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a b s t r a c t

Platelets play a vital role in cancer and immunity. However, few comprehensive studies have been con-
ducted on the role of platelet-related signaling pathways in various cancers and their responses to immune 
checkpoint blockade (ICB) therapy. In the present study, we focused on the glycoprotein VI-mediated 
platelet activation (GMPA) signaling pathway and comprehensively evaluated its roles in 19 types of cancers 
listed in The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Cox regression and 
meta-analyses showed that for all 19 types of cancers, patients with high GMPA scores tended to have a 
good prognosis. Furthermore, the GMPA signature score could serve as an independent prognostic factor for 
patients with skin cutaneous melanoma (SKCM). The GMPA signature was linked to tumor immunity in all 
19 types of cancers, and was correlated with SKCM tumor histology. Compared to other signature scores, the 
GMPA signature scores for on-treatment samples were more robust predictors of the response to anti-PD-1 
blockade in metastatic melanoma. Moreover, the GMPA signature scores were significantly negatively 
correlated with EMMPRIN (CD147) and positively correlated with CD40LG expression at the transcriptomic 
level in most cancer patient samples from the TCGA cohort and on-treatment samples from anti-PD1 
therapy cohorts. The results of this study provide an important theoretical basis for the use of GMPA sig-
natures, as well as GPVI-EMMPRIN and GPVI-CD40LG pathways, to predict the responses of cancer patients 
to various types of ICB therapy.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Platelets, a nucleated cells derived from megakaryocytes, reg-
ulate immunity and tumor metastasis [1,2]. Platelet–tumor cell in-
teractions are critical for metastatic dissemination during tumor 
progression [3]. However, platelet activation is not always harmful in 
cancer. Platelet-derived growth factor subunit B is formed during 
platelet activation; it helps maintain vascular barriers in tumors and 
inhibits tumor cell proliferation [4]. Platelet-derived microparticles 
infiltrate solid tumors and transfer platelet-derived miRNAs to the 
cells in solid tumors in vivo. In this manner, they downregulate 

tumor cell genes and inhibit solid tumor growth[5]. Platelets contain 
abundant soluble and cell-related immunoregulatory molecules that 
may promote or inhibit the immune response in different environ-
ments [6]. Platelets may also promote innate immunity by inter-
acting with Triggering Receptor Expressed On Myeloid Cells 
1(TREM1) receptors expressed in the bone marrow [7].

Glycoprotein VI (GPVI), a major platelet-activating collagen re-
ceptor, is crucial for mediating collagen-induced platelet activation 
and potentiating other platelet activation pathways [8]. Upon 
binding of a GPVI dimer with collagen, the affinity between the 
aggregated GPVI and collagen is increased and the proximity of 
GPVI-related signal molecules is enhanced. The cytoplasmic tail of 
GPVI connects with the Fc receptor of immune cells through a salt 
bridge γ chain (FCR γ). The ITAM motif in the FCR γ chain is exposed 
and phosphorylated by the Src kinases Lyn and Fyn. In turn, phos-
phorylated ITAM recruits and activates Syk, which assembles a 
signal complex composed of LAT and slp76 downstream. This com-
plex eventually leads to effective platelet activation and diffusion [9]. 
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Nevertheless, little is known regarding the roles of the GPVI-medi-
ated platelet activation (GMPA) signaling pathway in pan-cancer 
immunity. In the present study, we performed a pan-cancer ex-
pression analysis of the GMPA signaling pathway in 19 types of 
cancers and explored the role of GMPA in immunotherapy across 
multiple cancer types, especially melanoma.

2. Methods

2.1. Patient characteristics

Normalized mRNA expression levels and clinical data of 19 types 
of cancers were downloaded from the Pan-Cancer Atlas 
(PanCanAtlas) (https://gdc.cancer.gov/about-data/publications/pan-
canatlas). Eight published datasets with RNA-Seq data for metastatic 
urothelial cancer, metastatic melanoma, renal cell carcinoma and 
gastric cancer were also collected. All of these cancers had been 
subjected to immune checkpoint blockade (ICB) therapy. The data-
sets from Lee et al., MGH, Abril-Rodriguez et al., and Gide et al.
[10–13]. included both pre-treatment and on-treatment samples. 
The datasets from Kim et al., IMvigor210, MGSP, and Ascierto et al. 
included only pre-treatment samples[14–17]. Clinical responses to 
treatment were obtained for all eight cohorts based on the Response 
Evaluation Criteria in Solid Tumors (RECIST; https://recist.eortc.org). 
Details of the responses of the patients to the treatment are pre-
sented in Table S1.

2.2. GMPA signaling pathway score

A GMPA signaling pathway-related set of 35 genes was collected 
based on Reactome (R-HSA-114604) (https://reactome.org/ 
PathwayBrowser/#/R-HSA-114604). The genes are listed in Table S2. 
The GMPA signaling pathway scores across all samples from The 
Cancer Genome Atlas (TCGA) and the ICB cohorts were calculated by 
the single-sample gene set enrichment analysis (ssGSEA) algorithm 
in the Gene Set Variation Analysis (GSVA) package in R (R Core Team, 
Vienna, Austria) [18]. For showing the relative expression levels of 
the 35 genes, normalized data + 1 were log2-transformed.

2.3. Histological examination of skin cutaneous melanoma (SKCM) 
samples.

Histological data were obtained for the skin cutaneous mela-
noma (SKCM) samples of Bagaev et al. (annotation.tsv) and the 
GSE8401 dataset [19,20]. Sixty-five formalin-fixed, paraffin-em-
bedded tissue slides were provided by the TCGA data portal (https:// 
portal.gdc.cancer.gov/). Lymphocytic scores were graded with a 
semiquantitative scoring system (0−5) and described tumor in-
flammation.

2.4. Gene set enrichment analysis (GSEA)

GSEA was performed on hallmark gene sets in the GSVA package 
of R [18]. They represent well-defined biological states or processes 
based on GMPA signature scores for the top 30% vs. the bottom 30% 
of each type of cancer. Normalized enrichment scores >  1 and false 
discovery rates <  0.25 were considered statistically significant.

2.5. Immunity analysis

A list of immune-related genes was obtained from a recently 
published study and used to develop four conserved pan-cancer 
microenvironment subtypes [19]. Four TCGA conserved pan-cancer 
microenvironment subtypes, including (1) immune-enriched, fi-
brotic (IE/F), (2) immune-enriched, non-fibrotic (IE), (3) fibrotic (F), 
and (4) immune-depleted (D) were downloaded from the dataset of 

Bagaev et al. [19]. TCGA immune clusters C1–C6 were downloaded 
from Thorsson et al. [21]. Spearman’s correlation coefficients be-
tween the GMPA signature scores and the mRNA expression levels of 
the immune-related subtypes were calculated for each cancer type. 
T cell receptor Shannon indices and richness scores across patients 
with the 19 different types of cancer in TCGA were obtained from 
Bagaev et al. [19]. Immunophenoscores (IPSs) for CTLA4 and PDCD1 
among the TCGA samples were obtained from Charoentong 
et al. [22].

2.6. Statistical analysis

Associations between the GMPA signaling scores and the ex-
pression level of immune-related gene were evaluated by 
Spearman’s correlation analysis. We used area under the receiver 
operating characteristic curves (AUROCs) to evaluate the predictive 
performance of the GMPA signature scores. The Survival and 
Survminer packages in R were used to determine the optimal GMPA 
score cutoff values for the high and low groups. Survival analyses 
were performed using Kaplan–Meier (K-M) estimates of survival 
probability and log rank tests. Cox regression analyses were per-
formed using the survival and metafor package in R to calculate the 
hazard ratios (HR) based on the random-effects model [23]. P  <  0.05 
was considered statistically significant. All statistical analyses were 
performed and data were plotted with R v. 4.1.2. and GraphPad 
Prism v. 7.0 (https://www.graphpad.com/scientific-software/prism/). 
Graphical Abstract was partially made using Biorender (https:// 
biorender.com/).

3. Results

3.1. Expression and alteration landscapes of GMPA signaling pathway- 
related genes in human cancers

We used ssGSEA to calculate 35 GMPA-related genes and de-
scribed their expression landscapes in 19 types of cancer in TCGA. 
They significantly differed in terms of GMPA score (ANOVA, 
P  <  0.0001, Fig. 1a, Table S3). Lung adenocarcinoma (LUAD) and 
ovarian serous cystadenocarcinoma had the highest and lowest 
average GMPA scores, respectively. Analysis of the GMPA pathway- 
related gene expression profiles for the 19 cancer types showed that 
COL1A1, COL1A2, RHOA, RHOB, CDC42, and RAC1 were significantly 
upregulated in all cancers (Fig. 1b, Table S4). These findings indicate 
significant differences in the GPVI-mediated platelet activation le-
vels among various types of cancer.

3.2. GMPA signaling pathway signature scores are significantly 
associated with survival in patients with SKCM

We then investigated the relationships among the GMPA sig-
naling pathway-related gene expression levels, cancer prognosis, 
and cancer survival. To this end, we evaluated the prognostic per-
formance of 35 genes via univariate survival analysis and Cox pro-
portional hazards models based on their expression levels in the 19 
types of cancer in TCGA. LUAD had the highest number of prognostic 
genes (13/35). By contrast, none of the 35 genes were significantly 
associated with overall survival (OS) in uterine corpus endometrial 
carcinoma (Fig. 2a). We performed a univariate Cox regression 
analysis based on the GMPA scores and observed that GMPA-related 
gene expression was only associated with OS in SKCM (hazard ratio 
[HR] = 0.61, 95% confidence interval [CI] = 0.47–0.80, P = 0.007, 
Fig. 2b, Table S5). A meta-analysis of the HR values for all cancer 
types showed that the GMPA scores were correlated with prognosis 
(HR = 0.89, 95% CI = 0.79–1.00, P = 0.046, Fig. 2b, Table S5).

A K-M curve analysis showed that the subjects in the high-risk 
cohort had comparatively better OS (log-rank P  <  0.001, Fig. 2c, 
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Table S6), disease-specific survival (DSS) (log-rank P  <  0.001, Fig. 
S1a), and disease-free survival (DFS) (log-rank P  <  0.001, Fig. S1b) 
than those in the low-risk cohort among SKCM patients. We applied 
ssGSEA to calculate the GMPA signature scores for three GEO data-
sets. Figs. 2d–2 f show that according to the three GEO datasets, a 
low GMPA signature score was associated with a poor OS in SKCM 
(all log-rank P  <  0.001, Table S6).

We then performed a multivariate Cox regression analysis to 
establish whether the expression of GMPA signature scores can serve 
as an independent prognostic factor for patients with SKCM. The 
GMPA signature scores were independent prognostic factors with 
HR = 0.146 (0.043, 0.499, P = 0.002) for OS after adjusting for the 
other factors in TCGA-SKCM (Fig. 2 g). These results were also vali-
dated for the GSE65904 and GSE59455 cohorts and demonstrated 
significant associations with high GMPA signature scores and better 
OS (all P  <  0.05, Fig. 2 h and 2i) in SKCM. We used a Cox regression 
model to verify the prognostic value of the GMPA signature on the 
DSS and DFS of the patients in TCGA (P  <  0.05, Fig. S1c) and the 
GSE65904 cohort (P  <  0.05, Fig. S1d). The original data are listed in 
Table S6.

Further results revealed that GMPA signature scores were in-
dependent prognostic factors for OS after adjusting for tumor stage 
in head and neck squamous cell carcinoma (Fig. S2d), LUAD (Fig. 
S2g), and SKCM (Fig. S2k). Previous research has found that GPVI 
could serve as a novel adhesion receptor binding to EMMPRIN 
(CD147)[24]. We analyzed the correlation between CD147 and GMPA 
signature scores across 19 cancer types. Notably, we found that the 
GMPA signature scores were negatively correlated with the expres-
sion level of CD147 in most cancer types at the transcriptomic level 
(Fig. S3, Table S7).

3.3. GMPA scores are significantly correlated with immunity in 19 types 
of cancer

We performed GSEA to identify the differentially enriched hall-
marks and pathways in the groups with low and high GMPA sig-
nature scores. We found that the interferon (IFN)-alpha, IFN-gamma, 
and inflammatory responses were markedly enriched in samples 
with high GMPA signature scores (Fig. 3a, Table S8). In the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database gene sets, an 
enrichment analysis based on GSEA indicated that the high-GMPA 
signature score group was associated with immunocyte function- 
related pathways such as antigen processing and presentation, T cell 
receptor signaling, and natural killer cell-mediated cytotoxicity 
(Fig. S4, Table S9).

We found strong positive correlations between the GMPA sig-
nature scores and the immune gene lists such as the major histo-
compatibility (MHC) I/II complex signature, IFN signatures, and the 
co-stimulatory receptors and ligands (Fig. 3b, Table S10). Most 
cancer types presented with GPMA scores that were negatively 
correlated with tumor proliferation rate-related genes. Notably, 
Spearson’s correlation analysis revealed a significant positive cor-
relation between the GMPA signature scores and the expression 
level of CD40LG in 19 cancer types (Fig. 3b and Fig. S5, Table S7, all 
p  <  0.001).

Then, we compared the expression levels of the classic check-
point molecules BTLA, CD274, CTLA4, HAVCR2, LAG3, PDCD1, 
PDCD1LG2, and TIGIT between the groups with high and low GMPA 
scores (Fig. 3b, Table S10). Significant positive correlations were 
observed between the GMPA scores and the checkpoint molecules 
among all 19 types of cancer. The correlations among the GMPA 
scores and PDCD1LG2, PDCD1, HAVCR2, and TIGIT were particularly 
strong.

Transcriptomic analyses have confirmed that numerous cancer 
types are divided into four distinct tumor microenvironment (TME) 
subtypes. The IE cancers are characterized by high levels of immune 
cell infiltration, and the F and D subtypes demonstrated little or no 
leukocyte/lymphocyte infiltration. In addition, the D subtype had the 
highest percentage of malignant cells[19]. We explored the differ-
ences in the GMPA signature scores among the TME subtypes and 
found that IE/F and IE had higher median scores than the other 
subtypes and D had the lowest median score (Fig. 3c, Table S11).

Immunogenomic analyses of >  10,000 cancer patients across 33 
different types of cancer identified six immune subtypes [21]. C4 
(lymphocyte-depleted) had low lymphocytic infiltration and the 
lowest median GMPA signature score (Fig. 3d, Table S11). This 
finding was consistent with the results of the analysis of the four 
TME subtypes. The aforementioned results suggest that the GMPA 
scores may be closely related to the cancer immune status.

Clonality in peripheral blood PD-1 + CD8 + T cells may serve as a 
noninvasive predictor of patient response to ICB and survival out-
comes in non-small cell lung cancer (NSCLC) [25,26]. We therefore 
analyzed the T cell receptor (TCR) repertoires from the RNA-Seq data 
for 18 cancer types in TCGA. The values for the TCR repertoire vari-
ables were missing for glioblastoma multiforme (GBM). For all 18 
types of cancer, patients with high GMPA signature scores tended to 
have relatively higher TCR richness and Shannon indices than those 
with low GMPA scores (Fig. 3e–f, Table S11).

The IPS is a superior predictor of patient response to anti-CTLA-4 
and anti-PD-1 immunotherapy. A high IPS is associated with an 

Fig. 1. Expression landscapes of GMPA signaling pathway-related genes in 19 different types of cancer. (a) ssGSEA analysis scores of GMPA signatures among samples grouped by 
cancer type. (b) Heatmap showing expression levels of GMPA signature-related genes in 19 types of cancer listed in TCGA.
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Fig. 2. Identification of GMPA signatures associated with patient survival. (a) Prognostic value of GMPA signature-related genes for OS in 19 types of cancer in TCGA. (b) (b) Forest 
plots depicting results of Cox proportional hazards regression for OS analysis using GMPA signature scores. A random effects model was used to calculate the pooled hazard ratio 
and the p-values. Forest plots showing loge hazard ratio (95% confidence interval). P-values were adjusted for multiple testing using the FDR method (significance threshold of 
5%). I-square (I2) statistic test was used to evaluate the proportion of statistical heterogeneity. (c-f) K-M curves of OS by GMPA signature scores in TCGA (c), GSE59455 (d), 
GSE65904 (e), and GSE98394 (f) datasets. P values for survival analysis were calculated using log rank tests. (g-i) Multivariate regression analysis of OS in patients with SKCM from 
TCGA (g), GSE65904 (h), and GSE59455 datasets (i). P-values less than 0.05 are in bold in the Figure.
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Fig. 3. Analyses of correlations among GMPA signature scores and the tumor immunity and pan-cancer microenvironment subtypes. (a) Significant alterations in the pathways of 
the high GMPA signature score group relative to the low-score group were assessed by GSEA. The sizes of points represent log10-transformed false discovery rates (FDR) value and 
the colors of points represent Normalized enrichment scores (NES). (b) Heatmap showing Spearman’s correlation coefficients between the GMPA signature scores and im-
munomodulator expression in the 19 types of cancer. (c-d) Distribution of GMPA signature scores in two pan-cancer microenvironment subtypes. P-values are based on the 
Mann–Whitney test. (e-f) Relative TCR richness and Shannon indices for high- and low GMPA signature scores. P-values are based on the Mann–Whitney test. (***P  <  0.001). The 
horizontal line represents the median.
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immunogenic tumor [22]. We categorized 18 cancer patients as IPS- 
CTLA4-neg-PD1-neg, IPS-CTLA4-neg-PD1-pos, IPS-CTLA4-pos-PD1- 
neg, or IPS-CTLA4-pos-PD1-pos and compared the IPSs among the 
high and low GMPA score groups. Most IPS-CTLA4-neg-PD1-pos, IPS- 
CTLA4-pos-PD1-neg, and IPS-CTLA4-pos-PD1-pos cancer patients 
with high GMPA scores expressed relatively higher IPS values 
(Figs. S6a–d, Table S11). These results suggest that patients with high 
GMPA scores may be relatively more immunogenic and responsive 
to ICB therapy than those with low GMPA scores.

3.4. GMPA signature scores are significantly correlated with tumor 
histology in melanoma

Given that GMPA signature scores were only associated with OS 
and were independent factors in melanoma prognosis (Figs. 2b–2i), 
we analyzed representative melanoma tumor specimens from 
TCGA-SKCM (n = 65) and histologically validated their GMPA scores. 
Once again, this analysis demonstrated that the low GMPA signature 
score group had a relatively higher malignant cell density and lower 
immunocyte infiltration (Fig. 4a, Table S12). This discovery was va-
lidated using an independent melanoma dataset (Fig. 4b, Table S13). 
Lymphocytes were highly abundant in the high GMPA score group, 
whereas the low GMPA score group displayed relatively greater 
stromal content, collagen formation, and tumor cell percentage 
(Fig. 4c).

3.5. GMPA scores for pre-treatment samples

We performed ssGSEA based on the GMPA genes in pre-treat-
ment samples from eight cohorts of patients with multiple cancer 
types treated with ICB therapy. The datasets of pre-treatment sam-
ples were derived from Lee et al., Gide et al., MGH, Abril-Rodriguez 
et al., Kim et al., IMvigor210, MGSP, and Ascierto et al. Using the 
Mann–Whitney U test, we found no significant differences between 
responders (R) and non-responders (NR) in any of the foregoing 
datasets except those of Gide et al. and MGSP (Fig. 5a). In these two 
datasets, the GMPA scores were significantly higher for R than NR 
(P  <  0.05, Fig. 5a). We then used the receiver operator characteristic 
(ROC) to evaluate and quantify the predictive power of the GMPA 
scores. The areas under the curve (AUC) were 0.49, 0.71, 0.58, 0.59, 
0.50, 0.62, 0.48, and 0.57 for the Lee et al., Gide et al., MGH, 

Abril-Rodriguez et al., IMvigor210, MGSP, Kim et al., and Ascierto 
et al. datasets, respectively (Fig. 5b).

We stratified the patients into high and low groups based on 
their optimal GMPA scores and performed K-M survival analyses to 
determine OS and progression-free survival (PFS). Patients with high 
GMPA scores had significantly improved PFS compared to those with 
low GMPA scores (Figs. 5c–5e). The K-M survival analyses of the 
samples from the Lee et al., Gide et al., and IMvigor210 datasets 
suggested that patients with high GMPA scores had prolonged OS 
(Figs. 5f–5 h). However, analysis of the MGH dataset revealed the 
opposite result (Fig. 5i). Thus, the predictive performance of the 
GMPA scores was generally poor across all pre-treatment samples 
from the various datasets.

3.6. GMPA scores for on-treatment samples

We investigated the predictive performance of GMPA signaling 
pathway signatures derived from on-treatment samples in meta-
static melanoma. The ssGSEA scores were calculated for each patient 
among the on-treatment samples in the Lee et al., MGH, Abril- 
Rodriguez et al., and Gide et al. datasets. A Mann–Whitney U test 
demonstrated that the signature scores were significantly higher for 
R than NR in the Lee et al. (P  <  0.001), MGH (P = 0.003), Abril- 
Rodriguez et al. (P  <  0.001), and Gide et al. (P = 0.008) datasets 
(Figs. 6a–6d). The AUCs were 0.84, 0.88, 0.86, and 0.89 for the Lee 
et al., MGH, Abril-Rodriguez et al., and Gide et al. datasets, respec-
tively (Fig. 6e). Combining the on-treatment samples in the Lee et al., 
MGH, Abril-Rodriguez et al., and Gide et al. datasets generated an 
AUC of 0.78 (Fig. 6 f). Patients with high GMPA scores had sig-
nificantly improved PFS compared to those with low GMPA scores in 
the Gide et al., MGH, and combined datasets (Figs. 6g–6i). OS was 
also significantly longer for the patients with high GMPA scores than 
those with low GMPA scores in the Gide et al., Lee et al., and MGH 
datasets (Figs. 6j–6 l). Analysis of the results for the on-treatment 
samples disclosed that the GMPA scores were robust and could ef-
fectively predict the clinical responses and survival outcomes in 
melanoma patients undergoing anti-PD-1 therapy.

Furthermore, Spearson’s correlation analysis revealed that GMPA 
signature scores were significantly negatively correlated with CD147 
expression and positively correlated with CD40LG expression in on- 
treatment samples from four anti-PD1 therapy cohorts (Fig. S7 and 

Fig. 4. Correlations among GMPA signature scores, tumor histology, and tumor immunity in melanoma. (a-b) Boxplots depicting relative malignant cell and lymphocyte % based 
on the GMPA signature scores in SKCM from TCGA (a) and the GSE8401 dataset (b). In all box plots, the upper whisker indicates the 75th percentile + 1.5 IQR; the lower whisker 
indicates the 25th percentile − 1.5 IQR. (c) Representative TCGA hematoxylin-eosin (H&E) histological images of high- and low GMPA signature scores in SKCM.
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Fig. 5. GMPA signatures of pre-treatment samples. (a) Boxplot of GMPA signature scores for pre-treatment samples from Lee et al., Gide et al., MGH, Abril-Rodriguez et al., Kim 
et al., IMvigor210, MGSP, and Ascierto et al. datasets. R: responders; NR: non-responders. R: responders; NR: non-responders. In all box plots, the upper whisker indicates the 75th 
percentile + 1.5 IQR; the lower whisker indicates the 25th percentile − 1.5 IQR. P-values are based on the Mann–Whitney test. (b) ROC and AUC of GMPA signatures for pre- 
treatment samples from Lee et al., Gide et al., MGH, Abril-Rodriguez et al., Kim et al., IMvigor210, MGSP, and Ascierto et al. datasets. (c–e) K-M curves of PFS for on-treatment 
samples based on GMPA signature scores for Gide et al. (c) and MGH (d) cohortsand all pre-treatment samples (e). (f–i) K-M curves of OS for on-treatment samples based on GMPA 
signature scores in Gide et al. (f), Lee et al. (g), IMvigor210 (h), and MGH (i) cohorts.
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Fig. 6. GMPA signatures for on-treatment samples. (a-d) Boxplot of GMPA signature scores for on-treatment samples in Lee et al. (a), MGH (b), Abril-Rodriguez et al. (c), and Gide 
et al. (d) cohorts. R: responders; NR: non-responders. In all box plots, the upper whisker indicates the 75th percentile + 1.5 IQR; the lower whisker indicates the 25th percentile 
− 1.5 IQR. P-values are based on the Mann–Whitney test. (e) ROC and AUC for GMPA signatures of on-treatment samples from Lee et al., MGH, Abril-Rodriguez et al., and Gide et al. 
cohort. (f) ROC and AUC for GMPA signatures of all on-treatment samples. (g-i) K-M curves for PFS of on-treatment samples based on GMPA signature scores of Gide et al. (g) and 
MGH (h) cohorts and all on-treatment samples (i). (j-l) K-M curves for OS of on-treatment samples based on GMPA signature scores in Gide et al. (j), Lee et al. (k), and MGH (l) 
cohorts.
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Fig. S8), which is consistent with the results of the analysis of the 
TCGA cohort.

We also obtained information on BRAF mutation in the samples 
from the Abril-Rodriguez et al. database. A Mann–Whitney U test on 
the GMPA scores derived from the on-treatment samples with a 
BRAF mutation demonstrated that the signature scores were sig-
nificantly higher for R than NR in the Abril-Rodriguez et al. dataset 
(Fig. S9a). Because the Mann–Whitney U test requires at least two 
values in each group, we were unable to calculate the P value for the 
BRAF wildtype (WT) subgroup (Fig. S9b). The AUCs were 1 and 0.67 
for the patients with BRAF V600E and BRAF WT, respectively (Fig. 
S9c). These results indicate that the GMPA scores were robust and 
could effectively predict the clinical responses and survival out-
comes in melanoma patients with a BRAF mutation undergoing anti- 
PD-1 therapy.

3.7. Comparison of GMPA and published predictive signatures

We then evaluated the predictive performance of the GMPA 
signatures derived from on-treatment specimens. To this end, we 
compared them against those of previously reported transcriptome- 
based predictive signatures including IMPRES.Sig [27], IRG.Sig [28], 
ISG.Sig [29], IPRES.Sig [30,31], LRRC15. CAF.Sig [32], EMT.Sig [30], 
CRAM.Sig [33], Plasma.Cells.Sig [34], and Shelterin.Complex.Sig [35]. 
This analysis indicated that GMPA.Sig derived from on-treatment 
specimens most effectively predicted the responses to ICB therapy 
across all four datasets (Fig. 7).

4. Discussion

The GMPA signaling pathway is one of the pathways involved 
with platelet activation, signaling, and aggregation [36]. In this 
study, we mined TCGA RNA data and performed a comprehensive 
analysis of the GMPA signaling pathways in >  7000 samples of 19 
different types of cancer. We also assessed the predictive value of the 
GMPA signaling pathway in eight datasets of pre-treatment and on- 
treatment metastatic melanoma tumor samples subjected to anti- 
PD-1 therapy.

Platelets might play important roles in the adaptive immune 
response. As GMPA signaling is an essential factor in platelet acti-
vation, we systematically analyzed the correlations between the 
GMPA signaling scores and tumor immunity. The immune activa-
tion-related pathways were significantly upregulated in the high 
GMPA signature score group. For all 19 types of cancer, the GMPA 
signature scores were strongly correlated with the immune sig-
natures of the MHCI/II class, IFN response, co-stimulatory receptors 
and ligands, and checkpoint molecules. For most cancer types, the 
GMPA scores were negatively correlated with the tumor prolifera-
tion rate signatures. This observation was consistent with a previous 
study reporting that platelet activation may inhibit tumor cell pro-
liferation [5].

Previous studies have shown that matrix metalloproteinases 
(MMPs) are closely related to tumor immunity and that targeting 
MMPs significantly improves survival time by reducing the tumor 
burden and promoting anti-tumor immunity [37,38]. EMMPRI-
N–EMMPRIN interactions cause an increase in the expression of 
MMPs [39]. In particular, GPVI has been identified as a novel adhe-
sion receptor for EMMPRIN on platelets [24]. Thus, the binding of 
EMMPRIN to GPVI may maintain EMMPRIN in a conformation that 
suppresses the induction of MMP by EMMPRIN, thereby reducing 
tumor progression and improving the response of cancer to anti-PD1 
therapies. In line with this hypothesis, EMMPRIN was shown to 
regulate the response to immunotherapy [40,41]. Notably, correla-
tion analysis revealed that GMPA signature scores are negatively 
correlated with the expression level of CD147 at the transcriptomic 
level in most TCGA cancer types and in on-treatment samples from 

four anti-PD1 therapy cohorts. These clues suggest that the GMPA 
signature and CD147 might have a direct or indirect regulatory re-
lationship at the transcriptomic level and that CD147-GPVI signaling 
could be used to predict GPVI-associated signatures. This is an in-
teresting hypothesis that needs to be further explored.

In metastatic melanoma patients, AdCD40L (adenovirus-based 
CD40LG gene therapy) intratumoral injections increase the T-ef-
fector/regulatory cell ratio and upregulate expression of the death 
receptor, which is correlated with prolonged survival [42]. CD40LG 
can activate the Caspase cascade and ultimately lead to CD40 + 
tumor cell apoptosis [43]. Because melanoma cells usually express 
CD40, they are suitable targets for CD40LG-mediated apoptosis 
[44,45]. Notably, a previous study showed that GPVI-stimulated 
platelets could significantly enhance the secretion of CD40LG [46]. 
Using Spearman’s correlation analysis, we demonstrated that the 
GMPA signature scores are significantly positively correlated with 
the CD40LG expression level within TCGA and ICB cohorts. This 
finding is of particular interest because platelet activation results in 
the release of multiple bioactive factors, one of which is CD40LG, 
which was reported to be involved in improving the anti-tumor 
immune response mediated by T lymphocytes [47,48]. GPVI-stimu-
lated platelets increased the secretion of CD40LG, which kills 
CD40 + target melanoma cells. Moreover, the strong positive corre-
lation between GPVI and CD40LG suggested that as the upstream 
mediator of the GPVI activation pathway, GPVI-CD40LG might be 
able to predict SKCM survival and the response to anti-PD-1 im-
munotherapy. These results could also explain why patients with 
high GMPA signature scores are associated with favorable prognoses 
in the anti-PD1 cohort.

Furthermore, we evaluated the ability of GMPA signature scores 
to predict the responses of various types of cancer to anti-PD-1 
therapy and found that the AUCs for the GMPA signatures derived 
from the on-treatment samples were in the range of 0.84–0.89 and 
were more informative than the AUCs for the GMPA signatures de-
rived from the pre-treatment samples. Importantly, GMPA sig-
natures derived from on-treatment samples are more stable and 
robust than previously published signatures. Previous studies have 
shown that on-treatment tumor samples had a relatively better 
predictive ability than pre-treatment tumor samples in breast cancer 
patients being administered endocrine therapy [49–51]. Pathway 
signatures and functional gene expression signatures derived from 
on-treatment samples accurately predicted the responses of patients 
with metastatic melanoma to anti-PD-1 therapy [13,52]. Overall, our 
results, which demonstrate that the GMPA signature scores for on- 
treatment samples are more robust predictors of the response to 
anti-PD-1 blockade in metastatic melanoma, agree well with the 
above phenomenon. To the best of our knowledge, the present study 
may be the first to assess the reliability of the gene signatures in the 
GMPA signaling pathway for predicting the responses of cancer pa-
tients to ICB therapy.

This study had several limitations. First, it was difficult to dis-
tinguish the hemostatic pathways from non-hemostatic pathways 
for almost all platelet receptors using ssGSEA from the Reactome 
database. Although the other pathway genes did not contribute to 
the GMPA signature scores, they may still cause potential biases in 
the results. Second, we lacked information on the BRAF inhibitor 
treatment that the patients may have received; thus, we could not 
evaluate the response to anti-PD1 in combination with BRAF in-
hibitors in melanoma cancer patients. Finally, all on-treatment 
samples from four ICB cohorts were administered only anti-PD-1/ 
anti-PDL-1 rather than anti-CTLA4.

In this study, we conducted systematic analyses to evaluate the 
clinicopathological and prognostic value of GMPA signatures in 
various types of cancer. The data suggested that GMPA signatures 
may serve as independent prognostic factors for SKCM. Moreover, 
GMPA signature scores are closely related to tumor immunity in 
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different types of cancer and histological types of SKCM. We also 
found that the GMPA scores derived from on-treatment tumor 
specimens were better predictors of responses to anti-PD-1 therapy 
than those derived from pre-treatment tumor specimens, and that 
GMPA signaling pathway scores are promising for the optimization 
of ICB in cancer immunotherapy. As the mediator of upstream sig-
naling, the GPVI-EMMPRIN and GPVI-CD40LG model could predict 
GMPA signature scores favorably in metastatic melanoma and are 
worth developing as a new concept and approach for predicting 
SKCM survival and responses to anti-PD-1 immunotherapy.
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