited carrying 
capacity and steric exclusion are the initial causes of het-
erogeneity. Differential protein distribution, gene expres-
sion and environmental factors add to this diversity [56]. 
We believe that selective loading is another nonnegligible 
cause of heterogeneity because the exosome protein con-
tent is not always in line with the ratio of cellular proteins 
[103, 104].

In one study, there were 130 upregulated and 129 down-
regulated exosomal proteins in cells from the hypoxic 
NSCLC A549 cell group compared to the normoxia 
group [105], showing that hypoxia enhances exosome 
heterogeneity. Interestingly, compared with exosomes 
from cells expressing ANGPLT4 (exosome-derived pro-
tein of angiopoietin-like 4), exosomes from ANGPLT4-
knockdown cells induced significantly decreased A549 
cell migration in the presence of different oxygen levels 
[105], indicating that hypoxia affects biofunctions at least 
partially through exosome-loaded proteins. However, the 
migration abilities of A549 cells treated with exosomes 
from hypoxic ANGPLT4-knockdown cells were still 
higher than those of cells treated with exosomes under 
normoxia [105], which demonstrated that exosome car-
goes may function similarly and complement each other 
to perform their biological functions. Exosomes from 
hypoxic prostate cancer cells showed a greater percent-
age of plasma membrane- and nucleus-derived proteins, 
and a relatively low percentage of these proteins were 
derived from the extracellular space or cytoplasm [82]. 
G-MDSCs promote the stemness of CRC cells through 
exosomal S100A9, and hypoxia can promote exosome 
production in G-MDSCs in a HIF1α-dependent man-
ner [15]. Proteins in tumor exosomes also participate in 
hypoxia-associated responses. For instance, breast cancer 
cell exosomes containing metastasis-associated protein 1 
can be transferred to other cells to regulate the response 
to hypoxia [106]. Given this evidence and that of other 
studies not cited in this review, we suggest that hypoxia 
promotes many malignant phenotypes of cancer cells by 
changing exosome protein heterogeneity and that pro-
teins in cancer-derived exosomes sometimes contribute 
to the hypoxia response.

The precise mechanisms critical for increased pro-
tein heterogeneity in HypoExos have been slowly deter-
mined partially because the exosomal protein-sorting 
mechanism remains obscure. Some potential possibili-
ties based on the findings of recent related studies can 

be summarized. First, the simplest possibility is that 
more proteins in cancer cells indicate more proteins in 
exosomes. In a given cell type, when particular proteins 
increase in abundance, they occupy more space; there-
fore, it is presumed that more proteins will be included 
during exosome formation. Likewise, exosomes with 
fewer proteins are derived from cells with decreased 
protein expression. Hypoxia can promote protein syn-
thesis by stimulating the formation of a complex that 
includes HIF-2α, RNA-binding motif protein 4 (RBM4) 
and eIF4E2 (an eIF4E homolog) that assembles at reverse 
hypoxia response elements (rHREs) and the formation 
of a hypoxia-specific eIF4F complex that binds rHREs 
to facilitate translation initiation or inhibit some protein 
production through various mechanisms, such as by sup-
pressing translation [3]. However, the presence of more 
proteins in cells does not always indicate that there are 
more exosomal proteins because protein-sorting mech-
anisms may affect the number of exosomal proteins; as 
such, hypoxia may influence the key molecules associ-
ated with protein loading to influence the number and 
type of exosomal proteins. In addition to the tetraspanin 
family mentioned above, syntenin [27] and glycan signa-
tures [107–109] are also involved in cargo sorting and 
are potential mediators of hypoxic effects. An early study 
showed that syntenin induces IGFBP-2 expression via 
HIF-1a activation to promote angiogenesis [110], indicat-
ing an association between hypoxia and syntenin. How-
ever, the details remain unexplored. Posttranslational 
modifications (PTMs) of proteins also affect the loading 
of specific elements into the ILVs of MVBs [104, 111]. 
Ubiquitination is the best example of a PTM that affects 
cargo loading. Ubiquitinated proteins can be recognized 
and made to accumulate via ubiquitin-binding domains 
in ESCRT-0 and ESCRT-II within microdomains of 
MVEs, limiting the amount of membrane available for 
exosome formation [27, 104, 112]. It has been widely 
reported that hypoxia can influence protein ubiquitina-
tion and ubiquitination-associated enzymes [113–115]. 
Although this finding remains unproven, it strongly 
implies that hypoxia can affect the protein-loading pro-
cess of cancer cell exosomes by affecting ubiquitination. 
In addition to these features, the inner exosome mem-
brane is enriched in molecular chaperones, which bind to 
aggregated and misfolded proteins [56], and hypoxia can 
result in the accumulation of misfolded proteins [3].

Nucleic acids
Currently, most researchers believe that exosomes con-
tain various nucleic acids, including RNAs (mRNAs 
and ncRNAs, including lncRNAs, snRNAs, miRNAs, 
tRNAs, Y RNAs, vault RNAs, repetitive element RNAs 
and fragmented RNAs) and DNA sequences (DNA, 
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single-stranded DNA, double-stranded DNA, genomic 
DNA, mitochondrial DNA and reverse-transcribed 
complementary DNAs) [56]. However, in a recent study, 
high-resolution density gradient fractionation and direct 
immunoaffinity capture were used to reassess exosome 
composition, and the findings showed that active secre-
tion of cytoplasmic DNA and histones occurs through 
an autophagy- and MVE-dependent but exosome-
independent mechanism, and exosomal RBPs (Ago1–4, 
RPS3, RPS8, EEF2, EEF1A1, hnRNPA2B1, PARK7/DJ1, 
GAPDH, and MVP) were found to be absent from clas-
sical exosomes [103]. These findings reflect the com-
plexities of exosomes and the and insufficient knowledge 
surrounding the topic. Putting these unanswered ques-
tions aside, exosomal nucleic acids regulate the biology of 
tumors and are influenced by hypoxia. Few articles have 
reported an influence of hypoxia on cancer cell-derived 
exosome DNA. However, it has been widely reported 
that hypoxia impacts exosomal RNAs in cancer cells. For 
instance, hypoxia upregulated exosomal circ-133 to pro-
mote CRC metastasis [116] and increased the expression 
of miR-301a-3p to promote gastric cancer progression, 
metastasis, and EMT [21]. More evidence is available 
online and has been summarized by Wang and Kumar 
et al. [8, 117, 118].

Some articles provide some clues about how hypoxia 
changes exosomal RNA. First, from the aspect of cargoes, 
increasing evidence has proven that hypoxia regulates the 
expression of different ncRNA classes, and in some cases, 
these ncRNAs can influence HIF expression and stabil-
ity, forming positive and negative feedback loops [119, 
120]. miR-301a-3p is a good example. In one study, miR-
301a-3p was upregulated both in hypoxic gastric cancer 
cells and exosomes released by these cells, and it was 
found to increase HIF-1α stability by targeting PHD3, 
forming a miR-301a-3p/PHD3/HIF-1α positive feedback 
loop [21]. A network underlying how hypoxia functions 
in RNA biogenesis is complex and involves many mol-
ecules. Here, we consider it in its simplest form, and the 
details are available in other reviews [120, 121]. HIF-1α 
and/or HIF-2α can directly target RNA elements (such 
as the HRE in the miR-155 promoter [122, 123]). Other 
HIF-independent factors include the AKT signaling path-
way involving miR-21 [124]; conserved sites for the tran-
scription factor Oct-4 in miR-210 [125], the transcription 
factor TWIST1 in miR-10b [126], and the transcrip-
tion factor C/EBP-a/RUNX-1 in miR-424 [127]; sites for 
TET2 and TET3 (DNA-demethylating enzymes) in WT1 
lncRNA [128], acetylation levels in the lncRNA-LET pro-
moter region [129] and epidermal growth factor receptor 
(EGFR) suppression of some specific tumor-suppressor-
like miRNAs in response to hypoxic stress through phos-
phorylation of argonaute 2 (AGO2) at Tyr 393 [130]. 

Drosha and Dicer, key enzymes involved in miRNA bio-
genesis, are downregulated under hypoxic conditions, as 
mediated by the ETS1/ELK1 transcription factors [131]. 
Of note, greater cargo production results in greater load-
ing of exosomes. However, the regulatory mechanisms 
have been poorly elucidated to date, and other aspects 
should also be considered. miRNAs have been shown to 
be differentially sorted into exosomes according to their 
specific sequence (i.e., which may include specific motifs) 
[132], and hypoxia also affects RNA alternative splic-
ing [133, 134] and RNA editing [135]. These effects may 
make specific RNAs more suitable for loading in cancer 
cell-derived exosomes.

In addition to affecting cargo-related factors, hypoxia 
may also influence “tools” used by cancer cells to load 
nucleic acids into exosomes, including RNA-binding pro-
teins (RBPs, such as hnRNPA2B1 binding to the RNA 
GGAG motif, SYNCRIP directly binding to specific miR-
NAs enriched in exosomes sharing a common extra-seed 
sequence hEXO motif [136], Gags and Gag-like proteins 
[137] binding to another exosomal RNA sequence motif 
and the ESCRT-II subcomplex functioning as an RNA-
binding complex), tetraspaninenriched microdomains 
sequestering RNAbinding proteins in membrane subdo-
mains or the miRISC, and protein AGO2 mediating RNA 
silencing processes and the KRAS–MEK signaling path-
way (which acts through AGO2, major vault protein and 
Y-box-binding protein 1 (also known as YBX1)) [27, 56]. 
It has been proven that hypoxia has an effect on factors 
including hnRNP A2 (through pVHL, another important 
regulator of hypoxia [138]), tetraspanin, AGO2 [130], the 
KRAS-MEK signaling pathways [139–142], major vault 
protein [143, 144] and YBX1 [145]. Unfortunately, a small 
number of articles have studied hypoxia and these fac-
tors: YBX1 was found to mediate the selective loading of 
miR-133 and hnRNPA1 to mediate the selective loading 
of miR-1246 into HypoExos [145, 146], and other stud-
ies did not consider hypoxia. Therefore, to gain a bet-
ter understanding and develop therapies for cancer, the 
effect of hypoxia urgently needs to be explored. Interest-
ingly, as we emphasize above, exosome cargoes are not 
limited to contents in exosomes and include material 
carried on the outer surface of exosomes. Xu et al. found 
that a large number of exosomal miRNA species bound 
to RBPs reside on the outer surface of exosomes [147]. 
This finding is worth exploring more.

Glycoconjugates and lipids
Three main metabolic pathways (glycometabolism, lipo-
metabolism and proteometabolism) and nucleotide 
metabolism are essential for mammals and are repro-
grammed in hypoxic cancer cells. Even under nor-
moxia, cancer cells undergo reprogramming of glucose 
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metabolism as the tricarboxylic acid cycle is replaced 
by aerobic glycolysis, which is known as the “Warburg 
effect” [148]. Exosomes have the same topology as the cell 
[56]. Heterogeneous glycoconjugates containing different 
modules exist on the membrane of exosomes. Unfortu-
nately, there are few reports about how hypoxia impacts 
exosome glycoconjugates. However, the analogy between 
exosomes and cells suggests that hypoxia may influence 
exosome glycoconjugates in cancer cells. First, cell mem-
brane glycoconjugates play important well-characterized 
roles in cell-to-cell and cell−environment communica-
tions, and exosomes are crucial cell-to-cell messengers. 
Second, the glycoconjugate signature of cancer cell-
derived exosomes is different from that of healthy cells 
[56], which means that exosome glycoconjugates are het-
erogeneous and changeable. Third, glycoprotein expres-
sion on the cell membrane can be affected by hypoxia 
[149]. In addition, glycans have the aforementioned roles 
in protein sorting and uptake, and hypoxic cells take up 
more exosomes in a proteoglycan-dependent manner 
[150]. Considering these notions, we believe that glyco-
conjugates in cancer cell-derived exosomes function as 
identifiable markers in bioinformation transmission and 
may be changed by the hypoxic TME to enable better 
exosome recognition or cargo sorting. Additional infor-
mation about these possibilities is eagerly awaited.

The exosome membrane contains phosphatidylcholine 
(PC), phosphatidylserine (PS), phosphatidylethanola-
mine (PE), phosphatidylinositol (PI), phosphatidic acid 
(PA), cholesterol, ceramide, sphingomyelin, glycosphin-
golipids, and a number of lipids in lower abundance 
[56]. Some people have argued that PE and PS appear to 
participate in exosome biogenesis [56]. Neutral type II 
sphingomyelinase can hydrolyze sphingomyelin to pro-
duce ceramide [151], which directly promotes the bud-
ding of ILVs through its cone-like structure. In addition, 
ceramide can be metabolized to sphingosine 1-phosphate 
(S1P), which binds with inhibitory G protein (Gi)-cou-
pled S1P receptors to promote exosome biogenesis [152]. 
Ceramide levels are increased by hypoxia and thus medi-
ate various biological processes [153]. Whether hypoxia 
increases exosome release in this way is unknown. Deple-
tion of ABCG1, a cholesterol lipid efflux pump, triggers 
tumor regression with the accumulation of EVs and their 
derivatives and cargoes [154]. PS in MVs isolated from 
hypoxia-induced stem cells plays a critical role in uptake 
by human umbilical cord endothelial cells (HUVECs) 
[155]. Triglyceride accumulation in prostate cancer cells 
and EVs induced by hypoxia supports growth and inva-
siveness following reoxygenation [156]. Additionally, the 
role of lipids in processes related to cell communication, 
such as transport across the plasma membrane can-
not be ignored. According to recent research, distinct 

lipid compositions cause exosome uptake by homolo-
gous cancer cells [157]. Unfortunately, hypoxic effects on 
the function of exosomal lipids are not well established. 
However, some investigators have realized the impor-
tance of changes in exosome lipids induced by hypoxia 
[8, 158].

In summary, before loading, cargoes must be produced; 
subsequently, cargoes are marked, identified and trans-
ported along with the cytoskeleton to special intercellular 
sites, where many key molecules facilitate their internali-
zation into MVBs, and these cargoes ultimately reside in 
the exosomes released by MVBs. Although details of the 
hypoxic effects in various cancer cells differ or remain 
elusive, hypoxia influences the amount, kind and state 
of cargo, and through sorting mechanisms, hypoxia can 
affect cargo loading in cancer cells. Exploring the con-
crete mechanisms of exosomal cargo loading in hypoxic 
cancer cells will greatly facilitate the development of 
exosomes that can be used to target the hypoxic TME for 
better cancer treatment.

Extracellular transport, binding and uptake 
of exosomes under hypoxia
Here, exosome transport refers to the intermediate 
processes between release and uptake. Studies on exo-
some transport are relatively rare. Many researchers 
have reported that hypoxia can increase the number of 
exosomes and that most of these exosomes are transmit-
ted in the blood. No studies have explored whether the 
transport of exosomes released from cells under different 
oxygen concentrations differs. However, at least thus far, 
the idea that changes in exosome size affect transport, 
as mentioned above, is plausible, but the details remain 
largely unexplored. As an indirect but useful example, an 
acidic environment is most suitable for exosome exist-
ence and isolation [159]. This notion indicates that short-
distance exosome transport may benefit from a hypoxic 
and acidic microenvironment.

Hypoxia-derived exosomes exhibit higher uptake effi-
ciency [18, 157], and hypoxic tumor cells take up more 
exosomes [150]. The principles of uptake are shared 
by exosomes and other subpopulations of EVs, and EV 
uptake is analogous to well-characterized models of 
virus–cell interactions [27, 56].

When EVs are transported to target cells, molecules 
on the surface of exosomes interact with the membrane 
of target cells. In this way, changes on both the surface 
of cells and exosomes influence recognition. These mol-
ecules include tetraspanins (for example, CD9, CD63 
and CD81 [160]), CD44 [161], integrins [77], lipids, 
lectins (for example, CD171/Siglec-1 [162]), extracel-
lular matrix (ECM) components (for example, fibronec-
tin [163]), heparan sulfate proteoglycans (HSPGs; for 
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example, Glypican-1 [164]), and intercellular adhesion 
molecules (ICAMs; for example, CD54 [160]). Details 
are available in corresponding references or the review 
by Laura Ann Mulcahy or van Niel et  al. [27, 165]. The 
effects of hypoxia on tetraspanins and lipids are also dis-
cussed above. Hypoxia promotes recycling of the α6β4 
(but not the α3β1) integrin through control of microtu-
bule-dependent trafficking of RAB11-containing vesicles, 
which are considered EVs in MDA-MB-231 breast can-
cer cells [166], and exosomal integrin α6β4 is associated 
with lung metastasis through absorption by responding 
cells [77], which implies that hypoxia may influence the 
binding between exosomes and recipient cells by target-
ing integrin α6β4. In addition, integrins facilitate CD44 
[161], ICAM [160], ECM [163] and tetraspanin [160] 
participation in the interactions between exosomes and 
target cells, and all these interactions are tightly associ-
ated with hypoxia (see the details in the following refer-
ences: ICAM-1[167, 168], ECM [169], CD44 [170, 171], 
and tetraspanins [172]). HSPGs present in EVs and at 
the plasma membrane contribute to the docking and/or 
attachment of vesicles to recipient cancer cells [164]. A 
recent study showed that hypoxic glioma cells take up 
more exosome-like EVs in an HSPG-dependent manner 
than normoxic glioma cells [150]. Coincidentally, hypoxia 
can transcriptionally deregulate endosulfatase 1 [173], 
which removes sulfate moieties at the 6-O positions of 
glucosamine [174]; this finding is consistent with the 
trend of more exosomes being absorbed by cancer cells 
under hypoxia. An excellent recently published example 
showed that hypoxia- and low-pH-stimulated exosomes 
exhibited higher uptake efficiency [157]. Further experi-
ments proved that low pH changes the lipid composition 
in the exosome membrane to enhance exosome uptake 
by homologous tumor cells [157]. Regretfully, although 
hypoxia also causes similar effects, it has not been fur-
ther researched. Therefore, whether hypoxia directly 
functions at low pH by changing the exosome mem-
brane composition or whether hypoxia indirectly forms 
an acidic microenvironment to enhance exosome uptake 
remains unclear.

After exosomes or EVs are recognized and bound to 
recipient cells, they may be internalized by different types 
of clathrin-independent endocytosis, including macropi-
nocytosis, phagocytosis and endocytosis via caveolae and 
lipid rafts, or clathrin-dependent endocytosis (Fig. 1) [27, 
56, 165, 175]. Exosome uptake is energy-dependent [175–
177], and hypoxia indicates that cells undergo energy 
reprogramming. Dynamin2 is a GTPase required for 
clathrin-mediated endocytosis [165] whose promoter has 
HIF-binding sites that are reduced in epithelial ovarian 
cancer cells under hypoxia by HIF-1α and can recipro-
cally regulate HIF-1α via an iron-dependent mechanism 

[178]. The endocytic adaptor Eps15 also affects clathrin-
mediated endocytosis [165], and PHD3 controls EGFR 
internalization by affecting the recruitment of Eps15 
and epsin1 to EGFR [179]; whether exosomes take part 
in these processes is unknown. Caveolin-1 is important 
for caveolin-dependent endocytosis. Two respective 
reports showed that caveolin-1 is elevated to enhance 
the malignant characteristics of different tumor cells 
under hypoxic conditions [180, 181]. Compared to nor-
moxic conditions, hypoxic conditions reduced macro-
pinocytosis by ~ 50% in AT1 cells, whereas this process 
was largely O2-independent in Walker-256 cells [182]. 
The researchers also reported that extracellular acidosis, 
which is tightly associated with hypoxia, exerts cell line-
specific influences on macropinocytosis, clathrin-medi-
ated endocytosis and cholesterol-dependent endocytosis 
[182]. EV uptake through phagocytosis is associated with 
PI3Ks [165], and it has been reported by many differ-
ent researchers that hypoxia regulates pathways involv-
ing PI3Ks in various physiological processes [183–185]. 
Phosphatidylserine, which was discussed above, is also 
involved in both phagocytic and macropinocytic uptake 
of EVs [165], but we know little about its interaction 
with hypoxia in exosome uptake. Hypoxia also increases 
exosome uptake by lipid raft-dependent endocytosis 
[150]. Interestingly, exosomes can specifically bind to 
and remain at the plasma membrane of follicular den-
dritic cells, providing MHC class II molecules [186]. 
Two recent studies showed that EV content release also 
depends on energy, acidic pH and proteins present on the 
surface of both EVs and PM-derived membranes [176, 
177]. Whether this exosomal behavior is similar in cancer 
cells and whether hypoxia participates in this behavior 
remain unknown.

Exosome‑mediated biofunctions in cancer 
under hypoxia
Hanahan and Weinberg, well-known leaders in cancer 
research, summarized the acquired capabilities of can-
cer cells [73, 187], and with the advancement of cancer 
research, other hallmarks and oncological factors (the 
microbiota, obesity and autophagy) have been found [72, 
74, 75, 188, 189]. Exosomes from cancer cells or cancer-
related cells can mediate many biofunctions, and hypoxia 
strengthens these biofunctions (Fig. 2). Here, we provide 
minimal representative but not exhaustive examples of 
some aspects.

Proliferation, apoptosis and growth suppression
Self-sufficient growth signals, downregulated antigrowth 
factors and decreased apoptosis cause cells to propa-
gate rapidly. Tumor proliferation is usually promoted 
by HypoExo cargoes, such as exosomal lncRNA UCA1 
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from hypoxic bladder cancer cells [191] and exosomal 
miR-410-3p from hypoxic CRC cells [192], and apopto-
sis of tumor cells is usually inhibited by exosomes under 
hypoxia. For example, hypoxia-induced apoptosis can 
be inhibited by exosomal lncRNA CCAT2 released from 
glioma cells via increased expression of the antiapoptotic 
regulator Bcl-2 and downregulation of the proapoptotic 

factor Bax in recipient cells [193]. However, considering 
the antiproliferative effects of growth-suppressing fac-
tors, it is reasonable to speculate that exosomes released 
from hypoxic cancer cells do not transmit these adverse 
factors to their neighboring cells. Regardless, cancer cells 
can secrete exosomal TGF-b, a well-known anti-growth 
factor, to achieve immunosuppression under hypoxia 

Fig. 1  A schematic representation for the biological process of exosomes and key steps affected by hypoxia. ①Hypoxia affects cargo synthesis 
at translation level. ②Hypoxia influence exosome release and cargo-sorting by cargo-loading key tools (such as YBX1 and hnRNPA1). ③Hypoxia 
blocks MVBs degradation to increase exosome release (such as downregulating Rab7). ④Hypoxia causes overexpression of key molecules involving 
in MVBs transport towards plasma membrane to increase exosome release (such as Rab27). ⑤Hypoxia may increase exosome release by promoting 
the fusion between MVBs and plasma membrane (such as SNARE protein). ⑥Intercellular transport includes long-distance transport to distant 
recipient cells by circulation system (left) short-distance transport in local TME (right). Smaller exosome size induced by hypoxia seems to facilitate 
circulation transport, but it is not been proved. Acidic microenvironment, a result of hypoxia, may be beneficial to transport under local acidic 
microenvironment. ⑦Hypoxia and low-pH can increase exosome uptake efficiency. It has been proved that membrane composition changed by 
low-pH influence exosome uptake by homologous cells, but it was not explored under hypoxia. It remains unknown that which of exosome uptake 
methods is more obviously changed by hypoxia
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[194], which may be related to exosome-specific uptake. 
In addition, the growth-suppressing factors TGF-β and 
liver kinase B1 (LKB1) in cancer cells can increase exo-
some release to promote the proliferation and migration 
of target cells [195, 196], although the effects of hypoxia 
on this process are unknown. These results highlight the 
complexities in regulating the network of pro- and anti-
growth in tumors and exosomes under hypoxia, which 
tends to induce protumor conditions.

Immortal replication
Limitless replicative potential provides an endless 
source for cancer cell proliferation and is tightly 

associated with telomeres and senescence [73, 187]. 
Telomeric repeat-containing RNA (TERRA) can pro-
tect short telomeres to maintain cell mitosis [197], 
and TERRA exists in exosomes released from a 
human lymphoblastoid cell line and has a proinflam-
matory function [198]. Another study more focused 
on HypoExos and immortal replication showed 
that CRC-derived exosomal miR-1255b-5p can tar-
get human telomerase reverse transcriptase to sup-
press tumors and that hypoxia decreases exosomal 
miR-1255b-5p [199]. However, it is too early to draw 
a conclusion about the role of exosomes in immor-
tal replication under hypoxia, and more studies are 
needed.

Fig. 2  The heterogeneities of exosomes and their biofunction in the hypoxic TME. Different colors for cells represent different kinds and status 
(such as hypoxia) of cells in tumour microenvironment, indicating tumour heterogeneities. Different colors for exosomes represent heterogeneities 
in exosomal cargoes and cellular origins. Similar colors between cells and exosomes represent heterogeneities in exosomal origin. Different 
diameters represent heterogeneities in exosomal size. The outer circle of the picture represents the hallmarks of cancer. Red arrowhead represents 
that hypoxic tumour-derived exosomes influence corresponding cancer hallmarks and these arrowheads indicate heterogeneities in biofunctions 
medicated by exosomes. Blue dotted line represents it is too early to draw a conclusion that corresponding hallmarks are affected by hypoxic 
tumour-derived exosomes [190]
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Angiogenesis, invasion and metastasis
Angiogenesis is a process that addresses nutrient and 
oxygen needs and the requirement of evacuating meta-
bolic wastes and carbon dioxide [73], while invasion and 
metastasis are the main causes of cancer-related death 
[76].

Important studies have proven that hypoxia induces 
angiogenesis, and they are summarized in some reviews 
[200]. Recently, an increasing number of studies have 
assessed the role of exosomes in hypoxia-induced tumor 
angiogenesis. For example, HypoExos derived from 
highly malignant glioblastoma multiforme cells induce 
angiogenesis by stimulating cytokine and growth factor 
secretion by endothelial cells, thereby promoting peri-
cyte migration [57]; HypoExo exosomal lncRNA UCA1 
in pancreatic cancer promotes angiogenesis via the miR-
96-5p/AMOTL2/ERK1/2 axis [67]; HypoExo miR-23a 
increases angiogenesis by targeting prolyl hydroxylase in 
lung cancer [201]. There are many additional examples. 
Considering the clinical applications of antiangiogenic 
therapy, targeting these proangiogenic exosomes may 
provide a new avenue for solid tumor treatment.

The function of HypoExos in promoting invasion and 
metastasis is definite, as proven in studies of HypoExos 
from RCR [116, 192], bladder cancer [191], gastric can-
cer [21], esophageal squamous cell carcinoma [202] and 
lung cancer [105]. However, tumor metastasis is a mul-
tistep process known as the invasion−metastasis cas-
cade [76, 203]. Thus, we should further explore the role 
of exosomes from hypoxic tumors in each step from in 
primary tumor cell development to metastasis forma-
tion. For example, exosomal miR-193a-3p, miR-210-3p 
and miR-5100 from hypoxic BMSCs activate STAT3 
signaling-induced EMT [65], which may increase cancer 
cell motility, invasiveness, and ability to degrade extracel-
lular matrix (ECM) [76]; hypoxic lung cancer-secreted 
exosomal miR-23a increases vascular permeability by 
inhibiting tight junction protein ZO-1 [201], which may 
facilitate the transendothelial migration of tumor cells. 
HypoExos form PMNs at distant metastatic sites [81, 82], 
which is convenient for CTC immigration. The roles of 
HypoExos in other metastasis steps, such as the effects 
of HypoExos on tumor cells entering and exiting dor-
mancy, the communication between CTCs or circulat-
ing tumor cell clusters and other circulating components 
(monocytes, NK cells, neutrophils and platelets) and the 
signaling network promoting the initiation of metastatic 
colonization and metastatic evolution, remain unex-
plored. More studies are expected to inform these ideas.

Immune response
Since the success of checkpoint blockade (such as agents 
targeting PD-1 or PD- L1), immunotherapy has become a 

well-established treatment modality for cancer. Reversing 
immune suppression and promoting immune activity are 
two major strategies of immunotherapy, while signaling 
pathways and metabolic reprogramming are two major 
regulators of the immune response mainly induced by 
immune-related ligand−receptor binding. Here, we first 
focus on signaling pathways and take PD-1/PD-L1 as an 
example for ligands and receptors. Regarding signaling 
suppression, the surface expression of ligands or recep-
tors is the first immune response regulator, and Hypo-
Exos can change their expression. HypoExo miR-21 from 
oral squamous cell carcinoma (OSCC) increases the 
PD-L1 expression of MDSCs, thus decreasing the antitu-
mor ability of γδ T cells [204]; lung cancer-derived EVs 
from intermittent hypoxia increase the PD-L1 expression 
of macrophages, thus aggravating the immunosuppres-
sive status in macrophages [205]. Exosomal circ-0001068 
can induce PD-1 expression in T cells [206], but whether 
HypoExos have similar functions is unknown. In addi-
tion, exosome cargoes may be immune ligands. For 
example, PD-L1 carried by exosomes can directly inter-
act with T cells to suppress antitumor ability, which has 
been proven with exosomes from melanoma [207], breast 
cancer [208], prostate cancer [209], head and neck cancer 
[210], pancreatic cancer [211] and gastric cancer [212]. 
Therefore, exploration of the effects of effects of hypoxia 
on loading of PD-L1 onto exosomes is needed. Moreover, 
hypoxic tumor exosomes may directly influence factors 
downstream of ligand−receptor pathways in a way that 
enables them to bypass the ligands or receptors to cause 
an immune response.

Metabolism reprogramming
Cancer cells undergo metabolic reprogramming even 
under normoxia (for example, the Warburg effect [148]), 
and cell metabolism under hypoxia also changes into 
something barely recognizable. Metabolism has great 
impacts on cancer biology, so it is essential to explore 
the role of exosomes in metabolism in the hypoxic 
TME. As mentioned above, the effects of hypoxia and 
exosomes interact. PKM2, a glycolytic pyruvate kinase 
isoenzyme increased by hypoxia [44], can increase exo-
some secretion [45], which is an example of metabolic 
reprogramming under hypoxia that affects the biogenesis 
of exosomes, and hypoxia results in metabolite changes 
that may influence the loading of cargoes into exosomes. 
In the next section, we will focus on exosomal impacts 
on metabolism in a hypoxic TME. The composition of 
exosomes can reflect the hypoxic status of tumor cells 
[57], and this can be used for tracking metabolic repro-
gramming [48]. Moreover, both normoxic exosomes 
and HypoExos can reprogram the metabolism of recep-
tor cells, including infiltrating immune cells. Exosomes 
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from normoxic CAFs can inhibit mitochondrial oxida-
tive phosphorylation, thereby increasing glycolysis and 
glutamine-dependent reductive carboxylation in can-
cer cells, which is similar to hypoxia-induced metabolic 
alterations [213], and exosomes from tumor cells can 
activate hepatic stellate cells to secrete IL-6, which then 
regulates the lactate metabolism of hypoxic tumor cells 
[214]. HypoExos from tumor cells can enhance oxidative 
phosphorylation in infiltrating monocytes−macrophages 
via transfer of let-7a miRNA, resulting in suppression 
of the insulin-Akt-mTOR signaling pathway [215], and 
HypoExos (for example, HypoExo circZNF91 from pan-
creatic cancer cells [216] and HypoExo PKM2 from 
NSCLC [217]) can promote glycolysis in receptor cells, 
resulting in treatment resistance. Exosomes may supply 
nutrients for hypoxic tumor cells. Zhao et al. conducted 
an intraexosomal metabolomics study and concluded 
that CAF-derived exosomes may provide various metab-
olites, including amino acids, lipids, and TCA cycle inter-
mediates, that are avidly utilized by cancer cells under 
nutrient deprivation or nutrient stress conditions [213]. 
In addition to affecting nutrient supply, these exosomal 
metabolites have great possibilities to influence target 
cells, especially immune cells. The hypoxia–lactate axis is 
an important regulator of tumor immunity [218]. There-
fore, it is possible that absorption of exosomal lactate can 
greatly assault tumor immune cells; unfortunately, this 
idea remains to be confirmed.

Therapeutic resistance
Similar to infectious diseases, cancers often become 
resistant to various therapies, from traditional chemo-
therapy and radiotherapy to targeted therapy and immu-
notherapy. Even more discouraging is the fact that 
therapeutic resistance also occurs with drug combina-
tions. With the goal of utilizing them for better tumor 
treatment, the mechanisms underlying therapeutic resist-
ance have received constant attention. Dysfunctional 
neovasculature creates a hypoxic TME and decreases the 
effective exposure of a tumor to drugs, linking hypoxia 
to therapeutic resistance. Moreover, exposure to hypoxia 
results in metabolic reprogramming, which also makes 
tumor cells resistant to various therapies. Many previous 
studies have proven that exosomes can transmit thera-
peutic resistance from insensitive tumor cells to sensitive 
cells, culminating in a more malignant tumor or reoc-
currence. Thus, the study of exosomes in the hypoxic 
TME is needed. The aforementioned metabolic repro-
gramming induced by HypoExos after uptake and neu-
tralization of drugs by metabolites in HypoExos are the 
main causes of treatment resistance [216, 217]. Another 
possibility is that HypoExos influence drug resistance 
through drug efflux or drug sequestration. miR-155 

can be used as an example. miR-155 is overexpressed 
in HypoExos from glioma [219] and hepatocellular car-
cinoma [19] and hypoxic TAMs [220] and is associated 
with cisplatin resistance [221]. miR-155 inhibitor-laden 
exosomes can reverse cisplatin resistance by suppressing 
drug efflux transporter protein expression in cisplatin-
resistant OSCC [221], but whether HypoExo miR-155 
can induce drug resistance by upregulating drug efflux is 
unknown. Single pathways are also utilized by HypoExos 
to promote drug resistance. For example, HypoExo miR-
301a can inhibit TCEAL7 and relieve the suppression 
of the Wnt/β-catenin pathway, causing radiation resist-
ance [222]. The anti-apoptotic pathway is another exam-
ple. HypoExo miR-21 from NSCLC can downregulate 
PTEN, an important tumor suppressor related to apop-
tosis, to induce cisplatin resistance [223]. There may be 
additional mechanisms underlying resistance to targeted 
therapy and immunotherapy. First, we discussed the role 
of HypoExos in immune checkpoint blockade by using 
PD-1/PD-L1 as an example. Moreover, exosomes, such 
as Her-2+ exosomes [224], can function as competitors 
with tumor cells, decreasing the targeting ability of anti-
body-based drugs, and this idea is worth exploring under 
hypoxic TME conditions.

Exosomes in cell‑to‑cell communications 
in THE hypoxic TME
Hypoxia, along with other selective pressures, promotes 
the convergent evolution and diversification of both 
malignant and nonmalignant cell compartments, includ-
ing cancer-associated fibroblasts (CAFs), tumor-infiltrat-
ing lymphocytes (TILs), tumor-associated macrophages 
(TAMs) and dendritic cells (DCs), of the TME, resulting 
in spatiotemporal evolution of intratumoral heterogene-
ity (ITH) [225]. For example, in hypoxia, the fact that oxy-
gen supply in the tumor decreases with the distance from 
the disordered neovasculature reflects spatial ITH, and 
the fact that a hypoxic zone arises with tumor progres-
sion reflects temporal ITH. Because of the paramount 
impacts of ITH on tumor progression and response to 
treatment, investigating the communication between the 
compartments of the TME, monitoring dynamic ITH 
and targeting ITH are important. In the next section, the 
roles of exosomes in the communication between the 
compartments in the hypoxic TME are discussed.

Exosomes link malignant and nonmalignant compart-
ments of the TME not only under normoxia but also 
under hypoxia. Exosomes from hypoxic CAFs can pro-
mote breast cancer cell stemness through circHIF1A 
[226], and exosomes from hypoxic NSCLC cells can 
reprogram CAFs to form an acidic microenvironment 
causing NSCLC cell proliferation and cisplatin resist-
ance [217]; exosomes from hypoxic TAMs can promote 
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chemoresistance in ovarian cancer cells through the 
miR-223/PTEN-PI3K/AKT pathway [227]. In addition, 
exosomes from different tumor cells under hypoxia [215, 
228, 229] can promote TAM M2 polarization through 
different miRNAs, and exosomes from hypoxic CRC 
tumor cells can educate distant Kupffer cells (mac-
rophages) to form PMNs for liver-tropic metastasis [81]. 
Exosomes from hypoxic granulocytic MDSCs can pro-
mote the stemness of CRC cells through S100A9 [15], 
and exosomes from hypoxic glioma cells can induce 
stronger MDSC expansion and activation through the 
miRNA-10a/Rora, miRNA-21/PTEN, miRNA-29a/Hbp1 
and miRNA-92a/Prkar1a pathways [230, 231]. Cargoes 
in DC-derived exosomes are changed by hypoxia [232], 
but the interaction between DCs and tumor cells in the 
hypoxic TME remains largely unexplored and needs 
more attention. Interestingly, exosomes from hypoxic 
NK cells have stronger instead of decreased antitumor 
ability [233], and MVs (not exosomes) from tumor cells 
can weaken the antitumor effects of NK cells through 
TGF-β and miR23a [234]. However, more details need 
to be elucidated. Exosomes from hypoxic breast cancer 
cells suppress T cell proliferation via TGF-β [194] while 
studies about the impacts of exosomes from hypoxic lym-
phocytes on tumor cells are lacking at present. The above 
studies highlight the interactions of tumor cells and non-
cancerous cell compartments in the hypoxic TME, but 
more studies are needed to produce evidence-based sup-
port. In addition, studies have proven that noncancerous 
cell compartments can affect other compartments during 
tumor progression (for example, exosomes from hypoxic 
DCs [235] or TAMs [236] can affect other immune cells), 
but studies of this phenomenon under hypoxic circum-
stances are rare and are warranted.

Clinical application
Precision oncology and liquid biopsy applications have 
advanced with the development of precision medicine. 
Traditional tissue biopsy samples taken from a single or 
few spatial areas may be limited and unable to reflect 
the tumor state of the whole body. Liquid biopsy strat-
egies that assess factors including circulating tumor 
DNA (ctDNA) [237, 238], EVs or exosomes [239], circu-
lating tumor cells (CTCs) [238] and other biochemical 
substances seem to have the ability to overcome these 
disadvantages. Exosomes are unique among these bio-
chemical factors because exosomes contain not only 
DNAs but also various proteins, RNAs, glycoconjugates 
and lipids, showing more potential clinical utility, and 
are more accessible due to being detectable in almost 
all bodily fluids, which makes them ideal biomarkers 
for monitoring dynamic ITH to provide useful clini-
cal information for diagnosis and prognosis prediction; 

such characteristics allow dynamic adjustment of treat-
ment for a better outcome and minimize toxicity and side 
effects. For example, imaging techniques can only detect 
cancer when it is morphologically visible, and by that 
time, the cancer is relatively advanced and may even have 
metastasized. Circulating exosomes are useful for early 
diagnosis, allowing timely clinical intervention. Moni-
toring dynamic ITH with exosomes may help to address 
possible adverse events promptly. Taking advantage of 
accessible circulating exosomes may avoid unexpected 
complications induced by contrast medium or inva-
sive tissue biopsy. Using exosomes to predict treatment 
response avoids harm caused by the drugs in patients 
with drug insensitivity. This field is experiencing excit-
ing developments. Many clinical trials of exosomes as a 
tool for diagnosis or prognosis assessment are being con-
ducted (Table 1). Exosome biomarkers related to hypoxia 
reflecting not only the hypoxic status of tumors but also 
tumor aggression and prognosis are also appealing. For 
example, hypoxia-regulated mRNAs and proteins (such 
as MMPs, IL-8, PDGFs, caveolin 1, and lysyl oxidase) are 
enriched in hypoxic glioma cells, and patients with high 
levels of some of these markers tend to have worse sur-
vival [57]. Another study focusing on miRNAs suggested 
that low levels of exosomal miR-486-5p and miR-181a-5p 
and high levels of exosomal miR-30d-5p in plasma are 
related to hypoxia and high-risk rectal cancer [64]. All of 
the above are potential HypoExo biomarkers. However, 
HypoExo biomarkers in cancer cells lack validation in 
large-scale clinical trials.

Strategies to target and remove circulating oncogenic 
biohazards have been explored, and the same thera-
pies have also been applied to target specific exoso-
mal biomarkers [240]. A recent study took advantage 
of mesoporous silica nanoparticles (MSNs) with EGFR-
targeting aptamers; these nanoparticles interacted with 
circulating cancer-derived EGFR+ exosomes and elimi-
nated these exosomes, causing their entry into the small 
intestine, which reduced the formation of metastasis 
[241]. HypoExo biomarkers may provide more target 
sites. Studies in these fields remain deficient, but more 
are anticipated in the future. Another clinical applica-
tion of exosomes is to take advantage of their natural 
antitumor properties. Exosomes from immune cells, 
even tumor cells, have antitumor abilities (for more 
details, please see the review by Moller and Lobb) [13]. 
Thus, how to exploit or target hypoxia to increase anti-
tumor cargoes in exosomes is worth exploring. For 
example, exosomes from hypoxic NK cells have a strong 
antitumor ability [233]. Additional studies on this topic 
are needed to establish the feasibility of the in-human 
use and large-scale production of antitumor exosomes. 
In addition to the use of exosomes from cells, artificial 



Page 15 of 22He et al. Molecular Cancer           (2022) 21:19 	

engineering, such as electroporation, reagent transfec-
tion, sonication, freeze–thaw cycles or saponin methods, 
is another method of loading functional cargoes or drugs 
into exosomes [13]. Hypoxia may affect the efficiency of 
therapy by influencing the suitability of exosomal cargoes 
as scaffolds for fusing functional molecules and other 
agents. Moreover, exosomes in the hypoxic TME show 
specific uptake, which may provide an avenue for specific 
targeting of malignant cells. Other problems include how 
to load drugs into exosomes rapidly and effectively, how 
to enhance the stability of exosomes to ensure a longer 
half-life and how to improve specific targeting. Reports 
on these research topics are promising. Lathwa et  al. 
extended the lifetime of exosomes to 12 h, compared with 
3 h for natural exosomes, by applying biocompatible pho-
tomediated atom transfer radical polymerization (ATRP) 
[242]. Xiaojuan Zhang developed a new special and effec-
tive functional protein- and ribonucleoprotein-loading 
strategy by designing EVs that coencapsulate vesicular 
stomatitis virus G protein (VSV-G) with bioactive macro-
molecules via split GFP complementation [243].

Conclusions and future
With tumor expansion, hypoxia occurs. To survive in 
such a microenvironment, tumor cells take various 
actions and release exosomes to transmit signals to other 
cells to trigger cancer-promoting effects (such as sig-
nals to induce angiogenesis) or defensive effects (such 
as signals to induce invasion and metastasis). Given the 
incomplete understanding of hypoxia and exosomes, 
a perfect framework for understanding exosomes in 
hypoxia cannot be established. However, we still con-
clude the following:

1.	 Hypoxia often, though not always, increases the 
secretion of exosomes in various tumor cells through 
direct (cargo sorting, transport of MVBs and fusion 
with the plasma membrane) and indirect (metabolic 
reprogramming, induction of an acidic microenvi-
ronment, and effects on calcium and other regulatory 
molecules) methods, but a more detailed mechanism 
is needed.

2.	 Hypoxia impacts exosome heterogeneity in terms of 
size, cargo and cellular origin to change biofunctions.

3.	 Exosome size alterations may reflect and contribute 
to ITH evolution, but it is too early to draw a valid 
conclusion due to the lack of evidence regarding how 
hypoxia affects exosome size.

4.	 Exosome cargoes are different in hypoxic and nor-
moxic TMEs. Hypoxia may influence the biosyn-
thesis, metabolic degradation and postsynthesis 
modification of cargoes and the efficiency of special 
cargo-sorting mechanisms.

5.	 The hypoxic microenvironment may facilitate exo-
some transport due to exosomal acidophily. Moreo-
ver, hypoxia may also influence exosome target cell 
recognition and exosome internalization by chang-
ing recognition molecules and various internalization 
pathways via auxiliary or indirect methods, such as 
affecting energy supply and inducing low pH.

6.	 Exosomes in the hypoxic TME usually play a pro-
tumor role and sometimes have antitumor abilities. 
Signaling pathway mediation and metabolic repro-
gramming of receptor cells are two major regulatory 
methods used by exosomes to play biological func-
tions in the hypoxic TME. Competitive interaction 
with drugs is another nonnegligible role of exosomes 
in therapeutic resistance.

7.	 Hypoxia is one of the main causes of ITH evolution, 
and exosomes in the TME can be used to investi-
gate the communication between the compartments 
of the TME, monitor dynamic ITH and target ITH. 
Moreover, exosomes are a universal communication 
mechanism used between malignant−malignant 
compartment, malignant−nonmalignant compart-
ment, and nonmalignant−nonmalignant compart-
ment interactions in the hypoxic TME.

8.	 Exosomes are ideal biomarkers for monitoring 
dynamic ITH to provide useful clinical information 
for diagnosis and prognostication, allowing treat-
ment alteration for a better outcome and minimizing 
toxicity and side effects. In addition, removing and 
targeting protumor exosomes, utilizing antitumor 
exosomes and using exosomes engineered to carry 
specific cargoes or drugs for cancer therapy are other 
potential clinical applications. Integrating these strat-
egies with strategies related to hypoxia may provide 
new avenues for cancer treatment, for example, strat-
egies to specifically target malignant cells.

The future of this field is worthy of discussion. First, 
rapid, reliable and inexpensive exosome isolation tech-
niques that do not induce contamination are urgently 
needed. Fortunately, some advances have been made. 
In addition to the polyethylene glycol (PEG)-based 
precipitation, phosphatidylserine affinity capture, 
size-exclusion chromatography and membrane affin-
ity processes, and asymmetric flow field-flow frac-
tionation methods in existence, Chen et  al. developed 
the EXODUS method, a new ultrafiltration strategy 
that achieves clog-free and ultrafast purification of 
exosomes with improved speed, yield and purity [244]. 
However, as methods evolve, new problems occur. For 
example, analysis of exosomes captured by an advanced 
method showed that argonaute1–4, glycolytic enzymes 
and cytoskeletal proteins were not detected in the 
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exosomes [103], which contradicts previous studies. 
Whether the previous results were affected by imper-
fect isolation techniques or whether the inconsistent 
observations reflect exosome heterogeneity due to dif-
ferent cell origins and states remains unclear. Although 
there are no doubts about exosomes containing miR-
NAs, studies have shown that there is far less than 
one molecule of a given miRNA per exosome [245], 
increasing the ambiguity surrounding exosomes and 
indicating that explorations of exosome heterogene-
ity at the single-vesicle level are needed. Fortunately, 
some single-vesicle protocols, including single-vesicle 
tracking, will likely make these types of studies possi-
ble in the future (details in ref. [246]). Second, track-
ing exosomes in  vitro and in  vivo can provide us with 
more knowledge. Although different tracking methods 
have been explored, including intravital imaging with 
the help of anesthesia [247], magnetic particle imag-
ing (MPI) tracking of superparamagnetic iron oxide 
(SPIO) labels [18], tracking of fluorescence with a pH-
sensitive dye (pH-sensitive tetraspanin TSPAN [248], 
CD63-pHluorin [249] or mutant CD63-pHluorin [250]) 
and 3D tracking [251], they are not sufficiently mature 
for use in massive and broad applications in vivo. Sin-
gle parent cell-single exosome or EV-single target cell 
tracking is the ideal method, and we promising studies 
are awaited. Currently, the development of strategies 
using exosomes to reflect malignant and nonmalignant 
cell compartments is lagging behind the development 
of ITH. In recent years, single-cell sequencing has led 
to substantial developments in ITH, and single-cell 
atlases have revealed distinctions between cancer cell 
subpopulations, creating challenges and opportunities. 
For instance, analysis of single-cell RNA has revealed 
intrinsic subpopulations underlying prostate tumor 
subtypes (16 clusters for epithelial cells, 7 clusters for 
monocytic cells and 7 clusters for T cells), and some of 
these cell subpopulations were found to be important 
[252]. Single-cell RNA sequencing of lung cancer cells 
collected at different times, including before initiation 
of systemic targeted therapy (TKI naive [TN]), at the 
occurrence of residual disease (RD) and at the occur-
rence of drug resistance, revealed treatment-induced 
transformation of the primordial tumor cell state [253], 
but single-cell RNA sequencing integrated with spatial 
transcriptomics analysis revealed that different tumor 
cell subpopulations have spatially restricted enrich-
ments as well as distinct coenrichments with other cell 
types [254]. Therefore, we must consider how differ-
ent cell subpopulations communicate and coordinate 
with each other. The roles and changes of exosomes 
from different subpopulations are more complex in 
these networks at different times and in different 

spaces, which may contribute to the reconstruction of 
a precise TME architecture. In addition to these excit-
ing challenges, single-cell sequencing also provides a 
new analysis strategy. For example, Chen et  al. found 
enrichment of exosome-associated genes and a general 
lack of upregulation of androgen receptor (AR) signa-
ture genes, suggesting that accumulation of KLK3 lev-
els in prostate cancer CD8+ T cells was mediated by 
tumor-derived EVs. Further experiments confirmed 
this finding [252]. In addition, we can also use power-
ful single-cell sequences to explore the role of hypoxia 
in tumors [255]. For example, through single-cell analy-
sis, researchers have found that colon cancer TAMs 
and some prostate cancer epithelial cells have hypoxic 
signatures [252, 256]. In the future, with development 
of single-cell transcriptomics and spatial transcriptom-
ics strategies, the challenges will increase, as will the 
opportunities.
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